Ti-Cu层状复合材料静态载荷下变形与失效机制

孙伟, 张炜, 郭剑, 贾丽芳, 李晓杰

孙伟, 张炜, 郭剑, 等. Ti-Cu层状复合材料静态载荷下变形与失效机制[J]. 复合材料学报, 2020, 37(5): 1106-1113. DOI: 10.13801/j.cnki.fhclxb.20190917.001
引用本文: 孙伟, 张炜, 郭剑, 等. Ti-Cu层状复合材料静态载荷下变形与失效机制[J]. 复合材料学报, 2020, 37(5): 1106-1113. DOI: 10.13801/j.cnki.fhclxb.20190917.001
SUN Wei, ZHANG Wei, GUO Jian, et al. Deformation and failure mechanism of Ti-Cu laminated composite under static loading[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1106-1113. DOI: 10.13801/j.cnki.fhclxb.20190917.001
Citation: SUN Wei, ZHANG Wei, GUO Jian, et al. Deformation and failure mechanism of Ti-Cu laminated composite under static loading[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1106-1113. DOI: 10.13801/j.cnki.fhclxb.20190917.001

Ti-Cu层状复合材料静态载荷下变形与失效机制

基金项目: 国家自然科学基金(11702058)
详细信息
    通讯作者:

    孙伟,博士,副教授,硕士生导师,研究方向为水下爆炸焊接、层状金属复合材料等 E-mail:dust911@163.com

  • 中图分类号: TB331

Deformation and failure mechanism of Ti-Cu laminated composite under static loading

  • 摘要: 利用水下爆炸焊接法制备了Ti-Cu层状复合材料。为研究Ti-Cu层状复合材料静态荷载下变形和失效机制,对Ti-Cu层状复合材料进行了室温条件下单轴拉伸实验和预制裂纹的三点弯曲实验,并与Ti单层板和Cu单层板进行对比分析,采用SEM观察断口形貌。通过拉伸和三点弯曲实验后的微观分析表明:在拉伸实验中,Ti-Cu层状复合材料的破坏是由于多方向应力耦合作用,加工硬化和界面效应使其拉伸强度远高于Ti单层板和Cu单层板;在预制裂纹的三点弯曲实验中,Ti-Cu层状复合材料的断裂是多重损伤失效相互作用的结果。Cu层形成大量的滑移带和变形带,Ti层产生大量的微裂纹,Ti-Cu层状复合材料由于多种损伤累积,形成一种特有的沿基体和界面交替传播的裂纹形态;相对于均质金属,Ti-Cu层状复合材料复杂的变形和失效行为是其力学性能提高的重要原因。
    Abstract: The Ti-Cu laminated composite was prepared by underwater explosive welding. In order to study the deformation and failure mechanism of Ti-Cu laminated composite under static loading, uniaxial tensile experiment and the pre-notched three-point bending test were carried out at room temperature, which were compared with as-received Ti and Cu. Besides, the fracture morphology of Ti-Cu laminated composite was observed by SEM. Microscopic analysis after tensile and three-point bending tests shows that in the tensile test, the failure of Ti-Cu laminated composite is due to the coupling effect of multi-direction stress. Work hardening and interface effect make the tensile strength of Ti-Cu laminated composite much higher than that of as-received Ti and Cu; In the pre-notched three-point bending test, the fracture of Ti-Cu laminated composite is the results of multiple damage effect and failure effect. A large number of slip bands and deformation bands are formed in the Cu layer, and a large number of microcracks are generated in the Ti layer. Due to the accumulation of multiple damages, a unique failure pattern of wave propagation trajectory is formed in the Ti-Cu laminated composite; Compared with homogeneous metal, the complex deformation and failure behavior of Ti-Cu laminated composite play an important role in improving their mechanical properties.
  • 图  1   Ti-Cu层状复合材料的制备过程

    Figure  1.   Preparation process of Ti-Cu laminated composite

    图  2   拉伸和含预制裂纹弯曲实验的Ti-Cu层状复合材料试样尺寸

    Figure  2.   Size of Ti-Cu laminated composite specimen for tensile and pre-notched three-point bending

    图  3   Ti-Cu层状复合材料的SEM图像及界面处的组织结构

    Figure  3.   SEM image and organizational structure at interface of Ti-Cu laminated composite

    图  4   Ti、Cu和Ti-Cu层状复合材料的工程应力-应变曲线

    Figure  4.   Engineering stress-strain curves of Ti, Cu and Ti-Cu laminated composite

    图  5   Ti、Cu和Ti-Cu层状复合材料的力-位移曲线

    Figure  5.   Load-displacement curves of Ti, Cu and Ti-Cu laminated composite

    图  6   层状金属复合材料的外在增韧机制

    Figure  6.   External toughening mechanisms of laminated metal composites

    图  7   Ti-Cu层状复合材料整体及局部拉伸断口的SEM图像

    Figure  7.   Global and local tensile fracture SEM images of Ti-Cu laminated composite (((a), (b)) Global fracture morphology;((c), (d)) Fracture morphologies of Cu and Ti, respectively;((e)–(h)) Enlarged local interface in Fig. (b))

    图  8   Ti-Cu层状复合材料弯曲断口的SEM图像

    Figure  8.   Bending fracture SEM image of Ti-Cu laminated composite

    图  9   Ti-Cu层状复合材料局部断口的SEM图像(Cu层由1、2、3逐渐远离界面((a)~(c));Ti层由1、2、3逐渐远离界面((d)~(f));界面裂纹由1、2、3逐渐远离界面开裂区域((g)~(i)))

    Figure  9.   Local fracture SEM images of Ti-Cu laminated composite(((a)–(c))Cu layer gradually moves away from interface from 1, 2, 3; ((d)–(f))Ti layer gradually moves away from interface from 1, 2, 3; ((g)–(i))Interfacial cracks gradually move away from interfacial cracking region from 1, 2, 3)

    表  1   Ti合金的化学成分

    Table  1   Chemical composition of Ti brass alloy

    Chemical elementTiCNHOFeSi
    Content/wt%Balance0.0160.015<0.0010.080.0970.055
    下载: 导出CSV

    表  2   Cu合金的化学成分

    Table  2   Chemical composition of Cu brass alloy

    Chemical elementCuSnAlPbFeSbNiMnPZn
    Content/wt%62.20.0115.60.010.130.00010.50.50.001Balance
    下载: 导出CSV
  • [1] 赵菲, 黄庆学, 贾登峰, 等. 金属层状复合材料焊接技术现状与发展[J]. 焊接技术, 2018, 47(2):1-5.

    ZHAO F, HUANG Q X, JIA D F, et al. Current situation and development of metal lamellar composite welding technology[J]. Welding Technology,2018,47(2):1-5(in Chinese).

    [2] 王航, 李晓峰, 张煜, 等. 爆炸焊接层状复合材料国内外发展现况及应用领域简介[J]. 中国钛业, 2017(1):16-19.

    WANG H, LI X F, ZHANG Y, et al. Development and applications of explosive welding laminated composite materials at home and abroad[J]. China Titanium Industry,2017(1):16-19(in Chinese).

    [3] 李龙, 毕建华, 周德敬. 我国金属复合板带材的生产及应用[J]. 轧钢, 2017, 34(2):43-47.

    LI L, BI J H, ZHOU D J. Production and applica tion of metal clad plate and strip in China[J]. Steel Rolling,2017,34(2):43-47(in Chinese).

    [4] 刘欢, 高晓龙, 刘晶, 等. 钛/铜异种金属焊接技术研究进展[J]. 宝鸡文理学院学报(自然科学版), 2019, 39(1):63-67.

    LIU H, GAO X L, LIU J, et al. Research progress on welding technology of Ti/Cu dissimilar metal[J]. Journal of Baoji University of Arts and Sciences (Natural Scienience),2019,39(1):63-67(in Chinese).

    [5] 杨红梅. VHP法制备Ti-Cu复合材料的界面演变与性能研究[D]. 昆明: 昆明理工大学, 2012.

    YANG H M. Interface evolution and properties of Ti-Cu composite prepared by VHP method[D]. Kunming: Kunming University of Science and Technology, 2012(in Chinese).

    [6]

    YANG D, CIZEK P, HODGSON P, et al. Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding[J]. Scripta Materialia,2010,62(5):321-324. DOI: 10.1016/j.scriptamat.2009.11.036

    [7]

    KONG F, CHEN Y, ZHANG D. Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling[J]. Materials & Design,2011,32(6):3167-3172.

    [8]

    MOUSA S, KIM G. Experimental study on warm roll bonding of metal/polymer/metal multilayer composites[J]. Journal of Materials Processing Technology,2015,222:84-90. DOI: 10.1016/j.jmatprotec.2015.02.040

    [9]

    CUI X, FAN G, HUANG L, et al. Preparation of a novel layer-structured Ti3Al matrix composite sheet by liquid-solid reaction between Al foils and TiB/Ti composite foils[J]. Materials & Design,2016,101:181-187.

    [10]

    WANG G P, LI M, ZHANG M X. Mechanical properties and fracture behavior of titanium-aluminum/titanium micro-laminate sheet deposited by EB-PVD[J]. Materials Transactions,2015,56(11):1764-1770. DOI: 10.2320/matertrans.M2015176

    [11]

    SUN Y, VAJPAI S K, AMEYAMA K, et al. Fabrication of multilayered Ti-Al intermetallics by spark plasma sintering[J]. Journal of Alloys and Compounds,2014,585:734-740. DOI: 10.1016/j.jallcom.2013.09.215

    [12] 郑远谋, 黄荣光, 陈世红. 爆炸焊接和金属复合材料[J]. 复合材料学报, 1999, 16(1):15-22.

    ZHENG Y M, HUANG R G, CHEN S H. Explosive welding and metal composites[J]. Acta Materiae Compositae Sinica,1999,16(1):15-22(in Chinese).

    [13]

    HOKAMOTO K, NAKATA K, MORI A, et al. Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique[J]. Journal of Alloys and Compounds,2009,472(1-2):507-511. DOI: 10.1016/j.jallcom.2008.05.002

    [14]

    HOKAMOTO K, FUJITA M, SHIMOKAWA H, et al. A new method for explosive welding of Al/ZrO2 joint using regulated underwater shock wave[J]. Journal of Materials Processing Technology,1999,85(1-3):175-179. DOI: 10.1016/S0924-0136(98)00286-6

    [15]

    SUN W, ZHANG W, GUO J, et al. Cracking behavior in tensile and bending test of underwater explosive-welded AZ31/Cu laminated composite[J]. Theoretical and Applied Fracture Mechanics,2019,103:102256. DOI: 10.1016/j.tafmec.2019.102256

    [16]

    SUN W, LI X J, HOKAMOTO K. Fabrication of graded density impactor via underwater shock wave and quasi-isentropic compression testing at two-stage gas gun facility[J]. Applied Physics A,2014,117(4):1941-1946. DOI: 10.1007/s00339-014-8663-1

    [17]

    LAUNEY M E, RITCHIE R O. On the fracture toughness of advanced materials[J]. Advanced Materials,2009,21(20):2103-2110. DOI: 10.1002/adma.200803322

    [18]

    WADSWORTH J, LESUER D R. Ancient and modern laminated composites: From the Great Pyramid of Gizeh to Y2K[J]. Materials Characterization,2000,45(4-5):289-313.

    [19]

    ROHATGI A, HARACH D J, VECCHIO K S, et al. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites[J]. Acta Materialia,2003,51(10):2933-2957. DOI: 10.1016/S1359-6454(03)00108-3

    [20]

    LESUER D R, SYN C K, SHERBY O D, et al. Mechanical behaviour of laminated metal composites[J]. International Materials Reviews,1996,41(5):169-197. DOI: 10.1179/imr.1996.41.5.169

    [21]

    LIU B, HUANG L, GENG L, et al. Multiscale hierarchical structure and laminated strengthening and toughening mechanisms[M]//OSHEKU C. Lamination: Theory and application. London: Intech Open, 2018.

    [22] 孙伟, 贾子光, 王振宇, 等. 材料硬度对于水下爆炸焊接界面的影响[J]. 焊接学报, 2016, 37(11):63-66.

    SUN W, JIA Z G, WANG Z Y, et al. Effect of materials hardness on interfacial feature of underwater explosive welded joint[J]. Transaction of the China Welding Institution,2016,37(11):63-66(in Chinese).

    [23]

    LIANG F, TAN H, ZHANG B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites[J]. Scripta Materialia,2017,134:28-32. DOI: 10.1016/j.scriptamat.2017.02.032

    [24] 张建军. Al/Mg/Al热轧复合板的制备及其微观组织和力学性能研究[D]. 太原: 太原理工大学, 2016.

    ZHANG J J. Preparation of Al/Mg/Al laminated composite fabricated by hot rolled and investigation of microstructure and mechnaical properties[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).

  • 期刊类型引用(1)

    1. 田淑侠,秦志辉,李广棵,朱乾坤,房占鹏. 夹芯复合材料损伤分析方法研究. 河南理工大学学报(自然科学版). 2023(05): 161-168 . 百度学术

    其他类型引用(2)

图(9)  /  表(2)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  192
  • PDF下载量:  96
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-06-13
  • 录用日期:  2018-09-02
  • 网络出版日期:  2019-09-16
  • 刊出日期:  2020-05-14

目录

    /

    返回文章
    返回