留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纤维/碳泡沫预制体的高比强度碳/碳复合材料制备及性能

王兴俊 贾建刚 潘子康 刘第强 臧树俊

王兴俊, 贾建刚, 潘子康, 等. 基于碳纤维/碳泡沫预制体的高比强度碳/碳复合材料制备及性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 王兴俊, 贾建刚, 潘子康, 等. 基于碳纤维/碳泡沫预制体的高比强度碳/碳复合材料制备及性能[J]. 复合材料学报, 2024, 42(0): 1-9.
WANG Xingjun, JIA Jiangang, PAN Zikang, et al. Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms[J]. Acta Materiae Compositae Sinica.
Citation: WANG Xingjun, JIA Jiangang, PAN Zikang, et al. Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms[J]. Acta Materiae Compositae Sinica.

基于碳纤维/碳泡沫预制体的高比强度碳/碳复合材料制备及性能

基金项目: 国家自然科学基金 (52162005);甘肃省青年科技基金(23JRRA777)
详细信息
    通讯作者:

    贾建刚,博士,教授,硕士生导师,研究方向为功能多孔材料及碳基复合材料 E-mail: jiajg@lut.edu.cn

  • 中图分类号: TB331

Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms

Funds: National Natural Science Foundation of China (No.52162005); Youth Science and Technology Fund of Gansu Province, China(No.23JRRA777)
  • 摘要: 碳/碳复合材料以其优异的性能广泛应用于航空航天、武器装备等领域,但碳纤维预制体成本高等因素限制了碳/碳复合材料的发展。碳泡沫具有三维网状结构,其韧带表现出与碳纤维相似的性质,可以作为增强相制备新型碳/碳复合材料。本文以酚醛树脂作为碳源,NaCl作为造孔剂,制备出不同碳纤维体积含量(0vol%、1vol%、3vol%、5vol%、7vol%)的碳泡沫作为碳/碳复合材料预制体,利用热梯度化学气相渗积(TG-CVI)快速致密化技术制备碳/碳复合材料,考察了碳纤维含量对碳纤维/碳泡沫预制体及其致密化后密度、微观结构和力学性能的影响。结果表明,随着碳纤维含量的增加,碳纤维/碳泡沫预制体中的微裂纹数量显增加,密度由0.51 g/cm3逐渐降低至0.31 g/cm3,抗压强度由51.30 MPa下降至1.30 MPa,抗弯强度由42.53 MPa下降至6.32 MPa。致密化之后碳/碳复合材料抗压强度与抗弯强度显著提升,最高分别为183.67 MPa和123.46 MPa,其密度为1.09 g/cm3,因此具有高比强度。致密化后复合材料的热导率从0.298 W/(m·K)(致密化前)增大到2.484 W/(m·K),提升了734%,这是由于致密化后碳纤维与热解碳形成了三维导热网络。

     

  • 图  1  碳纤维/碳泡沫致密化工艺流程图

    Figure  1.  Densification process of carbon fiber/carbon foam

    图  2  碳纤维/碳泡沫致密化前后微观形貌SEM图像

    Figure  2.  SEM images of carbon fiber/carbon foam before and after densification

    图  3  碳纤维/碳泡沫致密化前后XRD图谱

    Figure  3.  XRD pattern of carbon fiber/carbon foam before and after densification

    图  4  碳纤维/碳泡沫致密化前后的拉曼图谱

    Figure  4.  Raman pattern of carbon fiber/carbon foam before and after densification

    图  5  碳纤维/碳泡沫致密化前后的密度和抗弯强度

    Figure  5.  Density and flexural strength of carbon fiber/carbon foam before and after densification

    图  6  碳纤维/碳泡沫致密化前后的密度、抗弯强度与比压缩强度

    Figure  6.  Density, compressive strength and specific compressive strength of carbon fiber/carbon foam before and after densification

    图  7  碳纤维/碳泡沫致密化前后应力-应变曲线图

    Figure  7.  Stress-strain curves of carbon fiber/carbon foam before and after densification

    图  8  碳纤维/碳泡沫致密化前后压缩断口形貌

    Figure  8.  SEM images of compression sections of carbon fiber/carbon foam before and after densification

    图  9  碳纤维/碳泡沫致密化前后的热导率

    Figure  9.  Thermal conductivity of carbon fiber/carbon foam before and after densification;

    表  1  碳纤维/碳泡沫致密化前的密度、残碳率与体积收缩率

    Table  1.   Density, residual carbon rate and volume shrinkage of carbon fiber/carbon foam before deposition

    Sample CF CF1%Cf CF3%Cf CF5%Cf CF7%Cf
    Density/(g·cm−3) 0.51 0.59 0.46 0.42 0.31
    Residual carbon rate/% 49.1 50.3 52.1 54.7 56.8
    Volume shrinkage/% 46.3 42.1 22.8 18.4 13.7
    下载: 导出CSV
  • [1] LI B, HUANG D, LI T, et al. The positive role of mesophase-pitch-based carbon fibers in enhancing thermal response behavior in Carbon/Carbon composites[J]. Materials Characterization, 2023, 196: 112630. doi: 10.1016/j.matchar.2022.112630
    [2] 王德文, 渠聚鑫, 孟东容. 碳/碳复合材料在再入弹头上的应用研究[J]. 真空科学与技术学报, 2018, 38(01): 65-70.

    WANG Dewen, DU Juxin, MENG Dongrong. Application study of carbon/carbon composites on reentry warheads[J]. Journal of Vacuum Science and Technology, 2018, 38(01): 65-70(in Chinese).
    [3] 隋金玲, 李木森, 吕宇鹏. 人体承重骨替换用碳/碳复合材料的研究现状[J]. 生物医学工程学杂志, 2004, (04): 686-689.

    SUI Jinling, LI Musen, LU Yupeng. Current status of carbon/carbon composites for human load-bearing bone replacement[J]. Journal of Biomedical Engineering, 2004, (04): 686-689(in Chinese).
    [4] XU M, GUO L, ZHANG P, et al. Effect of pyrolytic carbon texture on ablation behavior of carbon/carbon composites coated with SiC by pack cementation[J]. Ceramics International, 2022, 48(7): 10261-10270. doi: 10.1016/j.ceramint.2021.12.244
    [5] CAO M, FENG Y, TIAN R, et al. Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode[J]. Carbon, 2020, 161: 224-230. doi: 10.1016/j.carbon.2020.01.093
    [6] LIU Y, WANG Y, SHI C, et al. Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor[J]. Carbon, 2020, 165: 129-138. doi: 10.1016/j.carbon.2020.04.084
    [7] ZHANG P, CAO M, FENG Y, et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices[J]. Carbon, 2021, 182: 404-412. doi: 10.1016/j.carbon.2021.06.032
    [8] OLA O, CHEN Y, ZHU Y. Three-dimensional carbon foam nanocomposites for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 297-305. doi: 10.1016/j.solmat.2018.11.037
    [9] XU Y, ZHANG Z, GENG X, et al. Smart carbon foams with switchable wettability for fast oil recovery[J]. Carbon, 2019, 149: 242-247. doi: 10.1016/j.carbon.2019.04.039
    [10] XIONG W, LIU M, GAN L, et al. Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 411: 34-39. doi: 10.1016/j.colsurfa.2012.06.042
    [11] LI X, LI X, DONG Y, et al. Porous cobalt oxides/carbon foam hybrid materials for high supercapacitive performance[J]. Journal of Colloid and Interface Science, 2019, 542: 102-111. doi: 10.1016/j.jcis.2019.01.128
    [12] AGRAWAL P R, KUMAR R, UPPAL H, et al. Novel 3D lightweight carbon foam as an effective adsorbent for arsenic( v ) removal from contaminated water[J]. RSC Advances, 2016, 6(36): 29899-29908. doi: 10.1039/C6RA02208A
    [13] CAO Z, ZHANG J, DING Y, et al. In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8636-8644. doi: 10.1039/C6TA01855F
    [14] KUMAR R, DHAKATE S R, SAINI P, et al. Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation[J]. RSC Advances, 2013, 3(13): 4145. doi: 10.1039/c3ra00121k
    [15] 田辞. 碳泡沫的发泡法和模板法制备及其表征[D]. 同济大学, 2008.

    TIAN Ci. Preparation and characterization of carbon foams by foaming and template methods[D]. Tongji University, 2008.
    [16] ANDERSON D P, KEARNS K M, KLETT J W, et al. Microcellular graphitic carbon foams for next generation structures and thermal management[C/OL]//2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484). Big Sky, MT, USA: IEEE, 2000: 193-200[2023-09-24
    [17] COVACIU M, RAMOS-MOORE E, ROJAS S, et al. A novel one-pot method to synthesize hierarchical mesoporous carbon foams with ZnO coating[J]. Ceramics International, 2019, 45(17): 21475-21482. doi: 10.1016/j.ceramint.2019.07.138
    [18] WU Y, BAO W, XIE Y, et al. Preparation and electrochemical performance of chemical-activated carbon foam[J]. Micro & Nano Letters, 2021, 16(2): 164-170.
    [19] DING J, ZHONG L, HUANG Q, et al. Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting[J]. Carbon, 2021, 177: 160-170. doi: 10.1016/j.carbon.2021.01.160
    [20] MARX J, ROTH S, BROUSCHKIN A, et al. Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and their mechanical properties[J]. Carbon, 2019, 142: 60-67. doi: 10.1016/j.carbon.2018.10.004
    [21] PATLE V K, KUMAR R, SHARMA A, et al. Three dimension phenolic resin derived carbon-CNTs hybrid foam for fire retardant and effective electromagnetic interference shielding[J]. Composites Part C:Open Access, 2020, 2: 100020. doi: 10.1016/j.jcomc.2020.100020
    [22] CHUANG W, LEI P, ZHEN-HAI S, et al. Preparation, thermal stability and deflection of a density gradient thermally-conductive carbon foam material derived from phenolic resin[J]. Results in Physics, 2019, 14: 102448. doi: 10.1016/j.rinp.2019.102448
    [23] WANG B, LUO X, KANG Y, et al. Preparation and Properties of Glass Fiber Reinforced Carbon Foam Composites[J]. Applied Composite Materials, 2022, 29(2): 845-853. doi: 10.1007/s10443-021-09993-w
    [24] FARHAN S, WANG R-M. Thermal, mechanical and self-destruction properties of aluminum reinforced carbon foam[J]. Journal of Porous Materials, 2015, 22(4): 897-906. doi: 10.1007/s10934-015-9963-3
    [25] MEI H, ZHAO G, LIU G, et al. Effect of pore size distribution on the mechanical performance of carbon foams reinforced by in situ grown Si 3 N 4 whiskers[J]. Journal of the European Ceramic Society, 2015, 35(16): 4431-4435. doi: 10.1016/j.jeurceramsoc.2015.08.001
    [26] 中国国家标准化管理委员会(标准制定单位). 碳/碳复合材料压缩性能试验方法: GB/T 34559-2017 [S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Test Method for Compressive Properties of Carbon/Carbon Composites: GB/T 34559-2017 [S]. Beijing: China Standards Press, 2017(in Chinese).
    [27] World Trade Organization Technical Barriers to Trade (TBT) Committee. Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature1: ASTM-C1161 − 18 (Reapproved 2023) [S] American Society for Testing and Materials, 2023.
    [28] WANG Y, HE Z, ZHAN L, et al. Coal tar pitch based carbon foam for thermal insulating material[J]. Materials Letters, 2016, 169: 95-98. doi: 10.1016/j.matlet.2016.01.081
    [29] LI S, CHEN F, ZHANG B, et al. Structure and improved thermal stability of phenolic resin containing silicon and boron elements[J]. Polymer Degradation and Stability, 2016, 133: 321-329. doi: 10.1016/j.polymdegradstab.2016.07.020
    [30] JORIO A, SAITO R, DRESSELHAUS G, et al. Raman Spectroscopy in Graphene Related Systems[M/OL]. 1 edition. Wiley, 2011[2023-08-13
    [31] WANG X, LUO R, NI Y, et al. Properties of chopped carbon fiber reinforced carbon foam composites[J]. Materials Letters, 2009, 63(1): 25-27. doi: 10.1016/j.matlet.2008.08.036
    [32] AGARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science, 2010, 32(7): 5705-5712.
    [33] 史青, 彭勃, 朱爱萍. 膨胀石墨-碳纤维/尼龙三元导热复合材料制备[J]. 复合材料学报, 2019, 36(3): 555-562.

    SHI Qing, PENG Bo, ZHU Aiping. Preparation of expanded graphite-carbon fiber/nylon ternary thermally conductive composites[J]. Acta Materiae Compositae Sinica, 2010, 32(7): 5705-5712. (in Chinese)
  • 加载中
计量
  • 文章访问数:  179
  • HTML全文浏览量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2023-12-14
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-01-24

目录

    /

    返回文章
    返回