留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维地聚物再生混凝土孔隙结构与力学性能试验研究

李振军 刘喜 赵辰宇 王驰 田鑫

李振军, 刘喜, 赵辰宇, 等. 钢纤维地聚物再生混凝土孔隙结构与力学性能试验研究[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 李振军, 刘喜, 赵辰宇, 等. 钢纤维地聚物再生混凝土孔隙结构与力学性能试验研究[J]. 复合材料学报, 2024, 42(0): 1-12.
LI Zhenjun, LIU Xi, ZHAO Chenyu, et al. Pore structure and mechanical properties of steel fiber reinforced geopolymer recycled aggregate concrete[J]. Acta Materiae Compositae Sinica.
Citation: LI Zhenjun, LIU Xi, ZHAO Chenyu, et al. Pore structure and mechanical properties of steel fiber reinforced geopolymer recycled aggregate concrete[J]. Acta Materiae Compositae Sinica.

钢纤维地聚物再生混凝土孔隙结构与力学性能试验研究

基金项目: 陕西省自然科学基金基础研究计划(2022KJXX-03);陕西省杰出青年科学基金(2023-JC-JQ-47);陕西高校青年创新团队建设项目(2023);西安市科技计划项目(23GXFW0035)
详细信息
    通讯作者:

    刘喜,博士,副教授,博士生导师,研究方向为新材料与新结构体系关键技术 E-mail: xliu1205@126.com

  • 中图分类号: TU528

Pore structure and mechanical properties of steel fiber reinforced geopolymer recycled aggregate concrete

Funds: The Natural Science Foundation of Shaanxi Province, China (2022KJXX-03); Shaanxi Provincial Science Foundation for Outstanding Young Scholars (2023-JC-JQ-47); Shaanxi University Youth Innovation Team Construction Project (2023); Xi'an Science and Technology Plan Project (23GXFW0035)
  • 摘要: 为了研究钢纤维地聚物再生混凝土(Steel fiber reinforced geopolymer recycled aggregate concrete,SFGRC)孔隙特性与宏观性能的发展规律,测试了混凝土的内部孔隙结构、力学性能与干燥收缩性能,分析了再生骨料掺量和前驱体钙硅比对混凝土孔隙结构、力学性能与收缩性能的影响规律,基于分形理论建立了SFGRC孔隙结构和宏观性能关联模型。研究结果表明:再生骨料显著增大了SFGRC的孔隙率和有害孔占比,劣化了其力学性能。高掺量矿渣细化了SFGRC的孔隙结构,加大了材料的孔径与空间分布的复杂程度。两者均加剧了SFGRC的早期干燥收缩。SFGRC的孔结构表现出明显的分形特征,其分形维数在2.623~2.731,且与孔隙结构特征参数、力学性能具有很强的相关性,能够有效评价材料孔隙结构特征。采用 Bayesian- markov chain monte carlo(Bayesian-MCMC)方法建立的基于分形维数的SFGRC弹性模量、极限应力、极限应变与干燥收缩应变等特征参数的预测模型,拟合优度为0.51~0.98,且具有较高的预测精度,为优化SFGRC孔隙结构和宏观性能提供了理论依据。

     

  • 图  1  试验材料

    Figure  1.  Test material

    图  2  试验方法

    Figure  2.  Test methods

    图  3  SFGRC的SEM图像

    Figure  3.  SEM images of SFGRC

    图  4  SFGRC试件累积孔体积分布曲线

    Figure  4.  Cumulative pore volume distribution curve of SFGRC

    图  5  SFGRC孔隙结构分类

    Figure  5.  Pore structure classification of SFGRC

    图  6  SFGRC分形维数

    Figure  6.  Fractal dimension ofSFGRC

    图  7  SFGRC分形维数与孔结构参数的关系

    Figure  7.  The relationship between fractal dimension and pore structure parameters of SFGRC

    图  8  SFGRC立方体抗压强度

    Figure  8.  Cube compressive strength of SFGRC

    图  9  SFGRC劈裂抗拉和抗折强度

    Figure  9.  Splitting tensile and flexural strength of SFGRC

    图  10  SFGRC分形维数与力学性能的关系

    Figure  10.  Relationship between fractal dimension and mechanical properties of SFGRC

    图  11  SFGRC破坏形态

    Figure  11.  Failure pattern of SFGRC

    图  12  SFGRC应力-应变全曲线

    Figure  12.  Stress-strain curve of SFGRC

    图  13  SFGRC早期干燥收缩

    Figure  13.  Early drying shrinkage of SFGRC

    图  14  SFGRC分形维数与28 d干燥收缩应变

    Figure  14.  Fractal dimension and 28 d drying shrinkage of SFGRC

    表  1  再生骨料基本性能指标

    Table  1.   Basic performance index of recycled aggregate

    Aggregate type RCA RFA
    Gradation/mm 2.36-16 0.15-4.75
    Bulk density/(kg·cm−3) 1250 1130
    Apparent density/(kg·cm−3) 2250 2650
    24 h water absorption/% 8.3 11.2
    Crush index/% 18.2 14.1
    Note: RCA represents the recycled coarse aggregate; RFA represents recycled fine aggregate.
    下载: 导出CSV

    表  2  前驱体主要化学成分(wt%)

    Table  2.   Main chemical contents of precursor materials (wt%)

    Material Fly ash GGBS Silica fume
    SiO2 51.49 32.08 90.44
    Al2O3 37.19 15.13 0.81
    Fe2O3 3.52 0.47 3.56
    CaO 2.79 38.61 0.63
    MgO 0.41 8.45 1.04
    SO3 0.83 2.5 1.34
    K2O 1.11 0.43 0.95
    Na2O 1.15 0.49 0.29
    Note: GGBS represents ground granulated blast furnace slag.
    下载: 导出CSV

    表  3  钢纤维物理性能指标

    Table  3.   Physical properties of steel fiber

    Fiber style Hooked end steel fiber
    Density/(kg·cm−3) 7800
    Length/mm 35
    Diameter/mm 0.5
    Aspect ratio 65
    Elasticity modulus/GPa 200
    Tensile strength/MPa 1100
    下载: 导出CSV

    表  4  钢纤维地聚物再生混凝土(SFGRC)配合比 (kg·m−3)

    Table  4.   Regeneration mix ratio of steel fiber reinforced geopolymer recycled aggregate concrete (SFGRC) (kg·m−3)

    Mixture GGBS Fly ash Silica
    fume
    RFA RCA Steel
    fiber
    NaOH
    solution
    Na2SiO3
    solution
    Water Superplasticizer
    CG 420 210 70 530 675 39 54 209 88 7
    Ca/ Si-0.1 140 490 70 530 675 39 54 209 88 7
    Ca/ Si -0.26 280 350 70 530 675 39 54 209 88 7
    Ca/ Si -0.64 560 70 70 530 675 39 54 209 88 7
    R-30% 589 295 98 318 405 39 76 123 123 10
    R-40% 500 260 90 430 540 39 66 253 105 8.5
    R-60% 340 170 70 640 810 39 44 167 70 5.5
    Notes: CG is the blank group. Ca/ Si-0.1, Ca/ Si -0.26 and Ca/ Si -0.64 are calcium silicon ratio (molar ratio)of precursor, indicating that the calcium silicon ratio is 0.1, 0.26 and 0.64, respectively. R-30%, R-40% and R-50% are volume fraction of recycled aggregate, indicating that the volume fraction of recycled aggregate accounts for 30%, 40% and 60%.
    下载: 导出CSV

    表  5  分形模型

    Table  5.   Fractal model

    Fractal model Formula
    Menger sponge model $ \lg (1 - {V_n}) = (3 - D)\lg \left( {{r_n}/R} \right) $
    The pore axis fractal model $ \mathrm{lg}\dfrac{{\text{d}}^{2}{V}_{n}}{ \text{d}{r}_{n}{}^{2}}\propto (1-D)\mathrm{lg}{r}_{n} $
    Fractal model based on thermodynamic relationships $ \lg \left( {{{{W_n}} \mathord{\left/ {\vphantom {{{W_n}} {r_n^2}}} \right. } {r_n^2}}} \right) = D\lg {Q_n} + \lg C' $
    $ {W_n}{\text{ = }}\displaystyle\sum\limits_{i = 1}^n {{{\bar P}_i}} \Delta V $ $ {Q_n} = {{V_n^{1/3}} \mathord{\left/ {\vphantom {{V_n^{1/3}} {{r_n}}}} \right. } {{r_n}}} $
    Notes: R is the maximum pore size; i represents different pressure stages; Pi is the average pressure of stage i; ΔV is the volume of mercury injected in phase i; n is the number of times mercury is injected; D is the fractal dimension; rn is the pore diameter corresponding to the n-th injection of mercury; Vn is the accumulated volume of mercury injected up to the n-th injection.
    下载: 导出CSV

    表  6  SFGRC混凝土孔隙结构特征参数

    Table  6.   Pore structure characteristic parameters of SFGRC

    Specimen Porosity/% Most probable aperture/nm Tortuosity Total pore volume/
    (mL·g−1)
    CG 22.06 126.33 2.009 0.0662
    Ca/Si-0.64 20.78 110.68 2.057 0.0624
    Ca/Si-0.26 23.56 135.90 1.959 0.0707
    Ca/Si-0.10 25.32 131.22 1.929 0.0759
    R-30% 19.06 100.20 1.998 0.0599
    R-40% 21.06 120.96 1.976 0.0632
    R-60% 26.72 161.18 1.932 0.0802
    下载: 导出CSV

    表  7  SFGRC力学性能 (MPa)

    Table  7.   Mechanical properties of SFGRC (MPa)

    Specimenfcu,3 dfcu,7 dfcu,28 dftsff
    CG28.1832.0843.133.273.77
    Ca/Si-0.6438.2739.8747.153.653.91
    Ca/Si-0.2625.5932.0836.202.783.59
    Ca/Si-0.1013.9417.0523.052.483.03
    R-30%37.2840.4446.123.354.05
    R-40%37.4540.6644.773.383.96
    R-60%20.6926.3927.392.352.62
    Notes: fcu,3 d, fcu,7 d, and fcu,28 d are cube compressive strength of 3 d, 7 d, and 28 d, respectively. fts and ff are the tensile and flexural strength of 28 d, respectively.
    下载: 导出CSV

    表  8  基于分形维数的特征参数预测模型

    Table  8.   Prediction model of characteristic parameters based on fractal dimension

    Characteristic parameters Prediction model Goodness of fit
    R2
    Prediction Error
    Mean Standard deviation Covariance
    Elastic modulus $ {E_C} = 5300\sqrt[3]{{{f_c}}}\left( {0.0057 D - 0.0143} \right) $ 0.80 1.06 0.1008 0.0948
    Peak stress $ {f_{\text{c}}} = {f_{{\text{cu}}}}\left( {{\text{1}}{\text{.3353 - }}0.1475 D} \right) $ 0.98 0.98 0.0050 0.0051
    Peak strain $ {\varepsilon _{\text{c}}} = \left( {{\text{0}}{\text{.3097}}D - 0.1681} \right){f_c}^{0.3838} $ 0.51 1.01 0.1066 0.1057
    下载: 导出CSV
  • [1] 刘岩, 叶涛萍, 曹万林. 地聚物混凝土结构研究与发展[J]. 自然灾害学报, 2020, 29(04): 8-19

    LIU Yan, YE Taoping, CAO Wanlin. Research and development of geopolmer concrete structure[J]. Journal of natural disasters, 2020, 29(04): 8-19(in Chinese)
    [2] 王爱国, 郑毅, 张祖华. 等. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560. doi: 10.11896/cldb.19040211

    WANG Aiguo, ZHENG Yi, ZHANG Zuhua, et al. Research progress of geopolymer cementitious material modification for improving durability of concrete[J]. Materials reports, 2019, 33(15): 2552-2560(in Chinese) doi: 10.11896/cldb.19040211
    [3] WANG B. , YAN L. , FU Q. , et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565.
    [4] THOMAS C. , DE Brito J. , CIMENTADA A. , et al. Macro- and micro-properties of multi-recycled aggregate concrete[J]. Journal of Cleaner Production, 2020, 245: 118843.
    [5] Negahban E. , Bagheri A. , Sanjayan J. Pore gradation effect on Portland cement and geopolymer concretes[J]. Cement and Concrete Composites, 2021, 122: 104141.
    [6] 黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(03): 74-84.

    HUANG Hua, GUO Mengxue, ZHANG Wei , et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of technology, 2022, 54(03): 74-84(in Chinese)
    [7] Ahmed H. U. , Mohammed A. A. , Mohammed A. S. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review[J]. Journal of Building Engineering, 2022, 49: 104062.
    [8] Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and building materials, 2010, 24(7): 1176-1183. doi: 10.1016/j.conbuildmat.2009.12.023
    [9] 杨世玉, 赵人达, 靳贺松, 等. 地聚物砂浆的力学性能与孔结构分形特征分析[J]. 华南理工大学学报(自然科学版), 2020, 48(03): 126-135.

    YANG Shiyu, ZHAO Renda, JIN Hesong, et al. Analysis on mechanical Mechanical properties and fractal characteristics of micropore structure of geopolymer mortar[J]. Journal of South China University of Technology (Natural Science edition), 2020, 48(03): 126-135(in Chinese)
    [10] WAN Q. , ZHANG Y. M. , ZHANG R. B. The effect of pore behavior and gel structure on the mechanical property at different initial water content[J]. Construction and Building Materials, 2021, 309: 125146.
    [11] JAYA N. A. , YUN M. L. , CHENG-Y. H. , et al. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer[J]. Construction and Building Materials, 2020, 247: 118641.
    [12] CHEN S. , RUAN S. , ZENG Q. , et al. Pore structure of geopolymer materials and its correlations to engineering properties: A review[J]. Construction and Building Materials, 2022, 328: 127064.
    [13] LUO Y. , JIANG Z. , WANG D. , et al. Effects of alkaline activators on pore structure and mechanical properties of ultrafine metakaolin geopolymers cured at room temperature[J]. Construction and Building Materials, 2022, 361: 129678.
    [14] ZHU Z. , HUO W. , SUN H. , et al. Correlations between unconfined compressive strength, sorptivity and pore structures for geopolymer based on SEM and MIP measurements[J]. Journal of Building Engineering, 2023, 67: 106011.
    [15] WITTMANN F. H. , SCHWESINGER P. High performance concrete: material properties and design [C]. Proceedings of the 4th Weimar Workshop on HPC held in Oct, 1995.
    [16] ZENG Q. , LUO M. Y. , PANG X. Y. , et al. Surface fractal dimension: an indicator to characterize the microstructure of cement-based porous materials[J]. Applied Surface Science, 2013, 282: 302-307.
    [17] 丁一宁, 马跃, 郝晓卫. 基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J]. 复合材料学报, 2020, 37(11): 2908-2916.

    DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916(in Chinese)
    [18] ZARNAGHI V. N. , FOUROGHI-Asl A. , NOURANI V. , et al. On the pore structures of lightweight self-compacting concrete containing silica fume[J]. Construction and Building Materials, 2018, 193: 557-564.
    [19] LV Q. , QIU Q. , ZHENG J. , et al. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability[J]. Construction and Building Materials, 2019, 228: 116986.
    [20] JIN S. , ZHANG J. , HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials, 2017, 135: 1-7.
    [21] 中国国家标准化管理委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
    [22] ZHANG B. , LI S. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Industrial and Engineering Chemistry Research, 1995, 34(4): 1383-1386.
    [23] ZHENG Y. , XIAO Y. A comparative study on strength, bond-slip performance and microstructure of geopolymer/ordinary recycled brick aggregate concrete[J]. Construction and Building Materials, 2023, 366: 130257.
    [24] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, (03): 262-270.

    WU Zhong wei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, (03): 262-270(in Chinese)
    [25] LI Z. , LIU X. , KOU D. , et al. Probabilistic models for the shear strength of RC deep beams[J]. Applied Sciences, 2023, 13(8): 485
    [26] COLLINS F. , SANJAYAN J. G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406.
  • 加载中
计量
  • 文章访问数:  150
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2023-12-14
  • 录用日期:  2023-12-31
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回