留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低损耗FeSiAl磁粉芯的制备与性能

蹇汉杰 鲍康馨 孙旗 王力 盛汝昌 赵利明 冒爱琴 郑翠红

蹇汉杰, 鲍康馨, 孙旗, 等. 超低损耗FeSiAl磁粉芯的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 蹇汉杰, 鲍康馨, 孙旗, 等. 超低损耗FeSiAl磁粉芯的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
JIAN Hanjie, BAO Kangxin, SUN Qi, et al. Preparation and performance of ultra-low core loss FeSiAl soft magnetic composites[J]. Acta Materiae Compositae Sinica.
Citation: JIAN Hanjie, BAO Kangxin, SUN Qi, et al. Preparation and performance of ultra-low core loss FeSiAl soft magnetic composites[J]. Acta Materiae Compositae Sinica.

超低损耗FeSiAl磁粉芯的制备与性能

基金项目: 安徽省科技厅重点研发项目(202104a05020031)
详细信息
    通讯作者:

    郑翠红,硕士,教授,硕士生导师,主要研究方向为无机非金属材料 E-mail: zhch@ahut.edu.cn

  • 中图分类号: TM271; TB332

Preparation and performance of ultra-low core loss FeSiAl soft magnetic composites

Funds: Key R&D Project of Anhui Provincial Department of Science and Technology (202104a05020031)
  • 摘要: 目前家电、汽车和手机等产品的电子元器件日益呈现小型化、智能化的发展趋势,因此,降低磁粉芯(SMCs)在高频、大功率下应用时的功率损耗是适应其发展的必要措施。将气雾化Fe-9.6 wt%Si-5.4 wt%Al(FeSiAl)磁粉进行磷化绝缘处理,经预热处理、成型和退火热处理,得到了超低损耗FeSiAl复合磁粉芯(SMCs)。分析结果表明,磷化后的FeSiAl磁粉经热处理后,颗粒表面包覆的磷酸盐转变为硅酸盐,且磁粉中晶粒长大,磁粉的矫顽力降低;制得的磁粉芯功率损耗也明显降低,这主要归因于磁滞损耗的显著降低;当磷酸使用量为0.5 wt%时,50 kHz下功率损耗由79.44 mW·cm−3降低至58.56 mW·cm−3

     

  • 图  1  实验流程示意图

    Figure  1.  Diagram of experimental proces

    图  2  (a)磷化后及 (b)预热处理磁粉颗粒SEM图像;(c)磷化后颗粒EDS元素分布图;磁粉XRD分析图谱

    Figure  2.  SEM images of (a)phosphated and (b)heated powders, (c)EDS results of phosphated powders

    图  3  磷酸含量对磁粉芯(SMCs) (a)密度、(b)有效磁导率的影响

    Figure  3.  Effects of the proportion of H3PO4 on the SMCs (a)ρ, (b)μe

    图  4  磁粉芯的功率损耗随频率变化图

    Figure  4.  Pcv of SMCs varies with frequency

    图  5  样品的涡流损耗和磁滞损耗随频率变化关系图

    Figure  5.  Pe and Ph of SMCs varies with frequency

    图  6  FeSiAl磁粉的XRD 图谱

    Figure  6.  XRD pattern of FeSiAl magnetic powder

    图  7  磁粉芯样品磁滞回线

    Figure  7.  Hysteresis loops of SMCs

    图  8  FeSiAl粉的XPS分析图谱

    Figure  8.  XPS spectra of FeSiAl powder

    图  10  磷化后及预热处理FeSiAl粉 (a)XRD图谱(b)FTIR光谱

    Figure  10.  (a) XRD pattern (b) FTIR spectrum of FeSiAl powder after phosphating and heating

    图  9  磷化后磁粉XPS分析图谱

    Figure  9.  XPS spectra of phosphated FeSiAl powder

    图  11  磷化预热处理后磁粉的 XPS分析图谱

    Figure  11.  XPS spectra of heated FeSiAl powder after phosphating

    图  12  磷化及预热处理过程磁粉表面反应示意图

    Figure  12.  Diagram about reactions of phosphating and heating process on the surface of FeSiAl powder

    表  1  磁粉芯的电阻率、功率损耗、涡流损耗和磁滞损耗

    Table  1.   Comparison of electrical resistivity, core loss, eddy current loss and hysteresis loss of SMCs

    SampleCore loss/(mW·cm−3)Eddy current coefficientEddy current loss/(mW·cm−3)Hysteresis coefficientHysteresis loss/(mW·cm−3)Electrical resistivity/(Ω·cm)
    0.5 wt%HP/FeSiAl79.441.74×10−643.537.01×10−335.0325.23×106
    0.5 wt%HPT/FeSiAl58.561.63×10−640.733.23×10−316.172.48×106
    Notes: Bm—Maximum magnetic induction intensity=100 mT; f—Frequency=50 kHz
    下载: 导出CSV

    表  2  本文与此前报道磁粉芯性能对比

    Table  2.   Comparison of previously reported SMCs properties and this work

    Sample Core loss/(mW·cm−3) Permeability Refs
    f=50 kHz f=100 kHz
    0.5 wt%HPT/FeSiAl 58.56 190.1 52.1 (f=100 kHz) This work
    SiO2@FeSiAl 77.6 216.53 57(f=1 MHz) [18]
    MoS2/FeSiAl 181 454 90.6(f=1 MHz) [19]
    2.25 wt%WS2/FeSiAl 171 431 62~64(f=50 kHz) [20]
    Commercially SMCs <120 60(f=100 kHz) NCD Co., Ltd.
    Notes:Bm—Maximum magnetic induction intensity=100 mT; f—Frequency; SiO2@FeSiAl—SiO2 coated spherical-FeSiAl SMC;MoS2/FeSiAl and 2.25 wt%—WS2/FeSiAl MoS2 and 2.25 wt%WS2 coated FeSiAl SMCs respectively;Commercially SMCs—Atomized FeSiAl SMCs produced by Ma’anshan New Conda Magnetic Industrial Co., Ltd.
    下载: 导出CSV
  • [1] ZHONG X, LIU Y, LI J, et al. Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2631-2636. doi: 10.1016/j.jmmm.2012.03.026
    [2] SHOKROLLAHI H, JANGHORBAN K. Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 1-12. doi: 10.1016/j.jmatprotec.2007.02.034
    [3] NIE W, YU T, WANG Z, et al. High-performance core-shell-type FeSiCr@MnZn soft magnetic composites for high-frequency applications[J]. Journal of Alloys and Compounds, 2021, 864: 158215-158221. doi: 10.1016/j.jallcom.2020.158215
    [4] 许欣蓓, 鲁书潮, 鲍康馨, 等. 气雾化铁硅铝磁粉粒度级配对磁粉芯性能的影响[J]. 磁性材料及器件, 2024: 1-10.

    XU Xinpei, LU Shuchao, BAO Kangxin, et al. Effect of grading of gas atomized Fe-Si-Al powders on properties of the soft magnetic cores[J]. Journal of Magnetic Materials and Devices, 2024: 1-10. (in Chinese)
    [5] 刘国忠, 杨啸峰, 张公平, 等. 金属磁粉芯绝缘包覆研究进展[J]. 磁性材料及器件, 2021, 52(6): 93-100.

    LIU Guozhong, YANG Xiaofeng, ZHANG Gongping, et al. Research progress in preparation of insulating coatings on metal soft magnetic cores[J]. Journal of Magnetic Materials and Devices, 2021, 52(6): 93-100(in Chinese).
    [6] 郭海山, 陈建川, 钟小溪, 等. FeSiAl磁粉芯制备工艺研究进展[J]. 热加工工艺, 2021, 50(24): 17-20.

    GUO Haishan, CHEN Jianchuan, ZHONG Xiaoxi, et al. Research progress of preparation technology of FeSiAl magnetic particle core[J]. Hot Working Technology, 2021, 50(24): 17-20(in Chinese).
    [7] Taghvaei A H, Shokrollahi H, Janghorban K, et al. Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites[J]. Materials & Design, 2009, 30(10): 3989-3995.
    [8] 贺泓鑫, 侯海彬, 李奇, 等. 磁粉芯的研究现状及发展趋势[J]. 磁性材料及器件, 2023, 54(6): 95-104.

    HE Hongxin, HOU Haibin, LI Qi, et al. Research status and development trend of magnetic powder cores[J]. Journal of Magnetic Materials and Devices, 2023, 54(6): 95-104(in Chinese).
    [9] 王尧, 朱乾科, 陈哲, 等. 成型压强对FeSiB磁粉芯磁性能的影响[J]. 功能材料, 2020, 51(8): 8165-8169. doi: 10.3969/j.issn.1001-9731.2020.08.026

    WANG Yao, ZHU Qianke, CHEN Zhe, et al. The influence of forming pressure on the magnetic properties of FeSiB magnetic powder cores[J]. Journal of Functional Materials, 2020, 51(8): 8165-8169(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.08.026
    [10] HSING H, CHEN C H, CHEN C C. Magnetic properties of FeSiCr alloy powder coils made by gel casting process[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14584-14591. doi: 10.1007/s10854-021-06017-y
    [11] LI S, ZHANG M, ZHAN Z, et al. Study on novel Fe-based core-shell structured soft magnetic composites with remarkable magnetic enhancement by in-situ coating nano-ZnFe2O4 layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 500: 166321-166327. doi: 10.1016/j.jmmm.2019.166321
    [12] LUO Z, FAN X, HU W, et al. Properties of Fe2SiO4/SiO2 coated Fe-Si soft magnetic composites prepared by sintering Fe-6.5wt%Si/Fe3O4 composite particles[J]. Journal of Magnetism and Magnetic Materials, 2020, 499: 166278-166284. doi: 10.1016/j.jmmm.2019.166278
    [13] LI W, XIAO S, LI W, et al. Hybrid amorphous soft magnetic composites with ultrafine FeSiBCr and submicron FeBP particles for MHz frequency power applications[J]. Journal of Magnetism and Magnetic Materials, 2022, 555: 169365. doi: 10.1016/j.jmmm.2022.169365
    [14] HUANG H, ZHANG R, SUN H, et al. High density Fe-based soft magnetic composites with nice magnetic properties prepared by warm compaction[J]. Journal of Alloys and Compounds, 2023, 947: 169460-169469. doi: 10.1016/j.jallcom.2023.169460
    [15] SUN K, FENG S, JIANG Q, et al. Intergranular insulating reduced iron powder-carbonyl iron powder/SiO2-Al2O3 soft magnetic composites with high saturation magnetic flux density and low core loss[J]. Journal of Magnetism and Magnetic Materials, 2020, 493: 165705-165711. doi: 10.1016/j.jmmm.2019.165705
    [16] WANG J, LIU X, ZHENG Z, et al. Reduction of core loss for FeSi soft magnetic composites prepared using atomic layer deposition-based coating and high-temperature annealing[J]. Journal of Alloys and Compounds, 2022, 909: 164655-164665. doi: 10.1016/j.jallcom.2022.164655
    [17] HE Y, LI G, YANG S, et al. Improvements of magnetic performances for carbonyl iron soft magnetic composites (CI-SMCs) induced by Mn-based phosphating coating[J]. Journal of Alloys and Compounds, 2023, 958: 170498-170506. doi: 10.1016/j.jallcom.2023.170498
    [18] LI W, LI Wc, WU J, et al. Particles size-dependent magnetic properties of a FeSiAl soft magnetic composite with hybrid insulating coating for MHz applications[J]. Materials Science and Engineering: B, 2023, 291: 116387-116395. doi: 10.1016/j.mseb.2023.116387
    [19] ZHU S, DUAN F, NI J, et al. Soft magnetic composites FeSiAl/MoS2 with high magnetic permeability and low magnetic loss[J]. Journal of Alloys and Compounds, 2022, 926:
    [20] ZHU S, DUAN F, FENG S, et al. Efficient inorganic-coated FeSiAl/WS2 soft magnetic composites with low magnetic loss[J]. Journal of Alloys and Compounds, 2023, 936: 168190-168197. doi: 10.1016/j.jallcom.2022.168190
    [21] GUO R, YU G, ZHU M, et al. Regulation of magnetic and electrical performances in core-shell-structured FeSiCr@BaTiO3 soft magnetic composites[J]. Journal of Alloys and Compounds, 2022, 895: 162724-162730. doi: 10.1016/j.jallcom.2021.162724
    [22] WANG J, LI G, HE Y, et al. Improvement in core losses for FeSiAl soft magnetic composites induced by powder annealing treatment[J]. Journal of Materials Research and Technology, 2023, 24: 2500-2513. doi: 10.1016/j.jmrt.2023.03.168
    [23] 唐进军, 何配群. 磷化液中金属离子的分析[J]. 电镀与环保, 2009, 29(1): 49-50. doi: 10.3969/j.issn.1000-4742.2009.01.016

    TANG Jingjun, HE Peiqun. Analysis of metal ions in phosphating solution[J]. Electroplating & Pollution Control, 2009, 29(1): 49-50(in Chinese). doi: 10.3969/j.issn.1000-4742.2009.01.016
    [24] CHEN Z, LIU X, KAN X, et al. Phosphate coatings evolution study and effects of ultrasonic on soft magnetic properties of FeSiAl by aqueous phosphoric acid solution passivation[J]. Journal of Alloys and Compounds, 2019, 783: 434-440. doi: 10.1016/j.jallcom.2018.12.328
    [25] HUANG M, WU C, JIANG Y, et al. Evolution of phosphate coatings during high-temperature annealing and its influence on the Fe and FeSiAl soft magnetic composites[J]. Journal of Alloys and Compounds, 2015, 644: 124-130. doi: 10.1016/j.jallcom.2015.04.201
    [26] HU B, WANG X, SHU H, et al. Improved electrochemical properties of BiF3/C cathode via adding amorphous AlPO4 for lithium-ion batteries[J]. Electrochimica Acta, 2013, 102: 8-18. doi: 10.1016/j.electacta.2013.03.168
    [27] LUO Z, FAN X, HU W, et al. Effect of sintering temperature on microstructure and magnetic properties for Fe-Si soft magnetic composites prepared by water oxidation combined with spark plasma sintering[J]. Journal of Magnetism and Magnetic Materials, 2019, 491: 165615-165622. doi: 10.1016/j.jmmm.2019.165615
    [28] ZHOU Q, LI C, LI X, et al. Reaction behavior of ferric oxide in system Fe2O3–SiO2–Al2O3 during reductive sintering process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 842-848. doi: 10.1016/S1003-6326(16)64175-4
    [29] LUO Z, FAN X, HU W, et al. Enhanced magnetic properties and reduced core loss of intergranular insulating Fe-Si soft magnetic composites with three-shell SiO2-Fe2SiO4-SiO2 insulating layer[J]. Journal of Solid State Chemistry, 2019, 270: 311-316. doi: 10.1016/j.jssc.2018.11.034
    [30] LIU X, MA Y, HE Q, et al. Some IR features of SiO4 and OH in coesite, and its amorphization and dehydration at ambient pressure[J]. Journal of Asian Earth Sciences, 2017, 148: 315-323. doi: 10.1016/j.jseaes.2017.03.016
    [31] MOUNIR F, KARIMA H, KHALED B, et al. Modeling Li-ion conductivity in LiLa(PO3)4 powder[J]. Physica B: Condensed Matter, 2012, 407(13): 2593-2600. doi: 10.1016/j.physb.2012.03.077
    [32] SAITO T, TAKEMOTO S. Core Loss in Fe-Si Powder Cores[J]. Journal of the Magnetics Society of Japan, 2013, 37(3-2): 155-160.
    [33] WANG J, QIU Z, XU J, et al. Evolution of coating layers during high-temperature annealing and their effects on magnetic behavior of Fe(Si) soft magnetic composites[J]. Advanced Powder Technology, 2022, 33(12): 103876-103889. doi: 10.1016/j.apt.2022.103876
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-07-30
  • 录用日期:  2024-07-31
  • 网络出版日期:  2024-08-19

目录

    /

    返回文章
    返回