Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film
-
摘要: 可将无规则机械能转换为电能的压电纳米发电机与摩擦纳米发电机能够为低功耗可穿戴电子设备提供独立、持续性供电,有利于促进柔性自供能电子器件多元化的发展。将二者进行集成,可综合二者电输出特性的优点,提高纳米发电机的性能。论文分别以聚偏二氟乙烯(PVDF)与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)为正、负极摩擦材料,采用静电纺丝方法制备了PVDF/SBS复合纤维薄膜,并利用该复合纤维薄膜得到压电-摩擦电复合纳米发电机。研究结果表明:当PVDF掺入量为20wt%时,PVDF/SBS复合纤维薄膜的电学输出性能最佳,器件的开路电压与短路电流最大可达108 V与0.34 μA,分别是纯SBS样品的5倍与6倍。将器件固定在手掌、鞋底处,收集拍手、行走、跑步等运动的能量,可产生不同幅度的输出电压,表明器件可有效收集人体运动的机械能;通过手掌拍打器件,可点亮64只商用蓝色LED灯珠;同时器件可检测瞬时压力变化,灵敏度最大可达3.685 V·N−1。上述结果表明PVDF/SBS柔性复合纤维薄膜压电-摩擦电纳米发电机在传感监测和电子器件自供能领域具有良好的应用前景。
-
关键词:
- 压电-摩擦电纳米发电机 /
- PVDF /
- SBS /
- 复合纤维薄膜 /
- 能量收集
Abstract: Piezoelectric nanogenerators and friction nanogenerators can convert irregular mechanical energy into electrical energy which have the potential to provide independent and continuous power supply for low-power wearable electronic devices. Combining two kinds nanogenerators can integrate the advantages of their electrical output characteristics and improve the performance of nanogenerators. In this paper, polyvinyl fluoride (PVDF) and styrene butadiene styrene block copolymer (SBS) were selected as positive and negative friction materials, respectively. The PVDF/SBS composite fiber films were prepared by electrospinning and were employed to build a piezoelectric/triboelectric nanogenerator. The results show that when the amount of PVDF is 20wt%, the maximum open circuit voltage and short circuit current of the PVDF/SBS piezoelectric/triboelectric nanogenerator can reach 108 V and 0.34 μA, which are 5 and 6 times that of neat SBS sample, respectively. When the devices were fixed on the palm and sole of the shoe, output voltage signal with different amplitude can be obtained by collecting the mechanical energy of human motion, including clapping, walking and running. 64 commercial blue LED beads were lit up when the device were beaten by palm. The device can also detect the instantaneous pressure and the maximum sensitivity can reach 3.685 V·N−1. The experimental results show that PVDF/SBS piezoelectric/triboelectric nanogenerator exhibits a good application prospect in the fields of sensor monitoring and self-energy supply of electronic devices. -
图 9 20 wt% PVDF/SBS压电-摩擦电复合纳米发电机对不同外力的电压输出信号及灵敏度特性:(a) 0.42 N;(b) 0.56 N;(c) 0.72 N;(d) 1.11 N;(e) 1.57 N;(f) 1.77 N;(g) 0.42 N下响应时间;(h) 1.77 N下响应时间及(i)器件灵敏度
Figure 9. Voltage output signals and sensitivity characteristics of 20 wt% PVDF/SBS piezoelectric/triboelectric composite nanogenerator to different forces: (a) 0.42 N; (b) 0.56 N; (c)0.72 N; (d)1.11 N; (e)1.57 N; (f)1.77 N; (g)response time in 0.42 N; (h) response time in 1.77 N and (i) the sensitivity of the device
-
[1] HUANG X, QIN Q, WANG X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing[J]. ACS nano,2021,15(12):19783-19792. doi: 10.1021/acsnano.1c07236 [2] YANG S Y, Sencadas V, YOU S S, et al. Powering implantable and ingestible electronics[J]. Advanced functional materials,2021,31(44):2009289. doi: 10.1002/adfm.202009289 [3] HU F, CAI Q, LIAO F, et al. Recent advancements in nanogenerators for energy harvesting[J]. Small,2015,11(42):5611-5628. doi: 10.1002/smll.201501011 [4] WANG X. Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale[J]. Nano Energy,2012,1(1):13-24. doi: 10.1016/j.nanoen.2011.09.001 [5] WANG Z L, CHEN J, LIN L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science,2015,8(8):2250-2282. [6] NIU S, WANG Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy,2015,14:161-192. doi: 10.1016/j.nanoen.2014.11.034 [7] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102-105. doi: 10.1126/science.1139366 [8] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS nano,2013,7(11):9533-9557. doi: 10.1021/nn404614z [9] Ryu H, Yoon H J, Kim S W. Hybrid energy harvesters: toward sustainable energy harvesting[J]. Advanced Materials,2019,31(34):1802898. doi: 10.1002/adma.201802898 [10] JIANG F, ZHOU X, LV J, et al. Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting[J]. Advanced Materials,2022,34(17):2200042. doi: 10.1002/adma.202200042 [11] LIU Y, MO J, FU Q, et al. Enhancement of Triboelectric Charge Density by Chemical Functionalization[J]. Advanced Functional Materials,2020,30(50):2004714. doi: 10.1002/adfm.202004714 [12] CHEN J J, QIN S H, LV Q C, et al. Preparation of novel xGNPs/SBS composites with enhanced dielectric constant and thermal conductivity[J]. Advances in Polymer Technology,2018,37(5):1382-1389. doi: 10.1002/adv.21797 [13] YU S, WANG X, XIANG H, et al. 1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors[J]. Science China Materials,2019,62(7):995-1004. doi: 10.1007/s40843-018-9402-1 [14] Van Der Heijden S, De Bruycker K, Simal R, et al. Use of triazolinedione click chemistry for tuning the mechanical properties of electrospun SBS-fibers[J]. Macromolecules,2015,48(18):6474-6481. doi: 10.1021/acs.macromol.5b01569 [15] Sukumaran S, Chatbouri S, Rouxel D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications[J]. Journal of Intelligent Material Systems and Structures,2020,32(7):746-780. [16] MI H Y, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy,2018,48:327-336. doi: 10.1016/j.nanoen.2018.03.050 [17] SHI L, JIN H, DONG S, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting[J]. Nano Energy,2021,80:105599. doi: 10.1016/j.nanoen.2020.105599 [18] ZHANG Q, WANG T, FAN W, et al. Evaluation of the properties of bitumen modified by SBS copolymers with different styrene–butadiene structure[J]. Journal of Applied Polymer Science,2014,131(12):40398. [19] YIN J Y, Boaretti C, Lorenzetti A, et al. Effects of Solvent and Electrospinning Parameters on the Morphology and Piezoelectric Properties of PVDF Nanofibrous Membrane[J]. Nanomaterials,2022,12(6):962. doi: 10.3390/nano12060962 [20] SONG Y S, YUN Y, Lee D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9 [21] Kwon Y H, SHIN S H, Kim Y H, et al. Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators[J]. Nano Energy,2016,25:225-231. doi: 10.1016/j.nanoen.2016.05.002 [22] LI X, JI D, YU B, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. doi: 10.1016/j.cej.2021.130345 -