留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素纳米晶结构色辐射冷制复合薄膜的制备及性能

孙碧遥 安邦 孙文野 马春慧 徐明聪 刘守新 李伟

孙碧遥, 安邦, 孙文野, 等. 纤维素纳米晶结构色辐射冷制复合薄膜的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 孙碧遥, 安邦, 孙文野, 等. 纤维素纳米晶结构色辐射冷制复合薄膜的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
SUN Biyao, A N Bang, SUN Wenye, et al. Preparation and properties of cellulose nanocrystal based structurally colored radiative cooling composite films[J]. Acta Materiae Compositae Sinica.
Citation: SUN Biyao, A N Bang, SUN Wenye, et al. Preparation and properties of cellulose nanocrystal based structurally colored radiative cooling composite films[J]. Acta Materiae Compositae Sinica.

纤维素纳米晶结构色辐射冷制复合薄膜的制备及性能

基金项目: 国家重点研发计划(2023YFD220405);国家自然科学基金(32071719);“新时代龙江优秀硕士、博士学位论文”项目资助(LJYXL2023-087)
详细信息
    通讯作者:

    徐明聪,博士,教授,研究生导师,研究方向为生物质手性液晶材料的制备与功能化 E-mail:xumingcong@nefu.edu.cn

    李伟,博士,教授,博士生导师,研究方向为纤维素纳米晶体与光学器件 E-mail:liwei820927@nefu.edu.cn

  • 中图分类号: TB383;TB332

Preparation and properties of cellulose nanocrystal based structurally colored radiative cooling composite films

Funds: National Key Research and Development Program of China (No.2023YFD220405); National Natural Science Foundation of China (No.32071719); “The New Era Excellent Master's and Doctoral Dissertation” Project of Heilongjiang Province (No.LJYXL2023-087)
  • 摘要: 辐射制冷通过向外太空发射热量来降低自身温度,是一种绿色、低碳和可持续的降温策略。大多数辐射制冷材料外观颜色单调,多为白色或透明状,而传统着色剂的加入会使材料吸收热量,降低辐射制冷性能。通过自组装法制备具有可调结构色的纤维素纳米晶体/聚乙二醇(CNC/PEG)复合辐射制冷薄膜。并将复合薄膜与多孔结构的醋酸纤维素(CA)膜结合,得到结构色辐射制冷双层复合膜。结果表明:纤维素纳米晶复合薄膜具有鲜艳的结构色,具有明显的双折射现象。随着PEG含量的增加,复合薄膜结构的螺距增大,颜色由蓝绿色转变为红色。CNC/PEG结构色复合薄膜在可见光波段最高反射率可达68.5%,在大气窗口波段的发射率高达93%,具有3.4 ℃左右的环境降温效果。CNC/PEG-CA双层复合膜在可见光波段最高反射率高达91.8%,在大气窗口波段的发射率可达32.2%。与复合薄膜相比,双层复合膜的降温性能更好,与环境温度相比,具有14.3 ℃左右温差。在户外测试中,与环境温度相比,复合薄膜可达到2 ℃左右的降温效果,双层复合膜可达到6 ℃左右的降温效果。

     

  • 图  1  (a)纤维素纳米晶体(CNC)的TEM图像;(b)CNC的粒径图像;(c)CNC的电位图像

    Figure  1.  (a) TEM image of Cellulose nanocrystal (CNC); (b) Particle size image of CNC; (c) Potential image of CNC

    图  2  (a) 纤维素纳米晶体/聚乙二醇(CNC/PEG)-10%、(b) CNC/PEG-20%、(c) CNC/PEG-30%、(d) CNC/PEG-40%的光学图像;(e) CNC/PEG 的紫外-可见反射光谱图;(f) 复合薄膜辐射制冷示意图

    Figure  2.  Digital photographs of (a) Cellulose nanocrystal/polyethylene glycol (CNC/PEG)-10%, (b) CNC/PEG-20%, (c) CNC/PEG-30%, (d) CNC/PEG-40%; (e)UV-vis reflection spectra of CNC/PEG; (f) Composite film radiative cooling schematic

    图  3  不同PEG含量的复合薄膜横截面电镜图像

    Figure  3.  Cross-sectional electron microscope images of composite films with different PEG contents

    图  4  不同PEG含量的复合薄膜的偏光显微镜示意图

    Figure  4.  Polarized light microscopy schematic of composite films with different PEG contents

    图  5  不同PEG含量的复合薄膜:(a)发射率曲线;(b)在可见光范围内的反射率曲线

    Figure  5.  Composite film with different PEG contents: (a) Emissivity profile; (b) Reflectivity profile in the visible light range

    图  6  不同PEG含量的双层复合制冷膜:(a)发射率曲线;(b)在可见光范围内的反射率曲线

    Figure  6.  Bilayer composite film with different PEG contents: (a) Emissivity profile; (b) Reflectivity profile in the visible light range

    图  7  (a)室内氙灯模拟装置图;(b)自组装温度测量装置图;(c)CNC/PEG-10%和空气 ;(d)CNC/PEG-30%和空气温度对比图

    Figure  7.  (a) Photos of indoor xenon lamp simulation device; (b) Self assembling temperature measuring device; Temperature comparison of (c) CNC/PEG-10% and air; (d) CNC/PEG-30% and air

    图  8  ((a)-(c))醋酸纤维素膜、滤纸和A4纸红外热成像图;(d)醋酸纤维素膜表面电镜图;(e)CA与空气温度对比图

    Figure  8.  ((a)-(c)) Infrared thermograms of CA film, filter paper and A4 paper; (d) SEM of CA film surface; (e) Temperature comparison of CA and air

    图  9  ((a)-(c))CNC/PEG-20%、CNC/PEG-20%-CA与带有蓝色涂料的CA薄膜红外热成像图;(d)带蓝色涂料的CA和空气;(e)CNC/PEG-20%-CA和空气;(f)CNC/PEG-10%-CA和空气;(g)CNC/PEG-30%-CA和空气温度对比图

    Figure  9.  ((a)-(c)) Infrared thermograms of CNC/PEG-20%, CNC/PEG-20%-CA and and CA films with blue coatings; Temperature comparison of (d) CA with blue painting and air; (e) CNC/PEG-20%-CA and air; (f) CNC/PEG-10%-CA and air; (g) CNC/PEG-30%-CA and air

    图  10  (a,b)测试CNC/PEG-30%-CA、CNC/PEG-30%和空气的温差变化的户外装置图;(c)CNC/PEG-30%-CA、CNC/PEG-30%与空气的温差图

    Figure  10.  (a,b) Diagram of an outdoor installation for testing the change in temperature difference between CNC/PEG-30%-CA, CNC/PEG-30% and air; (c) Temperature comparison of CNC/PEG-30%-CA、CNC/PEG-30% and air

  • [1] 舒章康, 李文鑫, 张建云, 等. 中国极端降水和高温历史变化及未来趋势[J]. 中国工程科学, 2022, 24(5): 116-125.

    SHU Z, LI W, ZHANG J, et al. Historical changes and future trends of extreme precipitation and high temperature in China[J]. Strategic Study of Chinese Academy of Engineering, 2022, 24(5): 116-125(in Chinese).
    [2] 左志燕, 肖栋, 何琼. 变暖趋势在全球陆表气温变化中的作用[J]. 中国科学: 地球科学, 2021, 51 (06): 941-946.

    ZUO Z, XIAO D, HE Q. 2021. Role of the warming trend in global land surface air temperature variations. Science China Earth Sciences, 64(6): 866–871. (in Chinese)
    [3] FIXSEN D J, KOGUT A, LEVIN S, et al. The temperature of the cosmic microwave background at 10 GHz[J]. The Astrophysical Journal, 2004, 612(1): 86. doi: 10.1086/421993
    [4] MUNDAY J N. Tackling climate change through radiative cooling[J]. Joule, 2019, 3(9): 2057-2060. doi: 10.1016/j.joule.2019.07.010
    [5] CARLOSENA L, RUIZ-PARDO Á, RODRÍGUEZ-JARA E Á, et al. Worldwide potential of emissive materials based radiative cooling technologies to mitigate urban overheating[J]. Building and Environment, 2023, 243: 110694. doi: 10.1016/j.buildenv.2023.110694
    [6] TAO S, WAN Q, XU Y, et al. Incorporation form-stable phase change material with passive radiative cooling emitter for thermal regulation[J]. Energy and Buildings, 2023, 288: 113031.
    [7] YIN X, YANG R, TAN G, et al. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791. doi: 10.1126/science.abb0971
    [8] BIJARNIYA J P, SARKAR J, MAITI P. Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110263. doi: 10.1016/j.rser.2020.110263
    [9] SUN H, HOU C, JI T, et al. Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building[J]. Composites Part B: Engineering, 2023, 250: 110426. doi: 10.1016/j.compositesb.2022.110426
    [10] XIA G, ZHOU T, ZHANG Y, et al. Operating characteristics analysis and optimization of loop heat pipe radiation cooling system in space reactor[J]. Nuclear Engineering and Design, 2024, 420: 113043. doi: 10.1016/j.nucengdes.2024.113043
    [11] CHEN Y, MANDAL J, LI W, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 2020, 6(17): eaaz5413.
    [12] 王晨曦, 邓芳芳, 邹豪等. 用于温室降温的透明辐射薄膜研究[J]. 制冷学报, 2024, 45(1): 63-69. doi: 10.3969/j.issn.0253-4339.2024.01.063

    WANG C X, ZHENG F F, ZOU H, et al. Investigating transparent radiative film for greenhouse cooling[J]. Journal of Refrigeration, 2024, 45(1): 63-69(in Chinese). doi: 10.3969/j.issn.0253-4339.2024.01.063
    [13] ZHOU L, RADA J, ZHANG H, et al. Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling[J]. Advanced Science, 2021, 8(23): 2102502.
    [14] ZHU W, DROGUET B, SHEN Q, et al. Structurally colored radiative cooling cellulosic films[J]. Advanced Science, 2022, 9(26): 2202061.
    [15] 蔡晨阳, 丁春香, 武小丹, 等. 生物质纤维素基日间辐射制冷材料的研究进展[J]. 复合材料学报, 2024, 42: 1-12.

    CAI C Y, DING C X, WU X D, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-12(in Chinese).
    [16] 史婷婷, 刘东青, 程海峰. 基于红外辐射调控的个人热管理材料研究进展[J]. 复合材料学报, 2023, 40(5): 2480-2494.

    SHI T T, LIU D Q, CHENG H F. Research progress of personal thermal management materials based on infrared radiation regulation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2480-2494(in Chinese).
    [17] BENMOUSSA Y, EZZIANI M, DJIRE A F, et al. Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material[J]. Materials Today: Proceedings, 2023, 72: 3632-3637.
    [18] ANUSUYADEVI P R, SINGHA S, BANERJEE D, et al. Synthetic plant cuticle coating as a biomimetic moisture barrier membrane for structurally colored cellulose films[J]. Advanced Materials Interfaces, 2023, 10(7): 2202112. doi: 10.1002/admi.202202112
    [19] KIM H H, IM E, LEE S. Colloidal photonic assemblies for colorful radiative cooling[J]. Langmuir, 2020, 36(23): 6589-6596. doi: 10.1021/acs.langmuir.0c00051
    [20] 安邦, 徐明聪, 马春慧等. 纤维素纳米晶体手性复合材料: 结构色的调控与应用[J]. 高分子学报, 2022, 53(3): 211-226.

    AN B, XU M C, MA C H, et al. Tuning and application of structural color of cellulose nanocrystals chiral composite materials[J]. Acta Polymerica Sinica, 2022, 53(3): 211-226(in Chinese).
    [21] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical reviews, 2010, 110(6): 3479-3500. doi: 10.1021/cr900339w
    [22] 崔文博, 梁婷婷, 王一冰, 等. 用木质纳米纤维素为模板制备的介孔二氧化钛光催化还原Cr(Ⅵ)的研究[J]. 森林工程, 2023, 39(6): 101-108. doi: 10.3969/j.issn.1006-8023.2023.06.012

    CUI W B, LIANG T T, WANG Y B, et al. Study of Photocatalytic Reduction of Cr(VI) by Mesoporous Titanium Dioxide Using Lignocellulose as Template[J]. Forest Engineering, 2023, 39(6): 101-108(in Chinese). doi: 10.3969/j.issn.1006-8023.2023.06.012
    [23] 张晓君, 马晓军. NaOH浓度对纳米Fe3O4/纤维素复合膜结构和性能的影响[J]. 生物质化学工程, 2016, 50(5): 1-6. doi: 10.3969/j.issn.1673-5854.2016.05.001

    ZHANG X J, MA X J. Effects of NaOH Concentration on Structure and Properties of Nano-Fe3O4/Cellulose Composite Membrane[J]. Biomass Chemical Engineering, 2016, 50(5): 1-6(in Chinese). doi: 10.3969/j.issn.1673-5854.2016.05.001
    [24] 代林林, 李伟, 曹军, 等. 湿敏手性纳米纤维素薄膜的自组装制备及表征[J]. 高分子材料科学与工程, 2016, 32(8): 115-119.

    DAI L L, LI W, CAO J, et al. Preparation and characterization of humidity- sensitive chiral nematic films from nanocrystalline cellulose via evaporation- induced self- assembly method[J]. Polymer Materials Science & Engineering, 2016, 32(8): 115-119(in Chinese).
    [25] ANUSUYADEVI P R, SINGHA S, BANERJEE D, et al. Synthetic plant cuticle coating as a biomimetic moisture barrier membrane for structurally colored cellulose films[J]. Advanced Materials Interfaces, 2023, 10(7): 2202112. doi: 10.1002/admi.202202112
    [26] HUANG Y, CHEN G, LIANG Q, et al. Multifunctional cellulose nanocrystal structural colored film with good flexibility and water-resistance[J]. International journal of biological macromolecules, 2020, 149: 819-825. doi: 10.1016/j.ijbiomac.2020.01.247
    [27] SHANKER R, RAVI ANUSUYADEVI P, GAMAGE S, et al. Structurally colored cellulose nanocrystal films as transreflective radiative coolers[J]. ACS Nano, 2022, 16(7): 10156-10162. doi: 10.1021/acsnano.1c10959
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-06-29
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回