留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球磨-碱活化改性椰壳生物炭对恩诺沙星吸附性能研究

校导 郑丽丽 郑晓燕 杨旸 艾斌凌 盛占武

校导, 郑丽丽, 郑晓燕, 等. 球磨-碱活化改性椰壳生物炭对恩诺沙星吸附性能研究[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 校导, 郑丽丽, 郑晓燕, 等. 球磨-碱活化改性椰壳生物炭对恩诺沙星吸附性能研究[J]. 复合材料学报, 2024, 42(0): 1-10.
XIAO Dao, ZHENG Lili, ZHENG Xiaoyan, et al. Modification of coconut shell biochar by ball milling with an alkali for enrofloxacin adsorption[J]. Acta Materiae Compositae Sinica.
Citation: XIAO Dao, ZHENG Lili, ZHENG Xiaoyan, et al. Modification of coconut shell biochar by ball milling with an alkali for enrofloxacin adsorption[J]. Acta Materiae Compositae Sinica.

球磨-碱活化改性椰壳生物炭对恩诺沙星吸附性能研究

基金项目: 海南省重点研发计划(ZDYF2023XDNY049);海南省自然科学基金(319QN267);中央级公益性科研院所基本科研业务费创新团队专项(17CXTD-05);海南省重点研发计划(ZDYF2019187)
详细信息
    通讯作者:

    盛占武,博士,研究员,研究方向:农产品加工及副产物综合利用, E-mail: shengzhanwu100@163.com

  • 中图分类号: TB332

Modification of coconut shell biochar by ball milling with an alkali for enrofloxacin adsorption

Funds: Key Research and Development Projects of Hainan Province (ZDYF2023XDNY049) ; Hainan Provincial Natural Science Fund Project (319QN267); Central Public-interest Scientiffc Institution Basal Research Fund for Innovative Research Team Program of CATAS (17CXTD-05); Key Research and Development Projects of Hainan Province (ZDYF2019187)
  • 摘要: 为了高效吸附水中的恩诺沙星(EFA),本文通过球磨法和KOH活化对椰壳进行改性制备椰壳生物炭(BM-KOH-BC),并在吸附EFA方面进行深入研究。通过扫描电子显微镜、傅里叶变换红外光谱和X射线衍射等方法对BM-KOH-BC进行表征,结果揭示了KOH活化和球磨改性显著提高了BM-KOH-BC的孔隙结构和比表面积。在优化条件下(初始EFA浓度为80 mg·L−1时,在pH值为7,温度为25℃,吸附剂剂量为0.14 g·mg·L−1,搅拌速度为200 r/min、接触时间为35 h的条件下,BM-KOH-BC表现出良好的吸附性能,去除率达77.4%,最大吸附容量为481.1 mg·g−1。吸附过程符合二级动力学模型和Freundlich等温线模型。此外,BM-KOH-BC在5次吸附-解吸循环后仍保持高效的EFA去除率。这一低成本、高效吸附和可循环利用的特性使得BM-KOH-BC在处理水体中的EFA方面展现出潜在的应用前景。

     

  • 图  1  恩诺沙星(EFA)在不同吸附剂上的吸附能力

    Figure  1.  Adsorption capacities of enrofloxacin (EFA) on different adsorbents

    图  2  生物炭(BC)、碱活化生物炭(KOH-BC)、球磨生物炭(BM-BC)和球磨-碱活化生物炭(BM-KOH-BC)的SEM图像

    Figure  2.  SEM images of biochar(BC), alkali-activated biochar (KOH-BC), ball milled biochar( BM-BC), and ball milled and alkali-activated biochar(BM-KOH-BC)

    图  3  生物炭结构的表征。(a) EFA吸附前后BM-KOH-BC的FTIR光谱;(b) BC、KOH-BC、BM-BC和BM-KOH-BC的FTIR光谱;(c)XRD谱图

    Figure  3.  Characterization of the biochar. (a) FTIR spectra of BM-KOH-BC before and after EFA adsorption; (b) FTIR spectra of BC, KOH-BC, BM-BC and BM-KOH-BC; (c) XRD patterns

    图  4  BM-KOH-BC的零电荷点(pH pzc )

    Figure  4.  The point of zero charge (pH pzc) of BM-KOH-BC

    图  5  (a)不同EFA初始浓度的影响;(b)pH值对BM-KOH-BC吸附EFA的影响

    Figure  5.  (a) Effects of different initial concentrations of EFA; and (b) the effect of the pH value on EFA adsorption by BM-KOH-BC

    图  6  BM-KOH-BC去除EFA的吸附等温线:(a)Langmuir、(b)Freundlich(c)EFA吸附的Van't Hoff图

    Figure  6.  Adsorption isotherms of EFA removal by BM-KOH-BC:(a) Langmuir, (b)Freundlich (c)Van’t Hoff plot of EFA adsorption

    图  7  EFA 在BM-KOH-BC上吸附的动力学模型:(a) 准一级,(b) 准二级

    Figure  7.  Kinetics models for the adsorption of EFA onto BM-KOH-BC:(a) pseudo-first-order, and (b) pseudo-second-order

    图  8  BM-KOH-BC的再生性能

    Figure  8.  Regeneration performance of BM-KOH-BC

    表  1  BC、KOH-BC 和BM-KOH-BC 的 BET 分析

    Table  1.   BET analysis of BC, KOH-BC, and BM-KOH-BC

    Material BET surface area/(m2·g−1) Pore volume/(cm3·g−1) Element mass fraction /wt%
    C O H N
    BC 775.99±2.53 0.424163±0.008 79.78±3.53 9.85±0.42 1.34±0.35 0.31±0.02
    BM-BC 1559.12±1.83 0.604902±0.005 71.09±2.47 18.29±0.28 1.79±0.33 0.56±0.01
    KOH-BC 2,277.28±1.02** 1.238911±0.002** 60.85±2.53 28.04±0.45 3.37±0.28 0.58±0.03
    BM-KOH-BC 2,620.49±0.21* 1.433558±0.001* 60.51±2.38 29.89±0.57 3.53±0.21 0.65±0.03
    Notes: *, P< 0.05; **, P< 0.01.
    下载: 导出CSV

    表  2  BM-KOH-BC吸附 EFA 的 Langmuir 和 Freundlich 吸附等温线参数

    Table  2.   Langmuir and Freundlich adsorption isotherm parameters for EFA adsorption by BM-KOH-BC

    T(K) Langmuir Freundlich
    $ {Q}_{\mathrm{m}\mathrm{a}\mathrm{x},\mathrm{e}\mathrm{x}\mathrm{p}} $/(mg·g−1) $ {Q}_{\mathrm{m}\mathrm{a}\mathrm{x},\mathrm{c}\mathrm{a}\mathrm{l}} $/(mg·g−1) KL/(mg·g−1) R2 1/n KF/(mg·g−1) R2
    298 481.1 476.1 2.1 0.8644 0.0318 410.9617 0.9982
    308 492.6 476.1 1.75 0.885 0.0366 411.4551 0.9978
    318 504.4 500 1.5384 0.8979 0.0402 414.2211 0.9957
    Notes:Qmax — Maximum sorption capacity; KL — Adsorptive constant of Langmuir model; 1/n — Empirical parameter varied with the degree of heterogeneity of adsorbing sites; KF — Adsorptive constant of Freundlich model; R2 — The Correlation coefficient of Langmuir and Freundlich models.
    下载: 导出CSV

    表  3  不同吸附剂对EFA的吸附容量

    Table  3.   EFA adsorption capacities of different adsorbents

    Adsorbent SBET/ (m2·g−1) Qmax/
    (mg·g−1)
    Reference
    Montmorillonite 32 239.7 [30]
    Illite 22 81.6 [30]
    Kaolinite 10 7.2 [30]
    Ca-montmorillonite nd 144.4 [31]
    Na-montmorillonite nd 163.4 [31]
    Ligno-cellulosic substrate
    from wheat bran
    11 ± 3 3.56 [32]
    Chemically activated carbon derived from industrial paper sludge 4514 44.4 [33]
    Chemically activated carbon developed from green coconut shell 1005.76 12.3 [17]
    Ball milling-alkali activated green coconut shell biochar 2,620.49 481.1 本研究
    Notes:Qmax — Maximum sorption capacity;SBET—BET surface area
    下载: 导出CSV

    表  4  不同EFA初始浓度下BM-KOH-BC吸附EFA的动力学参数

    Table  4.   Kinetic parameters for EFA adsorption by BM-KOH-BC at different initial EFA concentrations

    Initial concentration/
    (mg·L−1)
    Qe,exp/
    (mg·g−1)
    Pseudo-first-order Pseudo-second-order
    k1 $ {Q}_{e,cal} $ R2 k2 $ {Q}_{e,cal} $ R2
    80 2.50 0.0031 0.98 0.8647 0.0094 2.54 0.9994
    120 2.56 0.0031 1.07 0.8836 0.0080 2.60 0.9992
    160 2.61 0.0034 0.86 0.90536 0.0119 2.65 0.9996
    Notes:Qe,exp Equilibrium sorption capacity obtained from experiment; k1First-order apparent sorption rate constants; Qe,calu Equilibrium sorption capacity calculated by pseudo-first order kinetics or pseudo-second order kinetics; k2 Second-order apparent sorption rate constants; R2 The Correlation coefficient of pseudo-first order kinetics or pseudo-second order kinetics.
    下载: 导出CSV

    表  5  BM-KOH-BC吸附EFA的热力学参数

    Table  5.   Thermodynamic parameters of EFA adsorption by BM-KOH-BC

    Temperature/°C G/(kJ·mol−1) H/(kJ·mol−1) S/(kJ·mol−1)
    25 −3.1012 2.8176 0.02
    35 −3.2946
    45 −3.4944
    Notes:ΔG°—Gibbs free energy; ΔH°—enthalpy; ΔS°—entropy.
    下载: 导出CSV
  • [1] GRENNI P, ANCONA V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: A review[J]. Microchemical Journal, 2018, 136: 25-39. doi: 10.1016/j.microc.2017.02.006
    [2] FATTA D, ACHILLEOS, NIKOLAOUA A, et al. Analytical methods for tracing pharmaceutical residues in water and wastewater[J]. Trac Trends in Analytical Chemistry, 2007, 26(6): 515-533. doi: 10.1016/j.trac.2007.02.001
    [3] SIB E, VOIGT A M, WILBRING G, et al. Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks[J]. International Journal of Hygiene and Environmental Health, 2019, 222(4): 655-662. doi: 10.1016/j.ijheh.2019.03.006
    [4] WALKER R, STEIN G, HAUPTMAN J, et al. Pharmacokinetic Evaluation of Enrofloxacin Administered Orally to Healthy Dogs[J]. American journal of veterinary research, 1993, 53: 2315-9.
    [5] KEMPER N. antibiotics in the aquatic and terrestrial environment[J]. EcologicalIndicators, 2008, 8(1): 1-13.
    [6] ZHU T T, SU Z X, LAI W X, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of The Total Environment, 2021, 776: 145906. doi: 10.1016/j.scitotenv.2021.145906
    [7] BHATTACHARYA S, YADAV J. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges[J]. Current protein & peptide science, 2018, 19 1: 75-86.
    [8] SAVEV S, ORTENBACH M, GUILLON E. Sportive removal of enrofloxacin antibiotic from aqueous solution using a lingo-cellulosic substrate from wheat bran[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 5820-5829. doi: 10.1016/j.jece.2018.08.012
    [9] CHUA S F, NOURI A, ANG W L, et al. The emergence of multifunctional adsorbents and their role in environmental remediation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104793. doi: 10.1016/j.jece.2020.104793
    [10] ZHAO L, ZHANG Y, WANG L, et at. Effective removal of Hg (II) and Me Hg from aqueous environment by ball milling aided thiol-modification of biochars: effect of different pyrolysis temperatures[J]. Chemosphere, 2022, 294: Article 133820,
    [11] LYU H H, GAO B, HE F, et at. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue[J]. Chemical Engineering Journal, 2017, 335.
    [12] HUANG J, ZIMMERMAN A R, CHEN H, et at. Ball milled biochar effectively removes sulfamethoxazole and sulfa pyridine antibiotics from water and wastewater[J]. EnvironmentalPollution, 2019, 258: 113809.
    [13] SUN Y, ZHENG L, ZHENG X, et at. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization[J]. Frontiers in chemistry, 2021, 9: 814647.
    [14] WANG S W, XIAO D, ZHENG X, et al. Halloysite and coconut shell biochar magnetic composites for the sorption of Pb (II) in wastewater: Synthesis, characterization and mechanism investigation[J]. Journal of Environmental Chemical Engineering, 2021.
    [15] DIPA D, SAMAIL D, MEIKAP. BC. Preparation of Activated Carbon from Green Coconut Shell and its Characterization[J]. Journal of Chemical Engineering & Process Technology, 2015, 06: 1000248.
    [16] CHAKRABORTY P, BANERJEE S, KUMAR S, et al. Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: Isotherm, kinetics, thermodynamics and cost estimation[J]. Process Safety and Environmental Protection, 2018, 118: 10-23. doi: 10.1016/j.psep.2018.06.015
    [17] DASSHARMA D, SAMANTA S, S D. N. K, et al. A mechanistic insight into enrofloxacin sorptive affinity of chemically activated carbon engineered from green coconut shell[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104140 doi: 10.1016/j.jece.2020.104140
    [18] WU J, WANG T, LIU Y, et al. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar[J]. Chemosphere, 2022, 303.
    [19] ZHANG A, LI X, XING J, et al. Adsorption of potentially toxic elements in water by modified biochar: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 104196. doi: 10.1016/j.jece.2020.104196
    [20] XIAO Y, LYU H H, TANG J C, et al. Effects of ball milling on the photochemistry of biochar: Enrofloxacin degradation and possible mechanisms[J]. Chemical Engineering Journal, 2020, 384: 123311. doi: 10.1016/j.cej.2019.123311
    [21] GRAOUER-BACART M, SAYEN S, GUILLON E. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu (II)[J]. Journal of Colloid and Interface Science, 2013, 408: 191-199. doi: 10.1016/j.jcis.2013.07.035
    [22] ZHAO H, CHENG Y, LY H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142: 245-253. doi: 10.1016/j.carbon.2018.10.027
    [23] YAO X, JI L, GUO J, et al. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption[J]. Bioresource Technology, 2020, 302: 122842. doi: 10.1016/j.biortech.2020.122842
    [24] XIAO Y, LYU H H, TANG J C, et al. Effects of ball milling on the photochemistry of biochar: Enrofloxacin degradation and possible mechanisms[J]. Chemical Engineering Journal, 2020, 384: 123311. doi: 10.1016/j.cej.2019.123311
    [25] XIE H J, LIU. W F, ZHANG J, et al. Sorption of norfloxacin from aqueous solutions by activated carbon developed from Trapa natans husk[J]. Science China Chemistry;2011;54(005): 835-843.
    [26] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar)[J]. Environmental Science & Technology;2010; 44(4): 1247-1253.
    [27] SANKARANARAYANAN S, LAKSHMI D, VIVEKANANDHAN S, et al. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation[J]. Sustainable Materials and Technologies, 2021, 28.
    [28] GUPTA V K, JAIN R, SIDDIQUI M, et al. Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon[J]. Journal of Chemical Engineering Data, 2010, 55: 5225-5229. doi: 10.1021/je1007857
    [29] GERCEL Ö, GERCEL H F. Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida[J]. Chemical Engineering Journal, 2007, 132(1): 289-297.
    [30] WAN M, LI Z, HONG H, et al. Enrofloxacin uptake and retention on different types of clays[J]. Journal of Asian Earth Sciences, 2013, 77(nov.15): 287-294.
    [31] ELISA R, ANNA P, MICHELA S, et al. Clay minerals for adsorption of veterinary FQs: Behavior and modeling[J]. Journal of Environmental Chemical Engineering;2014.
    [32] STEPHANIE S, MARTA O L, EMMANUEL G. Sportive removal of enrofloxacin antibiotic from aqueous solution using a lingo-cellulosic substrate from wheat bran[J]. Journal of Environmental Chemical Engineering, 2018, 6: S2213343718304445-.
    [33] SOMNATH, C, JAYA S, MANDAL T, et al. Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge[J]. The Science of the total environment, 2019.
    [34] MAZIARZ P, MATUSIK J, RADZISZEWSKA A. Halloysite-zero-valent iron nanocomposites for removal of Pb (II)/Cd (II) and As(V)/Cr (VI): Competitive effects, regeneration possibilities and mechanisms[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103507. doi: 10.1016/j.jece.2019.103507
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2023-12-08
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回