留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导电性聚吡咯改性玄武岩纤维制备与性能

曾思衡 汪昕 吴智深 化璐青

曾思衡, 汪昕, 吴智深, 等. 高导电性聚吡咯改性玄武岩纤维制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 曾思衡, 汪昕, 吴智深, 等. 高导电性聚吡咯改性玄武岩纤维制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
ZENG Siheng, WANG Xin, WU Zhishen, et al. Preparation and performance of highly conductive polypyrrole-modified basalt fiber[J]. Acta Materiae Compositae Sinica.
Citation: ZENG Siheng, WANG Xin, WU Zhishen, et al. Preparation and performance of highly conductive polypyrrole-modified basalt fiber[J]. Acta Materiae Compositae Sinica.

高导电性聚吡咯改性玄武岩纤维制备与性能

基金项目: 国家重点研发计划 (2022 YFB3706503);国家自然科学基金(52178115);中央高校基本科研业务费(2242022 k30031, 2242022 k30033)
详细信息
    通讯作者:

    汪昕,博士,教授,博士生导师,研究方向为复合材料结构 E-mail: xinwang@seu.edu.cn

    吴智深,博士,教授,博士生导师,研究方向为复合材料结构 E-mail: zswu@seu.edu.cn

  • 中图分类号: TB332

Preparation and performance of highly conductive polypyrrole-modified basalt fiber

Funds: National Key Research and Development Program of China(No. 2022 YFB3706503);National Natural Science Foundation of China (No. 52178115); Fundamental Research Funds for the Central Universities (No. 2242022 k30031, 2242022 k30033).
  • 摘要: 玄武岩纤维(BF)具有优异的力学性能、耐腐蚀性和热稳定性,已经广泛使用于国民经济的众多领域。然而由于玄武岩纤维绝缘性,限制了其在电磁屏蔽、静电防护等领域的应用。本研究开发了一种制备导电玄武岩纤维的方法,该方法在实现玄武岩纤维高导电性的同时,提升了玄武岩纤维的拉伸强度,是一种高效、低成本、友好的制备方法。该方法以吡咯单体(Py)、氧化剂氯化铁(FeCl3)和掺杂剂5-磺基水杨酸钠(NaSSA)为原料,通过原位聚合法在玄武岩纤维表面沉积导电聚合物聚吡咯(PPy),设置不同Py,FeCl3和NaSSA浓度作为参数研究其对玄武岩纤维导电性的影响。在改性过程中,玄武岩纤维表面逐渐由黄褐色变成黑色,表面附着上了均匀厚实的聚吡咯涂层。聚吡咯颗粒展现出较高的掺杂水平、双极化子比例和共轭链长度,说明聚吡咯具有良好的结构。在导电性能方面,PPy改性玄武岩纤维的电阻率最低下降至8 × 10−3 Ω·cm,说明改性后的玄武岩纤维具有优异的导电性。在拉伸性能上,纤维的单丝拉伸强度提升20.6%,并通过差异性分析和Weibull分布模型进行验证,这体现了该方法在实现导电性能的同时保护了纤维结构和力学性能。本研究为扩宽玄武岩纤维的应用领域,及实现功能化玄武岩纤维复合材料提供了一种新的方案。

     

  • 图  1  导电玄武岩纤维制备流程图

    Figure  1.  Flow chart for the preparation of conductive basalt fiber fabric

    图  2  四探针法测电阻实验

    Figure  2.  Schematic diagram of four-probe method for resistance measurement experiment

    图  3  纤维单丝拉伸实验:(a) 纤维单丝样品;(b) XQ-2纤维强伸度仪进行拉伸试验

    Figure  3.  Schematic diagram of single fiber tensile experiment: (a) single fiber sample; (b) tensile test with XQ-2 fiber strength instrumentation

    图  4  聚吡咯/玄武岩纤维(PPy/BF)宏观形貌及形成过程示意图

    Figure  4.  Schematic diagram of polypyrrole/basalt fibers (PPy/BF) macroscopic morphology and formation process

    图  5  FESEM图:(a) 未处理的玄武岩纤维;(b) 和 (c) 分别为PPy/BF-0.5和PPy/BF(1);(d) PPy/BF-0.5上聚合生长的PPy颗粒;(e) 和 (f) PPy/BF(1)上聚合生长的PPy颗粒

    Figure  5.  FESEM image: (a) untreated basalt fibers; (b) and (c) PPy/BF-0.5 and PPy/BF(1), respectively; (d) PPy particles polymerized on PPy/BF-0.5; (e) and (f) PPy particles polymerized on PPy/BF(1)

    图  6  (a)和(b)分别为PPy/BF(0)和PPy/BF(1)的N1 s分峰拟合图;(c) BF、PPy/BF(0)和PPy/BF(1)的XPS全谱图;(d) PPy/BF(0) 和PPy/BF(1)的Raman光谱图

    Figure  6.  N1 s region spectra of (a) PPy/BF(0) and (b) PPy/BF(1); (c) XPS full spectra of BF, PPy/BF(0), and PPy/BF(1); (d) Raman spectra of PPy/BF(0) and PPy/BF(1)

    图  7  不同制备参数下PPy/BF的电阻率:(a) Py与FeCl3不同摩尔比的影响;(b) NaSSA与Py不同摩尔比的影响

    Figure  7.  Resistivity of PPy/BF under different preparation parameters: (a) effect of different molar ratios of Py to FeCl3; (b) effect of different molar ratios of NaSSA to Py

    图  8  NaSSA与Fe3+反应生成紫色络合物方程式示意图

    Figure  8.  Schematic diagram of the equation for the reaction of NaSSA with Fe3+ to form a purple complex

    图  9  BF和PPy/BF(1) 纤维单丝拉伸应力-应变曲线

    Figure  9.  Single Fiber Tensile Stress-Strain Curves of BF and PPy/BF(1)

    图  10  BF和PPy/BF(1)纤维单丝拉伸强度Weibull双对数图

    Figure  10.  Weibull double logarithmic plot of monofilament fiber tensile strength of BF and PPy/BF(1)

    表  1  XPS全谱图中BF、PPy/BF(0)和PPy/BF(1)表面元素及百分含量(at%)

    Table  1.   Surface elements and compositions (at%) of BF, PPy/BF(0) and PPy/BF(1) in the XPS spectra

    Sample C O N Cl S Si (Cl+S)/N
    BF 48.81 39.61 \ \ \ 11.58 \
    PPy/BF(0) 71.16 11.76 12.72 2.89 \ 1.47 0.23
    PPy/BF(1) 63.51 20.36 9.5 3.09 2.34 1.21 0.57
    下载: 导出CSV

    表  2  Raman光谱中不同特征峰强度比

    Table  2.   Intensity ratios of different characteristic peaks in Raman spectra

    Sample R1 R2 R3 L
    PPy/BF(0) 0.93 1.07 1.02 1.39
    PPy/BF(1) 1.17 1.23 1.21 1.64
    Note: R1 =$\frac{{I(938 \,\,{\rm{cm})^{ - 1}})}}{{I(980 \,\,{\rm{cm})^{ - 1}})}}$, R2 =$\frac{{I(1\,089 \,\,{\rm{cm})^{ - 1}})}}{{I(1\,055 \,\,{\rm{cm})^{ - 1}})}}$, R3 = $\frac{{I(938 \,\,{\rm{cm})^{ - 1}}) + I(1\,089 \,\,{\rm{cm})^{ - 1}})}}{{I(980 \,\,{\rm{cm})^{ - 1}}) + I(1\,055 \,\,{\rm{cm})^{ - 1}})}}$, L = $\frac{{I(1\,568 \,\,{\rm{cm})^{ - 1}})}}{{I(1\,500 \,\,{\rm{cm})^{ - 1}})}}$.
    下载: 导出CSV

    表  3  PPy改性前后玄武岩纤维单丝拉伸强度

    Table  3.   Monofilament tensile strength of basalt fiber before and after PPy modification

    Sample Monofilament Tensile Strength
    /MPa
    Dispersion Coefficient
    /%
    Elastic Modulus
    /GPa
    Dispersion Coefficient
    /%
    BF 2203 6.5 72.91 4.9
    PPy/BF(1) 2657 7.1 74.85 5.2
    下载: 导出CSV

    表  4  BF和PPy/BF单丝拉伸强度S-W检验

    Table  4.   The S-W test of BF and PPy/BF monofilament tensile strength

    Samplew statistical indicatorP value
    BF0.9430.213
    PPy/BF(1)0.9690.672
    下载: 导出CSV

    表  5  BF和PPy/BF单丝拉伸强度方差齐次性检验

    Table  5.   The F-test of BF and PPy/BF monofilament tensile strength

    SampleF statistical indicatorP value
    BF and PPy/BF(1)2.630.112
    下载: 导出CSV

    表  6  BF和PPy/BF单丝拉伸强度独立样本T检验

    Table  6.   The independent samples T-test of BF and PPy/BF monofilament tensile strength

    Sample T statistical indicator P value Cohen's d value
    BF and PPy/BF(1) −3.571 0.001 1.053
    下载: 导出CSV

    表  7  Weibull分布线性拟合结果

    Table  7.   Linear fitting results for the Weibull distribution

    SampleCorrelation coefficient (R)Shape parameter (β)Position parameter (η)
    BF0.9677.062359.70
    PPy/BF0.9655.952872.20
    下载: 导出CSV
  • [1] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1-14.

    WU Zhishen, WANG Xin, SHI Jianzhe. Performance enhancement of basalt fiber composite materials and their novel structures[J]. Engineering Mechanics, 2020, 37(5): (in Chinese)
    [2] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912.

    GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on tensile performance of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912(in Chinese).
    [3] 叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6): 1402-1408.

    YE Guorui, YAN Yi Wu, CAO Hailin. Properties of oxidized graphene-modified basalt fiber and its reinforced epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1402-1408(in Chinese).
    [4] 曹升虎, 吴智深, 马凯, 等. 混杂碳纤维/玄武岩纤维塑料筋的张拉力学性能[J]. 玻璃钢/复合材料, 2014, (8): 83-87.

    CAO Shenghu, WU Zhishen, MA Kai, et al. Tensile mechanical properties of hybrid carbon fiber/basalt fiber plastic rebar[J]. Fiberglass/Composites, 2014, (8): 83-87(in Chinese).
    [5] 许星, 张金才, 王宝凤, 等. 玄武岩纤维表面改性的研究进展[J]. 硅酸盐通报, 2023, 42(2): 575-586,606. doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302021

    XU Xing, ZHANG Jincai, WANG Baofeng, et al. Research progress on surface modification of basalt fibers[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 575-586,606(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.2.gsytb202302021
    [6] 张建伟, 佘希林, 刘嘉麒, 等. 连续玄武岩纤维新材料的制备、性能及应用[J]. 材料导报, 2023, 37(11): 234-240. doi: 10.11896/cldb.22010106

    ZHANG Jianwei, SHE Xilin, LIU Jiaqi, et al. Preparation, properties, and applications of continuous basalt fiber new materials[J]. Materials Review, 2023, 37(11): 234-240(in Chinese). doi: 10.11896/cldb.22010106
    [7] 胡显奇, 申屠年. 连续玄武岩纤维在军工及民用领域的应用[J]. 高科技纤维与应用, 2005, 30(6): 7-13. doi: 10.3969/j.issn.1007-9815.2005.06.002

    HU Xianqi, SHENTU Nian. Applications of continuous basalt fibers in military and civil fields[J]. High-Tech Fibers & Applications, 2005, 30(6): 7-13(in Chinese). doi: 10.3969/j.issn.1007-9815.2005.06.002
    [8] 齐风杰, 李锦文, 李传校, 等. 连续玄武岩纤维研究综述[J]. 高科技纤维与应用, 2006, 31(2): 42-46. doi: 10.3969/j.issn.1007-9815.2006.02.010

    QI Fengjie, LI Jinwen, LI Chuanxiao, et al. A review of research on continuous basalt fibers[J]. High-Tech Fibers & Applications, 2006, 31(2): 42-46(in Chinese). doi: 10.3969/j.issn.1007-9815.2006.02.010
    [9] 刘顺华, 郭辉进. 电磁屏蔽与吸波材料[J]. 功能材料与器件学报, 2002, 8(3): 213-217. doi: 10.3969/j.issn.1007-4252.2002.03.001

    LIU Shunhua, GUO Huijin. Electromagnetic shielding and absorbing materials[J]. Journal of Functional Materials and Devices, 2002, 8(3): 213-217(in Chinese). doi: 10.3969/j.issn.1007-4252.2002.03.001
    [10] 许昌学院. 导电改性玄武岩纤维布、低绝缘性玄武岩纤维增强高分子复合材料及其制备方法: CN202111000433.3[P]. 2021-12-28.

    Xuchang University. Electrically conductive modified basalt fiber cloth, low-insulation basalt fiber reinforced polymer composite, and its preparation method: CN202111000433.3[P]. 2021-12-28. (in Chinese)
    [11] 冯倩倩, 朱方龙. 聚合物辅助沉积法制备导电玄武岩纤维[J]. 复合材料科学与工程, 2022, (7): 99-102,114.

    FENG Qianqian, ZHU Fanglong. Preparation of conductive basalt fibers by polymer-assisted deposition method[J]. Composite Materials Science and Engineering, 2022, (7): 99-102,114(in Chinese).
    [12] 中国科学院新疆理化技术研究所, 贵州中科玄武岩纤维创新孵化研究院有限公司. 一种导电玄武岩纤维材料的制备方法: CN201810132995.5[P]. 2018-06-29.

    Chinese Academy of Sciences Xinjiang Institute of Physical and Chemical Technology, Guizhou Zhongke Basalt Fiber Innovation Incubation Research Institute Co. , Ltd. A method for preparing conductive basalt fiber material: CN201810132995.5[P]. 2018-06-29. (in Chinese)
    [13] 何青青, 徐红, 毛志平, 等. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.

    HE Qingqing, XU Hong, MAO Zhiping, et al. Preparation of highly conductive polypyrrole-coated fabric[J]. Journal of Textile Research, 2019, 40(10): 113-119(in Chinese).
    [14] YUAN L, YAO B, HU B, et al. Polypyrrole-coated paper for flexible solid-state energy storage[J]. Energy & Environmental Science, 2013, 6(2): 470-476.
    [15] WAN C, JIAO Y, LI J. Flexible, highly conductive, and free-standing reduced graphen oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2017, 5(8): 3819-3831. doi: 10.1039/C6TA04844G
    [16] CHEN L, LI D, CHEN L, et al. Core-shell structured carbon nanofibers yarn@ polypyrrole@ graphene for high performance all-solid-state fiber supercapacitors[J]. Carbon, 2018, 138: 264-270. doi: 10.1016/j.carbon.2018.06.022
    [17] LU Z, LI D, YUAN Z. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 15589250221081856.
    [18] 李冬梅, 李涛, 张大成, 等. 聚吡咯带电态几何结构特征[J]. 原子与分子物理学报, 2004, 21(1): 105-110. doi: 10.3969/j.issn.1000-0364.2004.01.023

    LI Dongmei, LI Tao, ZHANG Dacheng, et al. Geometric characteristics of charged states of polypyrrole[J]. Journal of Atomic and Molecular Physics, 2004, 21(1): 105-110(in Chinese). doi: 10.3969/j.issn.1000-0364.2004.01.023
    [19] ZHUANG Q, LI W, ZHU Z, et al. Facile growth of hierarchical SnO2@ PPy composites on carbon cloth as all-solid-state flexible supercapacitors[J]. Journal of Alloys and Compounds, 2022, 906: 164275. doi: 10.1016/j.jallcom.2022.164275
    [20] LV J, ZHANG L, ZHONG Y, et al. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage[J]. Organic Electronics, 2019, 74: 59-68. doi: 10.1016/j.orgel.2019.06.027
    [21] VARESANO A, BELLUATI A, SANCHEZ RAMIREZ D O, et al. A systematic study on the effects of doping agents on polypyrrole coating of fabrics[J]. Journal of Applied Polymer Science, 2016, 133(1): 42831. doi: 10.1002/app.42831
    [22] 彭章. 石墨烯/聚吡咯复合材料的制备及在磷酸钙骨水泥中的应用[D]. 四川: 西南交通大学, 2015.

    PENG Zhang. Preparation of graphene/polypyrrole composite materials and their application in calcium phosphate bone cement[D]. Sichuan: Southwest Jiaotong University, 2015. (in Chinese)
    [23] 何青青. 高导电性聚吡咯涂层织物的制备及性能研究[D]. 上海: 东华大学, 2019.

    HE Qingqing. Preparation and properties research of highly conductive polypyrrole-coated fabric[D]. Shanghai: Donghua University, 2019. (in Chinese)
    [24] 吕秋丰, 翁志勇. 聚吡咯纳米颗粒的静态法合成及表征[J]. 高分子学报, 2009, (6): 513-519. doi: 10.3321/j.issn:1000-3304.2009.06.003

    LV Qiufeng, WENG Zhiyong. Static synthesis and characterization of polypyrrole nanoparticles[J]. Acta Polymerica Sinica, 2009, (6): 513-519(in Chinese). doi: 10.3321/j.issn:1000-3304.2009.06.003
    [25] CHEN J N, ZHAO S P, HU W H, et al. Vinyl ester resin nanocomposites reinforced with carbon nanotubes modified basalt fibers[J]. Science of Advanced Materials, 2019, 11(9): 1340-1347. doi: 10.1166/sam.2019.3558
    [26] ZHU J, XU Y, WANG J, et al. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17(30): 19885-19894. doi: 10.1039/C5CP02710A
    [27] ZHANG B, ZHOU P, XU Y, et al. Gravity-assisted synthesis of micro/nano-structured polypyrrole for supercapacitors[J]. Chemical Engineering Journal, 2017, 330: 1060-1067. doi: 10.1016/j.cej.2017.07.183
    [28] LV J, ZHOU P, ZHANG L, et al. High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method[J]. Chemical Engineering Journal, 2019, 361: 897-907. doi: 10.1016/j.cej.2018.12.083
    [29] MARÁKOVÁ N, HUMPOLÍČEK P, KAŠPÁRKOVÁ V, et al. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles[J]. Applied Surface Science, 2017, 396: 169-176. doi: 10.1016/j.apsusc.2016.11.024
    [30] NIE X, JI B, CHEN N, et al. Gradient doped polymer nanowire for moistelectric nanogenerator[J]. Nano Energy, 2018, 46: 297-304. doi: 10.1016/j.nanoen.2018.02.012
    [31] DAUGINET-DE PRA L, DEMOUSTIER-CHAMPAGNE S. Investigation of the electronic structure and spectroelectrochemical properties of conductive polymer nanotube arrays[J]. Polymer, 2005, 46(5): 1583-1594. doi: 10.1016/j.polymer.2004.12.016
    [32] 韩宝国, 关新春, 欧进萍. 纳米氧化钛与碳纤维水泥石的电阻率及压敏性[J]. 硅酸盐学报, 2004, 32(7): 884-887. doi: 10.3321/j.issn:0454-5648.2004.07.019

    HAN Baoguo, GUAN Xinchun, OU Jinping. Electrical resistivity and piezoresistivity of nano-titanium dioxide and carbon fiber cement composites[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 884-887(in Chinese). doi: 10.3321/j.issn:0454-5648.2004.07.019
    [33] 赵栩欣, 欧忠文, 莫金川. 玄武岩纤维与其他纤维的单丝强度及强度分布对比分析[J]. 建筑技术开发, 2013, (1): 3. doi: 10.3969/j.issn.1001-523X.2013.01.008

    ZHAO Xuxin, OU Zhongwen, MO Jinchuan. Comparative analysis of monofilament strength and strength distribution of basalt fiber and other fibers[J]. Construction Technology Development, 2013, (1): 3(in Chinese). doi: 10.3969/j.issn.1001-523X.2013.01.008
    [34] 王明超, 张佐光, 孙志杰, 等. 玄武岩纤维丝束强度的Weibull和Gauss分布统计分析[J]. 复合材料学报, 2008, 025(03): 105-109. doi: 10.3321/j.issn:1000-3851.2008.03.018

    WANG Mingchao, ZHANG Zoguang, SUN Zhijie, et al. Statistical analysis of Weibull and Gauss distribution of basalt fiber tow strength[J]. Journal of Composite Materials, 2008, 025(03): 105-109(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.018
    [35] 王小飞, 邱海鹏, 陈明伟. Nextel 720陶瓷纤维拉伸强度的韦布尔统计分析研究[J]. 陶瓷学报, 2020, 41(5): 7.

    WANG Xiaofei, QIU Haipeng, CHEN Mingwei. Weibull statistical analysis study of tensile strength of Nextel 720 ceramic fibers[J]. Journal of Ceramics, 2020, 41(5): 7(in Chinese).
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-05-13
  • 录用日期:  2024-05-18
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回