留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳/玻混杂纤维铺层结构对风力机叶片弯扭耦合特性的影响

付凌峰 姜鑫 孙震 温世东 高铭泽 田瑞

付凌峰, 姜鑫, 孙震, 等. 碳/玻混杂纤维铺层结构对风力机叶片弯扭耦合特性的影响[J]. 复合材料学报, 2023, 40(7): 3912-3920. doi: 10.13801/j.cnki.fhclxb.20220915.006
引用本文: 付凌峰, 姜鑫, 孙震, 等. 碳/玻混杂纤维铺层结构对风力机叶片弯扭耦合特性的影响[J]. 复合材料学报, 2023, 40(7): 3912-3920. doi: 10.13801/j.cnki.fhclxb.20220915.006
FU Lingfeng, JIANG Xin, SUN Zhen, et al. Influence of carbon/glass hybrid fiber layup structure on the bending-twisting coupling behavior of wind turbine blades[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3912-3920. doi: 10.13801/j.cnki.fhclxb.20220915.006
Citation: FU Lingfeng, JIANG Xin, SUN Zhen, et al. Influence of carbon/glass hybrid fiber layup structure on the bending-twisting coupling behavior of wind turbine blades[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3912-3920. doi: 10.13801/j.cnki.fhclxb.20220915.006

碳/玻混杂纤维铺层结构对风力机叶片弯扭耦合特性的影响

doi: 10.13801/j.cnki.fhclxb.20220915.006
基金项目: 国家自然科学基金(12272189);内蒙古自治区高等学校科学研究项目-重点项目(NJZZ22395);内蒙古工业大学科学研究项目-博士基金(BS2021056)
详细信息
    通讯作者:

    姜鑫,博士,副教授,硕士生导师,研究方向为风力机叶片结构设计及优化 E-mail: jiangxin@imut.edu.cn

  • 中图分类号: TB332

Influence of carbon/glass hybrid fiber layup structure on the bending-twisting coupling behavior of wind turbine blades

Funds: National Natural Science Foundation of China (12272189); Scientific Research Project of Higher Education Institutions in Inner Mongolia Autonomous Region-Key Project (NJZZ22395); Inner Mongolia University of Technology Scientific Research Project-Doctoral Foundation (BS2021056)
  • 摘要: 为研究复合材料铺层结构对叶片弯扭耦合特性的影响。以功率2 kW的风力机叶片试样为研究对象,选用碳/玻纤维不同混杂比(4∶4和2∶6)双轴向经编织物。基于经典层合板理论及联合节点位移法,实验研究集中载荷作用下,铺层结构叶片试样形变特性,分析叶片试样弯扭耦合特性。结果表明:同种碳/玻纤维混杂时,纤维排列角度为25°时,叶片试样等效弯扭耦合系数最佳为0.186,而同种纤维排列角度,碳/玻纤维混杂比4∶4的叶片试样等效弯扭耦合系数大于碳/玻纤维混杂比2∶6的叶片试样。应变测试实验发现沿叶片试样展向,叶片试样主应变逐渐减小,弯扭耦合特性可有效改善叶根处主应变。

     

  • 图  1  双轴向经编织物结构示意图

    Figure  1.  Schematic diagram of biaxial warp-knitted fabric

    图  2  碳/玻混杂叶片试样的成型系统

    Figure  2.  Vacuum system of carbon-glass hybrid blades samples

    图  3  碳/玻混杂材料试样示意图

    Figure  3.  Schematic diagram of carbon/glass hybrid material samples

    L—Total length of composite material samples; L0—Test length of composite material sample; L1—Length of reinforcing piece of composite material sample; b—Width of composite material sample; h—Thickness of composite material sample

    图  4  准静态拉伸实验图

    Figure  4.  Quasi-static tensile diagram

    图  5  部分叶片试样

    Figure  5.  Diagram of part carbon/glass hybrid blades samples

    图  6  碳/玻混杂叶片测量面示意图

    Figure  6.  Schematic of measure plane for carbon/glass hybrid blades

    图  7  碳/玻混杂叶片试样弯扭耦合实验

    Figure  7.  Bending-twisting coupling test of carbon/glass hybrid blades

    图  8  碳/玻混杂叶片试样各截面扭曲角

    Figure  8.  Torsion angle of carbon/glass hybrid blades each section

    图  9  碳/玻混杂叶片试样各截面弯曲角

    Figure  9.  Bending angle at each section of carbon-glass hybrid blades

    图  10  碳/玻混杂叶片试样各截面主应变

    Figure  10.  Principal strain of each section of carbon/glass hybrid blades

    表  1  碳/玻混杂叶片材料试样尺寸

    Table  1.   Samples size of carbon/glass hybrid blade material

    TitleSize/mm
    Length L250
    Width b25
    Thickness h2-3
    Test section L0150
    Strengthening section L150
    下载: 导出CSV

    表  2  碳/玻混杂叶片试样性能

    Table  2.   Properties of carbon/glass hybrid blade samples

    Carbon/glass
    hybrid ratio
    Test
    direction/(°)
    Density/(g·cm−3)E/GPaG/GPaν
    4∶4 01.738.153.170.284
    907.562.94
    2∶6 01.775.152.020.275
    904.641.82
    Notes: E—Modulus of elasticity; G—Shear modulus; ν—Poisson's ratio.
    下载: 导出CSV

    表  3  碳/玻混杂叶片试样编号及含义

    Table  3.   Carbon/glass hybrid blade samples number and meaning

    NumberImplication
    A0Ratio (carbon/glass) 4∶4,angle 0°
    A15Ratio (carbon/glass) 4∶4,angle 15°
    A25Ratio (carbon/glass) 4∶4,angle 25°
    A35Ratio (carbon/glass) 4∶4,angle 35°
    A45Ratio (carbon/glass) 4∶4,angle 45°
    A55Ratio (carbon/glass) 4∶4,angle 55°
    B0Ratio (carbon/glass) 2∶6,angle 0°
    B15Ratio (carbon/glass) 2∶6,angle 15°
    B25Ratio (carbon/glass) 2∶6,angle 25°
    B35Ratio (carbon/glass) 2∶6,angle 35°
    B45Ratio (carbon/glass) 2∶6,angle 45°
    B55Ratio (carbon/glass) 2∶6,angle 55°
    下载: 导出CSV

    表  4  碳/玻混杂叶片试样各截面加权系数

    Table  4.   Weighting factors for measured cross sections of carbon/glass hybrid blades samples

    Measurement cross-sectionWeighting factor
    1-10.0018
    2-20.0054
    3-30.0090
    4-40.0126
    5-50.0162
    6-60.0198
    7-70.0234
    8-80.0270
    9-90.0306
    10-100.0342
    下载: 导出CSV

    表  5  碳/玻混杂叶片试样的等效弯扭耦合系数

    Table  5.   Equivalent bend-twist coupling coefficient of carbon/glass hybrid blades samples

    BladeCoefficient
    A150.133
    A250.186
    A350.154
    A450.133
    A550.128
    B150.130
    B250.150
    B350.117
    B450.053
    B550.104
    下载: 导出CSV
  • [1] 王同光. 风力机叶片结构设计[M]. 北京: 科学出版社, 2015: 12-22.

    WANG Tongguang. Wind turbine blade structure design[M]. Beijing: Science Press, 2015: 12-22(in Chinese) .
    [2] 邓富泉, 张丽, 刘少祯,等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863. doi: 10.13801/j.cnki.fhclxb.20180402.003

    DENG Fuquan, ZHANG Li, LIU Shaozhen, et al. Mechanical properties of unidirectional continuous carbon fiber-glass fiber interlayer hybrid reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1857-1863(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180402.003
    [3] CHEN J G, SHEN X, ZHU X C, et al. Study on composite bend-twist coupled wind turbine blade for passive load mitigation[J]. Composite Structures,2019,213:173-189. doi: 10.1016/j.compstruct.2019.01.086
    [4] PRAVEEN S, MOHAMMED R S, DIPAK K M. A parametric study of flutter behavior of a composite wind turbine blade with bend-twist coupling[J]. Composite Structures,2019,207:764-775. doi: 10.1016/j.compstruct.2018.09.064
    [5] 周邢银. 大型风力机复合材料叶片弯扭耦合特性研究[D]. 北京: 华北电力大学(北京), 2016.

    ZHOU Xingyin. Study on the bending and twisting coupling characteristics of large wind turbine composite blades[D]. Beijing: North China Electric Power University (Beijing), 2016(in Chinese).
    [6] 张龙, 贾普荣, 王波, 等. 考虑弯扭耦合效应的复合材料叶片铺层优化方法[J]. 西北工业大学学报, 2018, 36(6):1093-1101. doi: 10.3969/j.issn.1000-2758.2018.06.009

    ZHANG Long, JIA Purong, WANG Bo, et al. Optimization method of composite blade layup considering bending-torsion coupling effect[J]. Journal of Northwestern Polytechnic University,2018,36(6):1093-1101(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.009
    [7] ZHANG Z, WU J, LIANG B, et al. Investigation to the torsion generation of spatial tubes in bending-twisting process[J]. International Journal of Advanced Manufacturing Technology,2020,107(3/4):1191-1203. doi: 10.1007/s00170-020-05101-7
    [8] JING Z, CHEN J. An investigation on design of signs in composite laminates to control bending-twisting coupling effects using sign optimization algorithm[J]. Structural and Multidisciplinary Optimization,2019,60(5):2131-2156. doi: 10.1007/s00158-019-02315-6
    [9] GU H, SHAW A D, AMOOZGAR M, et al. Twist morphing of a composite rotor blade using a novel metamaterial[J]. Composite Structures,2020,254:112855. doi: 10.1016/j.compstruct.2020.112855
    [10] 刘瑞杰. 智能风力机的气弹特性仿真研究[D]. 北京: 华北电力大学(北京), 2019.

    LIU Ruijie. Simulation study of air-elastic characteristics of intelligent wind turbine[D]. Beijing: North China Electric Power University (Beijing), 2019(in Chinese).
    [11] KHAZAR H, ALVARO G M L, CARLOS D M, et al. Flutter performance of bend-twist coupled large-scale wind turbine blades[J]. Journal of Sound and Vibration,2016,370:149-162. doi: 10.1016/j.jsv.2016.01.032
    [12] STABLEIN A R, HANSEN M H, PIRRUNG G. Fundamental aeroelastic properties of a bend-twist coupled blade section[J]. Journal of Fluids & Structures,2017,68:72-89. doi: 10.1016/j.jfluidstructs.2016.10.010
    [13] FARSADI T, KAYRAN A. Flutter study of flapwise bend-twist coupled composite wind turbine blades[J]. Wind and Structures An International Journal,2021,32(3):267-281. doi: 10.12989/was.2021.32.3.267
    [14] 周邢银, 安利强, 王璋奇. 对称非匀层合板梁的弯扭耦合效应[J]. 复合材料学报, 2017, 34(7):1462-1468. doi: 10.13801/j.cnki.fhclxb.20170121.001

    ZHOU Xingyin, AN Liqiang, WANG Zhangqi. Bend-twist coupling effect of symmetric un-uniform laminate plate beam[J]. Acta Materiae Compositae Sinica,2017,34(7):1462-1468(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170121.001
    [15] 王庆涛. 碳/玻层内混杂单向经编织物渗透性能及混杂复合材料力学性能研究[D]. 上海: 东华大学, 2018.

    WANG Qingtao. Study on the permeability properties of unidirectional warp-knitted fabrics blended within carbon/glass layers and the mechanical properties of blended composites[D]. Shanghai: Donghua University, 2018(in Chinese).
    [16] KIM S H, SHIN H, BANG H J. Bend-twist coupling behavior of 10 MW composite wind blade[J]. Composites Research,2016,29(6):369-374. doi: 10.7234/composres.2016.29.6.369
    [17] 杨庆生. 复合材料力学[M]. 北京: 科学出版社, 2020: 134-158.

    YANG Qingsheng. Mechanics of composite materials[M]. Beijing: Science Press, 2020: 134-158(in Chinese).
    [18] 马腾, 李炜. 单向碳/玻璃纤维层内-层间混杂复合材料拉伸破坏模式研究[J]. 复合材料科学与工程, 2015, 262(12):87-93.

    MA Teng, LI Wei. Study on tensile damage mode of unidirectional carbon/glass fiber intra-layer-interlayer hybrid composites[J]. Composites Science and Engineering,2015,262(12):87-93(in Chinese).
    [19] International Organization for Standardization. Plastics— Determination of tensile properties—Part 5: Test conditions for fibre-reinforced plastic composites: ISO 527-5: 2009[S]. Genève: ISO, 2009-06-26.
    [20] 刘旺玉, 龚佳兴, 刘希凤, 等. 基于弯扭耦合的自适应风力机叶片设计[J]. 太阳能学报, 2011, 32(7):1014-1019.

    LIU Wangyu, GONG Jiaxing, LIU Xifeng, et al. Adaptive wind turbine blade design based on bending-torsion coupling[J]. Journal of Solar Energy,2011,32(7):1014-1019(in Chinese).
    [21] 庞程燕. 水平轴水轮机叶片的弯扭耦合设计及流固耦合计算[D]. 哈尔滨: 哈尔滨工程大学, 2014.

    PANG Chengyan. Bending-torsional coupling design and fluid-structure coupling calculation of horizontal axis hydraulic turbine blades[D]. Harbin: Harbin Engineering University, 2014(in Chinese).
    [22] WIENS M, MEYER T, WENSKE J. Exploiting bend-twist coupling in wind turbine control for load reduction[J]. IFAC-Papers On Line,2020,53(2):12139-12144. doi: 10.1016/j.ifacol.2020.12.781
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  287
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-08-20
  • 录用日期:  2022-09-03
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回