Advance in the continuous preparation methods and applications of metallized carbon fiber
-
摘要: 金属化处理的碳纤维(CF)能兼备原始纤维轻质高强和金属高导电/导热等多重性能,在电磁屏蔽、防雷击、除冰/防冰、电能传输、超级电容、信号传感、复合材料结构功能一体化等领域,可一定程度替代传统金属材料使用,是跨越材料属性限制的创新,市场应用潜力突出。本文综述了研究学者在CF表面金属化方面取得的进展。具体从金属化工艺入手,分析了近年来主要CF金属化工艺路线,包括喷涂、磁控溅射(PVD)、化学气相沉积(CVD)、电镀、化学镀等,从商业化工程应用角度重点分析了具有大长度连续金属化潜力的电镀和化学镀的核心环节和工艺特点。总结了金属化碳纤维(MCF)的应用现状,展望了CF表面金属化将面临的挑战及未来发展趋势。Abstract: Metallized carbon fiber (CF) possesses multiple properties, such as the original fiber`s lightweight and high strength, as well as the metal's high electrical/thermal conductivity. It has the potential to partially replace traditional metal materials in various fields, including EMI, pro-lightning, de-icing/anti-icing, power transmission, super-capacitors, signal sensing, and structure-function integration of composites. This innovative approach surpasses material limitations and exhibits remarkable market application potential. This papper reviewed the development made by researchers on the metallized CF. The main carbon fiber metallization process routes in recent years were analyzed, including spraying, magnetron sputtering (PVD), chemical vapor deposition (CVD), electroplating, electroless plating, etc. From the perspective of commercial engineering application, the core links and process characteristics of electroplating and electroless plating were analyzed, possessing the capability for continuous metallization of extensive lengths. The application status of metallized carbon fiber (MCF) is summarized, and the challenges and future development trend of carbon fiber surface metallization are prospected.
-
Key words:
- carbon fiber /
- surface treatment /
- metallization /
- conductive material /
- Structure-function integration
-
图 8 电镀工艺下不同活化法CF@Ni的SEM和AFM图[22],(a,e,i)二步Pd活化,(b,f,j)一步Pd胶体活化,(c,g,k)强氧化混合酸刻蚀,(d,h,i)一步Pd与混合酸组合活化
Figure 8. SEM and AFM images of CF@Ni with different activation method by the PVD process[22], (a,e,i)two-step Pd activation, (b,f,j)one-step Pd-colloid activation, (c,g,k)strong oxidizing mixed acid(SMA) etching, (d,h,i) with the combination of SMA etching and one-step Pd-colloid activation
图 11 化学镀工艺下不同阶段CF的SEM图[30],(a) 原始CF,(b) PDA涂层CF,(C-f) AgNO3浓度分别为10、20、30、40的CF-PDA@Ag;(g) CF和CF-PDA@Ag的XED图谱,(h) 不同AgNO3浓度下Ag增加量
Figure 11. SEM images of CF with different stage by electroless plating process[30],(a) pristine CF, (b) CF coated PDA, (c-f) CF-PDA@Ag with AgNO3 concentrations 10, 20, 30, 40; (g) XED patterns of CF and CF-PDA@Ag, (h) Loading of CF-PDA@Ag with different AgNO3 concentrations.
表 1 不同预处理方法下金属化纤维复合材料的IFSS
Table 1. Metallized fiber composites IFSS with different pretreatment method
-
[1] 曹维宇, 杨学萍, 张藕生. 我国高性能高分子复合材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 112-120. doi: 10.15302/J-SSCAE-2020.05.010CAO Weiyu, YANG Xueping, ZHANG Ousheng. Development and prospect of high performance polymer composites in China[J]. Strategic Study of CAE, 2020, 22(5): 112-120(in Chinese). doi: 10.15302/J-SSCAE-2020.05.010 [2] 高家诚, 谭尊, 任富忠. 碳纤维表面化学镀镍工艺及机理研究[J]. 功能材料, 2011, 42(8): 1360-1363.GAO Jiacheng, TAN Zun, REN Fuzhong. Study on the process and mechanism of chemical nickel coating on carbon fiber surface[J]. Journal of Functional Materials, 2011, 42(8): 1360-1363(in Chinese). [3] 叶伟, 徐刘碗, 严仁杰, 等. 碳纤维金属化镀镍的研究进展[J]. 科技视界, 2015, (13): 8-10. doi: 10.3969/j.issn.2095-2457.2015.13.003YE Wei, XU Liuwan, YAN Rengjie, et al. Research progress in nickel coating on carbon fiber[J]. Science & Technology Vision, 2015, (13): 8-10(in Chinese). doi: 10.3969/j.issn.2095-2457.2015.13.003 [4] 董晓阳, 郭金海. 纤维增强树脂基复合材料表面金属化研究进展[J]. 玻璃钢/复合材料, 2017, (2): 93-99.DONG Xiaoyang, GUO Jinhai. Research progress on surface metallization of fiber reinforced resin matrix composite materials[J]. Composites Science and Engineering, 2017, (2): 93-99(in Chinese). [5] LIU C Y, KANG Z X. Facile fabrication of conductive silver films on carbon fiber fabrics via two components spray deposition technique for electromagnetic interference shielding[J]. Applied Surface Science, 2019, 487: 1245-1252. doi: 10.1016/j.apsusc.2019.04.186 [6] PARK J, HU X, TORFEH M, et al. Exceptional electromagnetic shielding efficiency of silver coated carbon fiber fabrics via a roll-to-roll spray coating process[J]. Journal of Materials Chemistry C, 2020, 8: 11070-11078. doi: 10.1039/D0TC02048F [7] 胡隆. 织物表面银基复合涂层的制备及电磁屏蔽性能研究[D]. 广州: 华南理工大学, 2022.HU Long. Preparation and electromagnetic interference shielding performance of silver-based composite coatings on fabric surfaces[D]. Hulong: South China University of Technology, 2022(in Chinese). [8] 王孝锋. 基于磁控溅射C/C膜界面复合材料的制备[D]. 芜湖: 安徽工程大学, 2019.WANG Xiaofeng. Preparation of C/C film interface composite based on magnetron sputtering[D]. Wuhu: Anhui Polytechnic University, 2019(in Chinese). [9] 岳光辉. 低维纳米功能材料制备及研究[D]. 兰州: 兰州大学, 2007.YUE Guanghui. Preparation and study of low-dimensional functional nanomaterials[D]. Lanzhou: Lanzhou University, 2007(in Chinese). [10] NELYUB V A, FEDOROV S Y, MALYSHEVA G V, et al. Properties of Carbon Fibers after Applying Metal Coatings on them by Magnetron Sputtering Technology[J]. Fibre Chemistry, 2021, 53(4): 252-257. doi: 10.1007/s10692-022-10279-5 [11] 李颖, 王鸿博, 高卫东. 碳纤维表面磁控溅射镀铜研究[J]. 化工新型材料, 2011, 39(12): 62-63,86. doi: 10.3969/j.issn.1006-3536.2011.12.020LI Ying, WANG Hongbo, GAO Weidong. The study of carbon fibers with magnetron sputtered copper coating[J]. New Chemical Materials, 2011, 39(12): 62-63,86(in Chinese). doi: 10.3969/j.issn.1006-3536.2011.12.020 [12] 陈缘, 徐珍珍, 杨莉, 等. 基于磁控溅射技术的碳基电磁屏蔽材料[J]. 工程塑料应用, 2022, 50(3): 25-31,37. doi: 10.3969/j.issn.1001-3539.2022.03.005CHEN Yuan, XU Zhenzhen, YANG Li, et al. Carbon-based electromagnetic shielding materials based on magnetron sputtering technology[J]. Engineering Plastics Application, 2022, 50(3): 25-31,37(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.03.005 [13] ANDRÉANI A S, POULON-QUINTIN A, REBILLAT F. Oxidation of refractory metallic coatings on carbon fibers heated up to 1850°C[J]. Surface and Coatings Technology, 2010, 205(5): 1262-1267. doi: 10.1016/j.surfcoat.2010.10.037 [14] 宋季. 碳纤维表面改性、界面粘合及金属化的研究[D]. 北京: 北京化工大学, 2020.SONG Ji. Surface modification, interfacial adhesion and metallization of carbon fiber[D]. Beijing: Beijing University of Chemical Technology, 2020 (in Chinese). [15] ROHATGI P K. , TIWARI V, GUPTA N. Squeeze infiltration processing of nickel coated carbon fiber reinforced Al-2014 composite[J]. Journal of Materials Science, 2006, 41(21): 7232-7239. doi: 10.1007/s10853-006-0915-9 [16] 李一, 聂俊辉, 李楠, 等. 镍覆膜碳纤维的制备与性能研究[J]. 功能材料, 2012, 43(13): 1688-1691,1695. doi: 10.3969/j.issn.1001-9731.2012.13.007LI Yi, NIE Junhui, LINan, et al. Preparation and performance study of nickel coated carbon fiber[J]. Journal of Functional Materials, 2012, 43(13): 1688-1691,1695(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.13.007 [17] OGAWA F, MASUDA C, FUJII H. In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers[J]. Journal of Materials Science, 2017, 53(7): 5036-5050. [18] GUO H W, CHEN Z Q, LI J J, et al. Study of Fe/Ni alloy coated carbon fibres prepared by electroplating[J]. Surface Engineering, 2018, 35(10): 841-847. [19] 吕钊钊, 沙建军, 祖宇飞, 等. 碳纤维表面超声振荡辅助电镀镍涂层工艺及其参数的影响规律[J]. 中国有色金属学报, 2020, 30(3): 571-579. doi: 10.11817/j.ysxb.1004.0609.2020-37513LV Zhaozhao, SHA Jianjun, ZU Yufei, et al. Ultrasonic oscillation assisted electroplating of nickel coating on carbon fiber surface and the influence of its parameters[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 571-579(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-37513 [20] ZHANG G D, YU J W, SU C, et al. The effect of annealing on the properties of copper-coated carbon fiber[J]. Surfaces and Interfaces, 2023, 37: 102630. doi: 10.1016/j.surfin.2023.102630 [21] ZHENG X R, KIM S, PARK C W. Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 449-456. doi: 10.1016/j.compositesa.2019.03.030 [22] LIU J M, ZHANG Y B, GUO Z K, et al. Enhancement of fiber–matrix adhesion in carbon fiber reinforced Al-matrix composites with an optimized electroless plating process[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106258. doi: 10.1016/j.compositesa.2020.106258 [23] CAO Y H, FARHA F I, GE D S, et al. Highly effective E-heating performance of nickel coated carbon fiber and its composites for de-icing application[J]. Composite Structures, 2019, 229: 111397. doi: 10.1016/j.compstruct.2019.111397 [24] KURKOWSKA M, AWIETJAN S, KOZERA R, et al. Application of electroless deposition for surface modification of the multiwall carbon nanotubes[J]. Chemical Physics Letters, 2018, 702: 38-43. doi: 10.1016/j.cplett.2018.04.056 [25] VITRY V, BONIN L. Formation and characterization of multilayers borohydride and hypophosphite reduced electroless nickel deposits[J]. Electrochimica Acta, 2017, 243: 7-17. doi: 10.1016/j.electacta.2017.04.152 [26] BALARAJU J N, RADHAKRISHNAN P, EZHILSELVI V, et al. Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites[J]. Surface & Coatings Technology, 2016, 302: 389-397. [27] CHOI B K, CHOI W K, RHEE K Y, et al. Influence of heat treatment temperature on structure and exothermic properties of electroless Ni P plating carbon fiber heating elements[J]. Composites Part B: Engineering, 2019, 167: 676-682. doi: 10.1016/j.compositesb.2019.03.057 [28] JIAO Y X, LI J, DU F, et al. A study of the wear resistance of carbon fiber composites deposited using an alkaline-based palladium-free electroless plating method[J]. Materials Today Communications, 2023, 37: 106931. doi: 10.1016/j.mtcomm.2023.106931 [29] YIM Y J, RHEE K Y, PARK S J. Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites[J]. Composites Part B: Engineering, 2015, 76: 286-291. doi: 10.1016/j.compositesb.2015.01.052 [30] REN X, HAO R X, YANG Y Q, et al. A facile and green strategy to achieve metallized woven carbon fiber through the triple roles of dopamine in in-situ thermal reduction of Ag[J]. Composites Communications, 2023, 40: 101585. doi: 10.1016/j.coco.2023.101585 [31] KISS P, GLINZ J, STADLBAUER W, et al. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study[J]. Composites Part B: Engineering, 2021, 215: 108844. doi: 10.1016/j.compositesb.2021.108844 [32] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285.ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285(in Chinese). [33] 梁晶晶. 导电芳纶纤维的制备与性能研究[D]. 上海: 上海大学, 2013.LIANG Jingjing. Preparation and performance of conductive aramid fibers[D]. Shanghai: Shanghai University, 2013(in Chinese). [34] 王丽雪, 王春艳, 于久灏, 等. 碳纤维表面化学镀预处理工艺研究[J]. 黑龙江工程学院学报, 2017, 31(2): 49-52.WANG Lixue, WANG Chunyan, YU Jiuhao, et al. Research on pretreatment process of carbon fibers before electroless[J]. Journal of Heilongjiang Institute of Technology, 2017, 31(2): 49-52(in Chinese). [35] 贾志刚, 孔德龙, 王洺浩, 等. 尼龙无铬粗化与无钯活化的金属化过程[J]. 哈尔滨工业大学学报, 2017, 49(5): 42-48. doi: 10.11918/j.issn.0367-6234.201611017JIA Zhigang, KONG Delong, WANG Minghao, et al. Metallization process of PA10T with chrome-free roughening and palladium-free activation[J]. Journal of Harbin Institute of Technology, 2017, 49(5): 42-48(in Chinese). doi: 10.11918/j.issn.0367-6234.201611017 [36] Nelyub V. A. Plasma processing of fibrous carbon materials prior to their metallization[J]. Polymer Science, Series D, 2020, 13(4): 429-434. doi: 10.1134/S1995421220040140 [37] 李颖, 王鸿博, 高卫东. 磁控溅射碳纤维基纳米铜薄膜的结构及其性能[J]. 纺织学报, 2012, 33(9): 10-14. doi: 10.3969/j.issn.0253-9721.2012.09.003LI Ying, WANG Hongbo, GAO Weidong. Structure and properties of nano-copper thin films deposited on carbon fiber fabric by magnetron sputtering[J]. Journal of Textile Research, 2012, 33(9): 10-14(in Chinese). doi: 10.3969/j.issn.0253-9721.2012.09.003 [38] 蔡超迁, 韩乾翰, 黄壮, 等. 基于常压协同射流等离子体改性国产高强中模碳纤维表面的研究[J]. 纺织科学与工程学报, 2021, 38(2): 29-34. doi: 10.3969/j.issn.2096-5184.2021.02.007CAI Chaoqian, HAN Qianhan, Huang Zhuang. Research on the surface modification of domestic high strength and medium modulus carbon fiber based on atmospheric pressure collaborative jet plasma[J]. Journal of Textile Science and Engineering, 2021, 38(2): 29-34(in Chinese). doi: 10.3969/j.issn.2096-5184.2021.02.007 [39] 林雅. 新型碳纤维表面活化方法研究[D]. 西安: 西安建筑科技大学, 2016.LIN Ya. New surface activation method of carbon fiber[D]. Xi’an: Xi’an University of Architecture and Technology, 2016(in Chinese). [40] 杜颖. 碳复合材料表面处理和镀铜的工艺研究[D]. 长沙: 湖南大学, 2021.DU Ying. Investigation on surface treatment and copper plating of carbon composite materials[D]. Changsha: Hunan University, 2021(in Chinese). [41] SUN Z P, HUANG J J. Fabrication of nickel coating on polyethylene terephthalate substrate modified with primer: effect of surface roughness on structural properties of plated coating[J]. Journal of Electronic Materials, 2019, 48(10): 6298-6305. doi: 10.1007/s11664-019-07291-7 [42] CHU H Q, QIN Z Q, ZHANG Y Z, et al. Magnetic field enhancing preferred orientation of nickel-cobalt plated carbon fibers in cement paste, with relevance to compression self-sensing[J]. Measurement, 2023, 220: 113396. doi: 10.1016/j.measurement.2023.113396 [43] ZHANG J J, LIU S C, LIU J M, et al. Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers[J]. Materials & amp; Design, 2020, 186: 108301. [44] 朱雁风, 张君艺, 高培凯. 碳纤维无钯化学镀银工艺研究[J]. 化学工程, 2023, 51(4): 18-21,33.ZHU Yanfeng, ZHANG Junyi, GAO Peikai. Palladium-free electroless silver plating on carbon fiber[J]. Chemical Engineering(China), 2023, 51(4): 18-21,33(in Chinese). [45] WANG Q H, LI X S. Study on new process of electroless copper plating pretreatment on carbon fiber surface[J]. Materials Research Express, 2023, 10(2): 025604. doi: 10.1088/2053-1591/acac02 [46] LI M L, SONG BZ, SU L F, et al. Electroless nickel metallization on palladium-free activated polyamide fabric for electromagnetic interference shielding[J]. Fibers and Polymers, 2021, 22(9): 2433-2439. doi: 10.1007/s12221-021-0992-z [47] HUANG M M, LI W W, LIU X J, et al. Study on structure and performance of surface-metallized carbon fibers reinforced rigid polyurethane composites[J]. Polymers for Advanced Technologies, 2020, 31(8): 1805-1813. doi: 10.1002/pat.4907 [48] DARVISHZADEH A, NASOURI K. Manufacturing, modeling, and optimization of nickel-coated carbon fabric for highly efficient EMI shielding[J]. Surface and Coatings Technology, 2021, 409: 126957. doi: 10.1016/j.surfcoat.2021.126957 [49] 熊海洋. 碳纤维连续金属化改性及其复合材料电磁屏蔽性能的研究[D]. 上海: 东华大学, 2023.XIONG Haiyang. Research on continuous metallization modification of carbon fiber and the performance of electromagnetic shielding of composite materials[D]. Shanghai: Donoghue University, 2023(in Chinese). [50] 田庆, 韩庆军, 刘艳, 等. 镀镍碳纤维功能一体化复合材料的工艺及性能研究[J] 材料科学, 2018, 8(4): 374-381.TIAN Qing, HAN Qingjun, LIU Yan, et al. Study on the process and properties of nickel coated carbon fiber functional integrated composites subtitle as needed[J]. Material Sciences, 2018, 8(4): 374-381(in Chinese). [51] ZHOU Q W, LI G L, ZHOU Z P, et al. Effect of Ni2+ concentration on microstructure and bonding capacity of electroless copper plating on carbon fibers[J]. Journal of Alloys and Compounds, 2021, 863: 158467. doi: 10.1016/j.jallcom.2020.158467 [52] 乔英铭, 甘春雷, 曲迎东, 等. 工艺参数对连续碳纤维表面电磁搅拌化学镀镍的影响[J]. 表面技术, 2020, 49(5): 325-334QIAO Yingming, GAN Chunlei, QU Yingdong, et al. EMI shielding effectiveness of electroless nickel-plated carbon fibres/epoxy resin composites[J]. Surface Technology, 2020, 49(5): 325-334 (in Chinese). [53] 陈娜. 碳纤维表面金属化及其在铜基复合材料中的应用[D]. 南昌: 南昌大学, 2023.CHEN Na. Surface metallization of carbon fiber and its application in copper matrix composites[D]. Nanchang: Nanchang University, 2023(in Chinese). [54] KANG S S, JI H J, GUL H Z, et al. Metal-coated carbon fiber for lighter electrical metal wires[J]. Synthetic Metals, 2016, 222: 180-185. doi: 10.1016/j.synthmet.2016.10.015 [55] WANG Y, WANG W, DING X D, et al. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic[J]. Chemical Engineering Journal, 2020, 380: 122553. doi: 10.1016/j.cej.2019.122553 [56] 陈春亮. 高效涂层改性碳纤维的表界面结构及电热性能研究[D]. 武汉: 武汉纺织大学, 2022.CHEN Chunliang. Study on surface interface structure and electrothermal properties of carbon fiber modified by high efficiency coating[D]. Wuhan: Wuhan Textile University, 2022(in Chinese). [57] 赵中杰. 结构-导电复合材料的制备及其导电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.ZHAO Zhongjie. Study on preparation of structural-conductive composites and their conducting properties[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [58] LV G F, WANG F, DU X D, et al. Microstructure, mechanical and wear properties of short carbon fiber-reinforced AM50 magnesium matrix composite[J]. International Journal Metalcasting, 2023, DOI: 10.1007/s40962-023-01220-5. [59] GAO C Q, LIANG A, MA Q. Tensile properties and fracture mechanism of copper matrix composites reinforced by carbon fibres with Ni-Co-P alloy coating[J]. Rare Metal Materials and Engineering, 2022, 51(11): 3949-3955. [60] ZHOU X, GAO Y M, WANG Y R. Effect of Cu/Ni coating on the interface and mechanical properties of Cf/2024Al composites[J]. Diamond and Related Materials, 2023, 140(B): 110439. [61] AL-SALEH M H, SUNDARARAJ U. Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions[J]. Polymers for Advanced Technologies, 2011, 22(2): 246-253. doi: 10.1002/pat.1526 [62] 闫丽丽, 乔妙杰, 雷忆三, 等. 化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J]. 复合材料学报, 2013, 30(2): 44-49.YAN Lili, QIAO Miaojie, LEI Yisan, et al. EMI shielding effectiveness of electroless nickel-plated carbon fibres/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 44-49 (in Chinese). [63] 吴骅, 朱忠仁, 卓越, 等. 一种超轻低损稳相同轴电缆 [P]. 中国专利, ZL201721325765.8, 2017-10-16.WU Hua, ZHU Zhongren, ZHUO Yue, et al. An ultra-light and low-loss stable coaxial cable[P]. Chinese patent, ZL201721325765.8, 2017-10-16 (in Chinese). [64] WANG H, LIU M Y, LI S N, et al. A self-healing and flexible Ag@carbon fiber/polyurethane composite based on disulfide bonds and application in electromagnetic interference shielding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128956. doi: 10.1016/j.colsurfa.2022.128956 [65] LI J P, QI S H, ZHANG M Y, et al. Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy[J]. Journal of Applied Polymer Science, 2015, 132(33): 42306. doi: 10.1002/app.42306 [66] YANG J, LI W W, ZHOU Y L, et al. Spirally Ag-coated short carbon fiber as a reinforcing filler for rigid polyurethane[J]. Materials Chemistry and Physics, 2022, 291: 126747. doi: 10.1016/j.matchemphys.2022.126747 [67] 游文涛. 民机复合材料含镍涂层涡流加热效应及其除冰研究[D]. 德阳: 中国民用航空飞行学院, 2019.YOU Wentao. Study on eddy current heating effect and deicing of nickel-coated coatings in civil aircraft composites[D]. Deyang: Civil Aviation Flight University of China, 2019(in Chinese). [68] SUN Y L, ZHANG M, ZHANG Y H, et al. Fabrication of high thermal and electrical conductivity composites via electroplating Cu network on 3D PEEK/CF felt skeletons[J]. Composites Communications, 2021, 28: 100909. doi: 10.1016/j.coco.2021.100909 [69] ZHANG R, BIN Y Z, DONG E Y, et al. Considerable different frequency dependence of dynamic tensile modulus between self-heating (Joule heat) and external heating for polymer-nickel-coated carbon fiber composites[J]. The journal of physical chemistry. B, 2014, 118(25): 7047-7058. doi: 10.1021/jp5031202 [70] WAN Y Z, XIAO J, LI C Z, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. Journal of Magnetism and Magnetic Materials, 2016, 399: 252-259. doi: 10.1016/j.jmmm.2015.10.006 [71] BARD S, SCHÖNL F, DEMLEITNER M, et al. Copper and nickel coating of carbon fiber for thermally and electrically conductive fiber reinforced composites[J]. Polymers, 2019, 11: 823. doi: 10.3390/polym11050823 [72] MING Y K, XIN Z B, ZHU Y S, et al. 3D printed nickel-plated carbon fiber mesh for lightning strike protection[J]. Materials Letters, 2021, 294: 129809 doi: 10.1016/j.matlet.2021.129809 [73] GAO L B, SURJADI J U, CAO K, et al. Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber[J]. Acs Applied Materials & Interfaces, 2017, 9(6): 5409-5418. [74] STEINBILD P J, WIEJA N, CONDÉ-WOLTER J, et al. Changes in electric resistance of cracked copper-coated, pitch-based carbon fibers for structural health monitoring in a glider wing[J]. Journal of Physics: Conference Series, 2023, 2526: 012066. doi: 10.1088/1742-6596/2526/1/012066 [75] 王亚震, 张峻滔, 李晖, 等. 超薄镀镍碳纤维管状结构电池的制备及性能研究[J]. 复合材料科学与工程, 2023, (5): 12-18.WANG Yazhen, ZHANG Junhui, LI Hui, et al. Preparation and performance study on ultra-thin nickel-plated carbon fiber tubular structure battery[J]. Composites Science and Engineering, 2023, (5): 12-18(in Chinese).
计量
- 文章访问数: 66
- HTML全文浏览量: 34
- 被引次数: 0