留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机

刘荆堰 陈子航 姜啟恒 熊娟

刘荆堰, 陈子航, 姜啟恒, 等. PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机[J]. 复合材料学报, 2023, 40(7): 4019-4026
引用本文: 刘荆堰, 陈子航, 姜啟恒, 等. PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机[J]. 复合材料学报, 2023, 40(7): 4019-4026
LIU Jingyan, CHEN Zihang, JIANG Qiheng, XIONG Juan. Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4019-4026.
Citation: LIU Jingyan, CHEN Zihang, JIANG Qiheng, XIONG Juan. Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4019-4026.

PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机

基金项目: 国家自然科学基金区域创新发展联合基金项目(210301001018)
详细信息
    通讯作者:

    熊娟,博士,副教授,硕士生导师,研究方向为能源转换材料与器件 E-mail: juanxiong@hubu.edu.cn

  • 中图分类号: TB34

Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film

Funds: National Natural Science Foundation of China Regional Innovation and Development Joint Fund Project (210301001018)
  • 摘要: 可将无规则机械能转换为电能的压电纳米发电机与摩擦纳米发电机能够为低功耗可穿戴电子设备提供独立、持续性供电,有利于促进柔性自供能电子器件多元化的发展。将二者进行集成,可综合二者电输出特性的优点,提高纳米发电机的性能。论文分别以聚偏二氟乙烯(PVDF)与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)为正、负极摩擦材料,采用静电纺丝方法制备了PVDF/SBS复合纤维薄膜,并利用该复合纤维薄膜得到压电-摩擦电复合纳米发电机。研究结果表明:当PVDF掺入量为20wt%时,PVDF/SBS复合纤维薄膜的电学输出性能最佳,器件的开路电压与短路电流最大可达108 V与0.34 μA,分别是纯SBS样品的5倍与6倍。将器件固定在手掌、鞋底处,收集拍手、行走、跑步等运动的能量,可产生不同幅度的输出电压,表明器件可有效收集人体运动的机械能;通过手掌拍打器件,可点亮64只商用蓝色LED灯珠;同时器件可检测瞬时压力变化,灵敏度最大可达3.685 V·N−1。上述结果表明PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机在传感监测和电子器件自供能领域具有良好的应用前景。

     

  • 图  1  聚偏二氟乙烯/苯乙烯-丁二烯-苯乙烯嵌段共聚物(PVDF/SBS)复合纤维薄膜的SEM截面图像

    Figure  1.  SEM section image of polyvinyl fluoride/styrene butadiene styrene block copolymer (PVDF/SBS) composite fiber

    图  2  不同质量分数PVDF的PVDF/SBS复合纤维的SEM表面图像:(a) 0wt%;(b) 5wt%;(c) 10wt%;(d) 15wt%;(e) 20wt%;(f) 30wt%及局部放大图

    Figure  2.  SEM images of PVDF/SBS composite fiber with different mass fractions of PVDF: (a) 0wt%; (b) 5wt%; (c) 10wt%; (d) 15wt%; (e) 20wt%; (f) 30wt% and partially enlarged image

    图  3  不同质量分数PVDF/SBS复合纤维薄膜的FT-IR谱图

    Figure  3.  FT-IR spectra of PVDF/SBS composite fiber films with different mass fractions of PVDF

    图  4  器件及薄膜的光学照片:(a) PVDF/SBS压电-摩擦电复合纳米发电机;(b) PVDF/SBS复合纤维薄膜

    Figure  4.  Optical photos of (a) PVDF/SBS piezoelectric/triboelectric composite nanogenerator; (b) PVDF/SBS composite fiber film

    图  5  不同质量分数PVDF/SBS压电-摩擦电复合纳米发电机的输出响应:(a)开路电压;(b)短路电流

    Figure  5.  (a) Open-circuit voltage; (b) short- circuit current of PVDF/SBS piezoelectric/triboelectric composite nanogenerator with different mass fraction of PVDF.

    图  6  PVDF/SBS压电-摩擦电复合纳米发电机工作原理图

    Figure  6.  Working principle diagram of PVDF/SBS piezoelectric/triboelectric composite nanogenerator

    图  7  PVDF/SBS压电-摩擦电复合纳米发电机对人体运动的传感:(a)拍手时的电输出响应;(b)拍手时输出响应时间及(c)人体走路、小跑、蹦跳时的电输出响应

    Figure  7.  PVDF/SBS piezoelectric/triboelectric composite nanogenerator for human motion sensing: (a) clapping; (b) response time when clapping; (c) output response when walking, trotting and jumping

    图  8  PVDF/SBS压电-摩擦电复合纳米发电机点亮64个蓝色LED

    Figure  8.  PVDF/SBS piezoelectric/triboelectric composite nanogenerator lights up 64 blue LEDs

    图  9  20 wt% PVDF/SBS压电-摩擦电复合纳米发电机对不同外力的电压输出信号及灵敏度特性:(a) 0.42 N;(b) 0.56 N;(c) 0.72 N;(d) 1.11 N;(e) 1.57 N;(f) 1.77 N;(g) 0.42 N下响应时间;(h) 1.77 N下响应时间及(i)器件灵敏度

    Figure  9.  Voltage output signals and sensitivity characteristics of 20 wt% PVDF/SBS piezoelectric/triboelectric composite nanogenerator to different forces: (a) 0.42 N; (b) 0.56 N; (c)0.72 N; (d)1.11 N; (e)1.57 N; (f)1.77 N; (g)response time in 0.42 N; (h) response time in 1.77 N and (i) the sensitivity of the device

  • [1] HUANG X, QIN Q, WANG X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing[J]. ACS nano,2021,15(12):19783-19792. doi: 10.1021/acsnano.1c07236
    [2] YANG S Y, Sencadas V, YOU S S, et al. Powering implantable and ingestible electronics[J]. Advanced functional materials,2021,31(44):2009289. doi: 10.1002/adfm.202009289
    [3] HU F, CAI Q, LIAO F, et al. Recent advancements in nanogenerators for energy harvesting[J]. Small,2015,11(42):5611-5628. doi: 10.1002/smll.201501011
    [4] WANG X. Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale[J]. Nano Energy,2012,1(1):13-24. doi: 10.1016/j.nanoen.2011.09.001
    [5] WANG Z L, CHEN J, LIN L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science,2015,8(8):2250-2282.
    [6] NIU S, WANG Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy,2015,14:161-192. doi: 10.1016/j.nanoen.2014.11.034
    [7] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102-105. doi: 10.1126/science.1139366
    [8] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS nano,2013,7(11):9533-9557. doi: 10.1021/nn404614z
    [9] Ryu H, Yoon H J, Kim S W. Hybrid energy harvesters: toward sustainable energy harvesting[J]. Advanced Materials,2019,31(34):1802898. doi: 10.1002/adma.201802898
    [10] JIANG F, ZHOU X, LV J, et al. Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting[J]. Advanced Materials,2022,34(17):2200042. doi: 10.1002/adma.202200042
    [11] LIU Y, MO J, FU Q, et al. Enhancement of Triboelectric Charge Density by Chemical Functionalization[J]. Advanced Functional Materials,2020,30(50):2004714. doi: 10.1002/adfm.202004714
    [12] CHEN J J, QIN S H, LV Q C, et al. Preparation of novel xGNPs/SBS composites with enhanced dielectric constant and thermal conductivity[J]. Advances in Polymer Technology,2018,37(5):1382-1389. doi: 10.1002/adv.21797
    [13] YU S, WANG X, XIANG H, et al. 1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors[J]. Science China Materials,2019,62(7):995-1004. doi: 10.1007/s40843-018-9402-1
    [14] Van Der Heijden S, De Bruycker K, Simal R, et al. Use of triazolinedione click chemistry for tuning the mechanical properties of electrospun SBS-fibers[J]. Macromolecules,2015,48(18):6474-6481. doi: 10.1021/acs.macromol.5b01569
    [15] Sukumaran S, Chatbouri S, Rouxel D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications[J]. Journal of Intelligent Material Systems and Structures,2020,32(7):746-780.
    [16] MI H Y, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy,2018,48:327-336. doi: 10.1016/j.nanoen.2018.03.050
    [17] SHI L, JIN H, DONG S, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting[J]. Nano Energy,2021,80:105599. doi: 10.1016/j.nanoen.2020.105599
    [18] ZHANG Q, WANG T, FAN W, et al. Evaluation of the properties of bitumen modified by SBS copolymers with different styrene–butadiene structure[J]. Journal of Applied Polymer Science,2014,131(12):40398.
    [19] YIN J Y, Boaretti C, Lorenzetti A, et al. Effects of Solvent and Electrospinning Parameters on the Morphology and Piezoelectric Properties of PVDF Nanofibrous Membrane[J]. Nanomaterials,2022,12(6):962. doi: 10.3390/nano12060962
    [20] SONG Y S, YUN Y, Lee D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9
    [21] Kwon Y H, SHIN S H, Kim Y H, et al. Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators[J]. Nano Energy,2016,25:225-231. doi: 10.1016/j.nanoen.2016.05.002
    [22] LI X, JI D, YU B, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. doi: 10.1016/j.cej.2021.130345
  • 加载中
图(9)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  271
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-08-31
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回