Ceramic fragmentation behavior of B4C ceramic/ultra-high molecular weight polyethylene composite armor plate impacted by 12.7 mm armor piercing projectile
-
摘要: 陶瓷/UHMWPE复合装甲板以其轻质高强的优异性能广泛应用于弹道防护领域,其通过陶瓷的破碎与背板的变形破坏耗散弹丸动能,其中陶瓷的破碎吸能是消耗动能的主要模式。因此,分析陶瓷的碎裂过程及损伤演化特性,对优化陶瓷复合装甲的防护性能具有重要意义。本文以碳化硼陶瓷(B4C)作为面板材料,超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)层压板作为背板材料,通过真空袋膜压工艺制备B4C/UHMWPE复合装甲板。采用54式12.7 mm穿甲弹以弹速(488±10) m/s侵彻复合装甲板,研究复合装甲板的抗侵彻性能;基于X射线计算机断层扫描(X-ray computed tomography,CT)技术和断口形貌观察,分析复合装甲板的弹道侵彻响应机制及B4C陶瓷的破碎行为和特征参数。研究结果表明:B4C陶瓷的破碎区域呈现双圆台状;陶瓷的响应区域包括陶瓷板背面的超前破碎区、弹道侵彻后剩余的陶瓷板、弹丸正下方的碎片-完全粉化区;B4C陶瓷内的自由面锥角与复合装甲板的抗穿甲弹侵彻性能存在明显正相关性;B4C/UHMWPE复合装甲板的响应过程包括冲击波传播过程及诱导陶瓷内自由面生成、B4C陶瓷的破碎过程、UHMWPE层压板的压缩-剪切-拉伸的耦合过程。Abstract: The ceramic/ultra-high molecular weight polyethylene (UHMWPE) composite armor plate is widely used in the ballistic protection field because of its excellent performance of light weight and high strength. It dissipates the kinetic energy of the projectile through the breaking of the ceramic and the deformation of the back plate. The energy absorption of ceramic fragmentation is the main mode of dissipating kinetic energy of armor piercing projectile. Therefore, it is important to analyze the fracture process and damage evolution characteristics of ceramic to optimize the protective performance of ceramic composite armor. The B4C was used as panel material, and UHMWPE laminate was used as back plate material. B4C/UHMWPE composite armor plate was prepared by resin film infusion. The composite armor plate was impacted by 54-types 12.7 mm armor piercing projectile at the velocity of (488±10) m/s to study the anti-penetration performance. Based on X-ray computed tomography (CT) technology and fracture morphology observation, the ballistic response mechanism of composite armor plate was analyzed. Further, the fragmentation behavior and characteristic parameters of B4C ceramics were explored. The results show that the damage region of B4C ceramics presents a double cone shape. The response region of the ceramic includes the advanced fragmentation zone on the back face of the ceramic plate, the remaining ceramic plate after ballistic penetration, and the fragment-complete pulverization zone directly below the projectile. There is an obvious positive correlation between the free surface cone angle of B4C ceramics and the anti-penetration performance of composite armor plate. The response process of B4C/UHMWPE composite armor plate includes shock wave propagation process and the generation of free surface formation in ceramics, B4C ceramic fragmentation process, and the coupling process of compression, shear, and tension of UHMWPE laminate.
-
图 1 实验路线示意图:(a) 真空袋膜压工艺制备装甲板;(b) 弹道测试装置;(c) 弹道测试后的复合装甲板和弹丸;(d) CT扫描设备
Figure 1. Schematic of experimental route: (a) Preparation of armor plate by vacuum bag film pressing process; (b) Illustration of ballistic test setup; (c) Post-impact composite laminate and bullet; (d) Illustration of CT-scan setup
API-Armor Piercing Incendiary ; IR—infrared ray; A—sectional drawing
图 3 弹道侵彻后B4C/UHMWPE复合装甲板的损伤形貌:(a) 基于CT扫描的沿弹孔直径方向的复合装甲板横截面剖面形貌(S4#-3);(b) 弹着点处装甲板的宏观尺度的损伤形貌;(c) 弹着点处装甲板的微观尺度的损伤形貌
Figure 3. Damage morphologies of post-impact B4C/UHMWPE composite armor plate: (a) Cross section morphology of composite armor plate along bullet hole diameter based on CT scanning (S4#-3); (b) Macroscopic damage morphology of armor plate at the impact point; (c) Micro scale damage morphology of armor plate at the impact point
图 4 (a1) 弹着点处B4C陶瓷板背面的破碎形貌(S4#-5);(a2) 与B4C陶瓷板背面分离并贴附于UHMWPE层压板上的超前碎裂区陶瓷破碎形貌(S4#-5);(b) 穿甲弹侵彻作用下B4C陶瓷响应区域分类示意图
Figure 4. (a1) Fracture morphology of back face of B4C ceramic plate at impact point (S4#-5); (a2) Fracture morphology of ceramic in the advanced fragmentation zone separated from B4C ceramic plate back face and attached to the UHMWPE laminate (S4#-5); (b) Schematic diagram of response area classification of B4 C ceramic under penetration of piercing projectile
图 6 穿甲弹侵彻作用下B4C/UHMWPE复合装甲板的响应机制:(a) 冲击波的传播过程;(b) 弹道侵彻过程:(b1) 陶瓷表面产生裂纹并形成超前破坏区;(b2) 超前破碎区与陶瓷分离并发生碎裂;(b3) 弹丸开始侵彻背板;(b4) 弹丸动能耗尽;(b5) 装甲有效抵挡弹丸侵彻;(b6) 装甲被弹丸穿透
Figure 6. Response mechanism of B4C/UHMWPE composite armor plate under armor piercing projectile: (a) Process of shock wave propagation; (b) Ballistic penetration process: (b1) Cracks appear on ceramic surface and advanced fragmentation zone is formed; (b2) Advanced fragmentation zone separates from the ceramic and breaks; (b3) Projectile began to penetrate the backplane; (b4) Kinetic energy of projectile is exhausted; (b5) Armor effectively resists projectile penetration; (b6) Armor was penetrated by the projectile
V—Velocity of projectile
表 1 B4C陶瓷的物理性能
Table 1. Physical properties of B4C ceramic
Bending strength/MPa Elastic modulus/GPa Vickers harness/(kgf·mm−2) Fracture toughness/(MPa·m1/2) Volume density/(g·cm−3) 564 393 3536 3.47 2.57 表 2 试验用超高分子量聚乙烯(UHMWPE)层压板的物理性能
Table 2. Physical properties of ultra-high molecular weight polyethylene (UHMWPE) laminate in experiment
Volume density
/(g·cm−3)Tensile strength at
break/MPaYoung’s
modulus/GPaTensile strain at break/% 0.95-1.0 1064.39 42.09 3.10 表 3 试验用B4C/UHMWPE复合装甲板结构及其参数
Table 3. Structure and specifications of B4C/UHMWPE composite armor plate in experiment
Test structure No. Structure design
of armor plateParameters of B4C/UHMWPE laminated composite armor plate Repetition Thickness of B4C/mm Areal density of UHMWPE/(kg·m−2) Areal density of armor plate/(kg·m−2) AVG. STD. AVG. STD. AVG. STD. S1# 11 mm B4C + 10 kg/m2 UHMWPE 11.13 0.13 10.13 0.08 39.21 0.54 9 S2# 12 mm B4C + 8 kg/m2 UHMWPE 12.08 0.10 8.12 0.04 39.56 0.45 5 S3# 11 mm B4C + 12 kg/m2 UHMWPE 11.18 0.02 11.98 0.16 41.77 0.39 4 S4# 12 mm B4C + 10 kg/m2 UHMWPE 12.2 0.01 10.02 0.07 42.18 0.36 7 Notes: AVG.—Average; STD.—Standard deviation. 表 4 B4C /UHMWPE复合装甲板抵挡54式12.7 mm穿甲弹侵彻试验结果
Table 4. Test results of B4C /UHMWPE composite armor plate resisting the penetration of 54 Type 12.7 mm armor piercing projectile
No. of test structure Repeat sample No. Impact velocity/(m·s−1) Post-impact state Location of impact point Bulge length/mm Distance form top/mm Distance from left/mm S1#:
11 mm B4C +
10 kg/m2 UHMWPES1#-1 495 NP 130 200 39 S1#-2 497 CP 150 160 — S1#-3 489 NP 145 155 60 S1#-4 492 CP 160 175 — S1#-5 491 CP 215 150 — S1#-6 493 CP 105 155 — S1#-7 493 NP 115 135 95 S1#-8 483 CP 175 180 — S1#-9 497 CP 160 160 — S2#:
12 mm B4C +
8 kg/m2 UHMWPES2#-1 495 CP 165 195 — S2#-2 493 CP 210 170 — S2#-3 491 CP 180 215 — S2#-4 489 CP 155 145 — S2#-5 493 NP 145 150 79 S3#:
11 mm B4C +
12 kg/m2 UHMWPES3#-1 489 CP 115 150 — S3#-2 498 NP 110 120 93 S3#-3 491 NP 210 190 68 S3#-4 483 NP 175 240 66 S4#:
12 mm B4C +
10 kg/m2 UHMWPES4#-1 496 NP 120 140 55 S4#-2 490 CP 150 165 — S4#-3 494 NP 135 150 30 S4#-4 489 CP 155 160 — S4#-5 485 CP 200 115 — S4#-6 486 CP 160 165 — S4#-7 491 NP 150 170 40 Notes: NP—Non-perforating; CP—Complete perforating. -
[1] YIN Z B, YUAN J T, CHEN M D, et al. Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering[J]. Ceramic International,2019,45(17):23781-23787. doi: 10.1016/j.ceramint.2019.08.095 [2] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11):82-91. doi: 10.11883/bzycj-2021-0134YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion and Shock Waves,2021,41(11):82-91(in Chinese). doi: 10.11883/bzycj-2021-0134 [3] KRELL A, STRASSBURGER E. Order of influences on the ballistic resistance of armor ceramics and single crystals[J]. Journal of Mechanical Science and Technology,2014,597:422-430. [4] HOGAN J D, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure[J]. International Journal of Impact Engineering,2017,102:47-54. doi: 10.1016/j.ijimpeng.2016.12.008 [5] YU W H, LI W P, SHANGGUAN Y F, et al. Relationships between distribution characteristics of ceramic fragments and anti-penetration performance of ceramic composite bulletproof insert plates[J]. Defence Technology,2023,19(1):103-110. [6] MADHU V, RAMANJANEYULU K, BALAKRISHNA B T, et al. An experimental study of penetration resistance of ceramic armor subjected to projectile impact[J]. International Journal of Impact Engineering,2005,32(1):337-50. [7] CHAO Z L, SUN T T, JIANG L T, et al. Ballistic behavior and microstructure evolution of B4C/AA2024 composites[J]. Ceramics International,2019,45(16):20539-44. doi: 10.1016/j.ceramint.2019.07.033 [8] ZHANG C B, DI D N, CHEN X W, et al. Characteristics structure analysis on debris cloud in the hypervelocity impact of disk projectile on thin plate[J]. Defence Technology,2020,16(2):299-307. doi: 10.1016/j.dt.2019.09.011 [9] LIANG S C, LI Y, CHEN H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3 D point set[J]. Procedia Engineering,2013,58:526-32. doi: 10.1016/j.proeng.2013.05.060 [10] SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles[J]. International Journal of Impact Engineering,2011,38(7):535-541. doi: 10.1016/j.ijimpeng.2011.01.006 [11] 中国人民解放军总后勤部军需装备研究所, 国家特种防护服装质量监督检验中心. 军用防弹衣安全技术性能要求: GJB 4300 A—2012[S]. 北京: 中国人民解放军总后勤部, 2012.Quartermaster Equipment Research Institute of the General Logistics Department of the Chinese people's Liberation Army, National Center for quality supervision and inspection of special protective clothing. Requirements of safety technical performance for military body armor: GJB 4300 A—2012[[S]. Beijing: General Logistics Department of the Chinese people's Liberation Army, 2012(in Chinese). [12] HU P C, CHENG Y S, ZHANG P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile[J]. Ceramics International,2021,47(16):22497-22513. doi: 10.1016/j.ceramint.2021.04.259 [13] ZHANG B W, WANG Y W, DU S F, et al. Influence of backing plate support conditions on armor ceramic protection efficiency[J]. Materials, 2020, 13(15): 3427. [14] 何业茂, 焦亚男, 周庆, 等. 弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为[J]. 复合材料学报, 2023, 40(1): 119-130.HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Tensile mechanical behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application [J]. Acta Materiae Compositae Sinica, 2023, 40(1): 119-130(in Chinese). [15] 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制[J]. 复合材料学报, 2022, 39(10):4908-4917. doi: 10.13801/j.cnki.fhclxb.20210928.002JIA Nan, JIAO Ya'nan, ZHOU Qing, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica,2022,39(10):4908-4917(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210928.002 [16] 胡丽萍, 王智慧, 侯圣英, 等. 大倾角陶瓷复合装甲抗弹性能研究[J]. 兵工自动化, 2010, 29(2):12-13.HU Liping, WANG Zhihui, HOU Shengying, et al. Study on anti-bomb performance of large inclination ceramics composite armor[J]. Ordnance Industry Automation,2010,29(2):12-13(in Chinese). [17] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响[J]. 北京理工大学学报, 2021, 41(7):713-720.YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles[J]. Transactions of Beijing Institute of Technology,2021,41(7):713-720(in Chinese). [18] 胡丽萍, 王和平, 王智慧, 等. 陶瓷复合装甲不同区域抗弹丸穿甲能力试验研究[J]. 弹箭与制导学报, 2010, 30(5):90-92. doi: 10.3969/j.issn.1673-9728.2010.05.025HU Liping, WANG Heping, WANG Zhihui, et al. Experimental on ballistic property of different impact location of ceramic composite armor[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2010,30(5):90-92(in Chinese). doi: 10.3969/j.issn.1673-9728.2010.05.025 [19] SHERMAN D. Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement[J]. International Journal of Impact Engineering,2000,24(3):313-328. doi: 10.1016/S0734-743X(99)00147-5 [20] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2022, 38(5):1331-1347.HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Tensile mechanical behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application[J]. Acta Materiae Compositae Sinica,2022,38(5):1331-1347(in Chinese). [21] BOLDIN M S, BERENDEEV N N, MELEKHIN N V, et al. Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide[J]. Ceramic International,2021,47(18):25201-25213. doi: 10.1016/j.ceramint.2021.06.066 [22] DANCER C E J, SPAWTON J N F, FALCO S, et al. Characterisation of damage mechanisms in oxide ceramics indented at dynamic and quasi-static strain rates[J]. Journal of the European Ceramic Society,2019,39(15):4936-4945. doi: 10.1016/j.jeurceramsoc.2019.06.054 [23] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011: 171-176.YU Tongxi, QIU Xinming. Impact dynamics[M]. Beijing: Tsinghua university press, 2011: 171-176(in Chinese). -