留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对PVA/ECC动态压缩性能影响

刘泽军 王昌野 李艳 张文彬

刘泽军, 王昌野, 李艳, 等. 温度对PVA/ECC动态压缩性能影响[J]. 复合材料学报, 2023, 40(1): 355-368. doi: 10.13801/j.cnki.fhclxb.20220322.001
引用本文: 刘泽军, 王昌野, 李艳, 等. 温度对PVA/ECC动态压缩性能影响[J]. 复合材料学报, 2023, 40(1): 355-368. doi: 10.13801/j.cnki.fhclxb.20220322.001
LIU Zejun, WANG Changye, LI Yan, et al. Effect of temperature on dynamic compression properties of PVA/ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 355-368. doi: 10.13801/j.cnki.fhclxb.20220322.001
Citation: LIU Zejun, WANG Changye, LI Yan, et al. Effect of temperature on dynamic compression properties of PVA/ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 355-368. doi: 10.13801/j.cnki.fhclxb.20220322.001

温度对PVA/ECC动态压缩性能影响

doi: 10.13801/j.cnki.fhclxb.20220322.001
基金项目: 国家自然科学基金(U1904188);河南省科技攻关项目(222102320431);河南省高校基本科研业务费专项资金资助项目(NSFRF220438)
详细信息
    通讯作者:

    李艳,博士,教授,硕士生导师,研究方向为高性能混凝土及其结构设计 E-mail: liyan@hpu.edu.cn

  • 中图分类号: TU528.58

Effect of temperature on dynamic compression properties of PVA/ECC

Funds: National Natural Science Foundation of China (U1904188); Key Scientific and Technological Program of Henan Province (222102320431); Project of Fundamental Research Funds for Universities of Henan Province (NSFRF220438)
  • 摘要: 为研究不同温度、不同聚乙烯醇(PVA)纤维体积掺量和不同应变率对高延性纤维增强水泥基复合材料(PVA/ECC)动态压缩性能的影响,采用直径50 mm分离式霍普金森压杆(SHPB),对高温浸水冷却后的PVA/ECC进行了冲击压缩试验,结果表明:当温度≥250℃,PVA/ECC试件冲击破坏后的整体性变差,应力-应变曲线更趋于扁平,其动态峰值应变提高不明显但动态峰值应力、冲击韧度显著降低,且高温对较大纤维体积掺量PVA/ECC动态峰值应力、冲击韧度的劣化效应更明显;温度≤150℃时,增大PVA纤维体积掺量,PVA/ECC动态峰值应力、峰值应变和冲击韧度均明显提高,但当温度≥250℃时,增大PVA纤维体积掺量,PVA/ECC动态峰值应变增大,而冲击韧度的提高幅度显著降低且动态峰值应力下降;高温水冷后的PVA/ECC仍具有明显的应变率效应,但温度≥150℃后,其抗压强度的应变率敏感性有所降低。

     

  • 图  1  PVA/高延性纤维增强水泥基复合材料(ECC)哑铃型试件单轴受拉试验

    Figure  1.  Tensile testing of dumbbell-shaped PVA/engineered fiber reinforced cementitious composite (ECC) specimens

    图  2  不同PVA纤维掺量PVA/ECC试件单轴受拉应力-应变曲线

    Figure  2.  Tensile stress-strain curves of PVA/ECC specimens with different PVA fiber volume contents

    图  3  分离式霍普金森压杆(SHPB)试验装置示意图

    Figure  3.  Schematic diagram of split Hopkinson compression bar (SHPB) test device

    图  4  PVA/ECC试件典型破坏形态

    Figure  4.  Typical failure patterns of PVA/ECC specimens

    图  5  PVA/ECC试件SEM图像[22]

    Figure  5.  SEM images of PVA/ECC specimens[22]

    图  6  不同温度下PVA/ECC试件平均应力-应变曲线

    Figure  6.  Average stress-strain curves of PVA/ECC specimens at different temperatures

    图  7  不同纤维掺量PVA/ECC试件平均应力-应变曲线

    Figure  7.  Average stress-strain curves of PVA/ECC specimens with different fiber contents

    图  8  不同应变率下PVA/ECC试件平均应力-应变曲线

    Figure  8.  Average stress-strain curves of PVA/ECC specimens at different strain rates

    图  9  PVA/ECC动态强度增长因子(μDIF)与应变率对数lgέ的关系

    Figure  9.  Relationship between dynamic increase factor (μDIF) and logarithm of strain rate lgέ of PVA/ECC

    图  10  不同温度下PVA/ECC试件冲击韧度对比

    Figure  10.  Impact toughness comparison of PVA/ECC specimens at different temperatures

    图  11  不同纤维掺量PVA/ECC试件冲击韧度对比

    Figure  11.  Impact toughness comparison of PVA/ECC specimens with different fiber contents

    图  12  不同应变率PVA/ECC试件冲击韧度ST对比

    Figure  12.  Impact toughness ST comparisons of PVA/ECC specimens at different strain rates

    表  1  聚乙烯醇(PVA)纤维性能

    Table  1.   Properties of polyvinyl alcohol (PVA) fiber

    Diameter
    /μm
    Length
    /mm
    Elasticity modulus
    /GPa
    Ultimate strain
    /%
    Tensile strength
    /MPa
    Density
    /(g·cm−3)
    391242.87.016201.2
    下载: 导出CSV

    表  2  PVA/ECC试件拉伸试验结果

    Table  2.   PVA/ECC specimen tensile test results

    Fiber volume fraction/vol%Ultimate tensile strain εtu/%Tensile strength ftu/MPa
    0.50.423.01
    1.01.643.64
    1.52.814.16
    2.03.214.44
    下载: 导出CSV

    表  3  PVA/ECC试件动态压缩试验结果

    Table  3.   Test results of PVA/ECC specimens under dynamic compression

    SpecimenMeasured strain rate/s−1fcu/MPafc/MPafcd/MPaεP/10−6ST/(MJ·m−3)
    0.5vol%PVA/ECC-25-70 74 43.47 35.30 52.9 6656 0.912
    0.5vol%PVA/ECC -25-90 93 59.8 8200 1.132
    0.5vol%PVA/ECC -25-110 110 70.9 8930 1.334
    1.0vol%PVA/ECC -25-70 75 44.84 36.89 60.9 7420 1.097
    1.0vol%PVA/ECC -25-90 96 69.1 8760 1.449
    1.0vol%PVA/ECC -25-110 115 79.9 10630 1.885
    1.5vol%PVA/ECC -25-70 71 45.80 37.56 68.0 10540 1.450
    1.5vol%PVA/ECC -25-90 92 78.4 11020 1.703
    1.5vol%PVA/ECC -25-110 111 87.8 12190 2.301
    2.0vol%PVA/ECC -25-70 72 46.20 38.84 74.8 11240 1.738
    2.0vol%PVA/ECC -25-90 93 85.1 13650 2.156
    2.0vol%PVA/ECC -25-110 112 95.7 14760 2.520
    0.5vol%PVA/ECC -150-70 72 45.40 37.20 55.9 6670 0.945
    0.5vol%PVA/ECC -150-90 91 63.0 8360 1.182
    0.5vol%PVA/ECC -150-110 112 74.9 9030 1.412
    1.0vol%PVA/ECC -150-70 73 47.00 39.50 64.9 7550 1.153
    1.0vol%PVA/ECC -150-90 89 74.0 8840 1.452
    1.0vol%PVA/ECC -150-110 111 82.9 10750 1.877
    1.5vol%PVA/ECC -150-70 72 50.10 40.60 71.8 10700 1.456
    1.5vol%PVA/ECC -150-90 94 81.4 11160 1.733
    1.5vol%PVA/ECC -150-110 113 90.9 12300 2.237
    2.0vol%PVA/ECC -150-70 71 51.20 41.70 76.8 11450 1.732
    2.0vol%PVA/ECC -150-90 91 89.1 13820 2.131
    2.0vol%PVA/ECC -150-110 112 97.0 15100 2.505
    0.5vol%PVA/ECC -250-70 73 38.20 31.50 44.8 6920 0.697
    0.5vol%PVA/ECC -250-90 95 51.4 8430 0.925
    0.5vol%PVA/ECC -250-110 112 58.0 9060 1.093
    1.0vol%PVA/ECC -250-70 72 36.80 29.60 42.9 7540 0.777
    1.0vol%PVA/ECC -250-90 95 47.1 8930 1.003
    1.0vol%PVA/ECC -250-110 111 55.9 11240 1.271
    1.5vol%PVA/ECC -250-70 72 35.70 28.50 40.9 10800 0.858
    1.5vol%PVA/ECC -250-90 93 43.8 11250 1.016
    1.5vol%PVA/ECC -250-110 115 53.1 12350 1.301
    2.0vol%PVA/ECC -250-70 73 34.10 27.20 38.5 11460 0.914
    2.0vol%PVA/ECC -250-90 91 41.4 14060 1.073
    2.0vol%PVA/ECC -250-110 113 50.0 15160 1.328
    0.5vol%PVA/ECC -350-70 74 34.60 28.30 38.1 7060 0.593
    0.5vol%PVA/ECC -350-90 91 43.9 9140 0.798
    0.5vol%PVA/ECC -350-110 112 52.1 9340 0.981
    1.0vol%PVA/ECC -350-70 71 32.80 26.90 35.0 7900 0.677
    1.0vol%PVA/ECC -350-90 92 39.9 9140 0.889
    1.0vol%PVA/ECC -350-110 113 47.8 11260 1.034
    1.5vol%PVA/ECC -350-70 72 31.20 25.20 33.3 11350 0.697
    1.5vol%PVA/ECC -350-90 91 36.9 11560 0.899
    1.5vol%PVA/ECC -350-110 115 44.8 12890 1.037
    2.0vol%PVA/ECC -350-70 74 28.30 23.10 29.8 11950 0.737
    2.0vol%PVA/ECC -350-90 95 33.1 14130 0.915
    2.0vol%PVA/ECC -350-110 115 40.0 15480 1.068
    Notes: 0.5vol%PVA/ECC-25-70 represents that the fiber content by volume of PVA/ECC specimen is 0.5vol%, the temperature is 25℃, and the design strain rate is 70 s−1; fcu—Cubic compressive strength of PVA/ECC; fc—Axial compressive strength of PVA/ECC; fcd—Dynamic peak stress of PVA/ECC; εP—Dynamic peak strain of PVA/ECC; ST— Impact toughness of PVA/ECC.
    下载: 导出CSV
  • [1] 赵昕, 徐世烺, 李庆华. 高温后超高韧性水泥基复合材料冲击破碎分形特征分析[J]. 土木工程学报, 2019, 52(2):44-55.

    ZHAO Xin, XU Shilang, LI Qinghua. Fractal characteristics of fire-damaged ultra high toughness cementitious composite after impact loading[J]. China Civil Engineering Journal,2019,52(2):44-55(in Chinese).
    [2] 贾彬, 陶俊林, 李正良, 等. 高温混凝土动态力学性能的SHPB试验研究[J]. 兵工学报, 2009, 30(S2):208-212.

    JIA Bin, TAO Junlin, LI Zhengliang, et al. SHPB test for dynamic mechanical performances of concrete at high temperatures[J]. Acta Armamentarii,2009,30(S2):208-212(in Chinese).
    [3] 任韦波, 许金余, 刘远飞, 等. 高温后玄武岩纤维混凝土冲击破碎分形特征[J]. 振动与冲击, 2014, 33(10):167-171, 188.

    REN Weibo, XU Jinyu, LIU Yuanfei, et al. Fractal characteristics of fragments of basalt fiber reinforced concrete after elevated temperatures under impact loading[J]. Journal of Vibration and Shock,2014,33(10):167-171, 188(in Chinese).
    [4] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization[J]. International Journal of Impact Engineering,2011,25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3
    [5] THOMAS R J, SORENSEN A D. Review of strain rate effects for UHPC in tension[J]. Construction and Building Materials,2017,153:846-856. doi: 10.1016/j.conbuildmat.2017.07.168
    [6] ZHAI C, CHEN L, FANG Q, et al. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature[J]. Materials and Structures,2017,50(1):40. doi: 10.1617/s11527-016-0879-4
    [7] 胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-118. doi: 10.3969/j.issn.1000-4750.2001.05.015

    HU Shisheng, WANG Daorong, LIU Jianfei. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics,2001,18(5):115-118(in Chinese). doi: 10.3969/j.issn.1000-4750.2001.05.015
    [8] 李志武, 许金余, 白二雷, 等. 高温后混凝土SHPB试验研究[J]. 振动与冲击, 2012, 31(8):143-147. doi: 10.3969/j.issn.1000-3835.2012.08.028

    LI Zhiwu, XU Jinyu, BAI Erlei, et al. SHPB test for post-high-temperature concrete[J]. Journal of Vibration and Shock,2012,31(8):143-147(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.08.028
    [9] LI L, ZHANG R, JIN L, et al. Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures[J]. Construction and Building Materials,2019,210:673-684. doi: 10.1016/j.conbuildmat.2019.03.138
    [10] YANG Y K, WU C Q, LIU Z X, et al. Experimental investigation on the dynamic behaviors of UHPFRC after exposure to high temperature[J]. Construction and Building Materials,2019,227:116679. doi: 10.1016/j.conbuildmat.2019.116679
    [11] 杨少伟, 巴恒静. 钢纤维混凝土高温后SHPB试验研究[J]. 中国矿业大学学报, 2009, 38(4):562-565. doi: 10.3321/j.issn:1000-1964.2009.04.020

    YANG Shaowei, BA Hengjing. Split Hopkinson Bar measurements of steel fiber reinforced concrete exposed to high temperature[J]. Journal of China University of Mining & Technology,2009,38(4):562-565(in Chinese). doi: 10.3321/j.issn:1000-1964.2009.04.020
    [12] CHEN Z T, YANG Y Z, YAO Y. Impact properties of engineered cementitious composites with high volume fly ash using SHPB test[J]. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(3):590-596. doi: 10.1007/s11595-012-0511-6
    [13] KAI M F, XIAO Y, SHUAI X L, et al. Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering,2017,29(4):541-548.
    [14] 李艳, 张文彬, 刘泽军. PVA/ECC动态压缩性能研究[J]. 建筑材料学报, 2020, 23(3):513-520.

    LI Yan, ZHANG Wenbin, LIU Zejun. Study on dynamic compressive properties of PVA/ECC[J]. Journal of Building Materials,2020,23(3):513-520(in Chinese).
    [15] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9):50-59.

    XU Shilang, CHEN Chao, LI Qinghua, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites[J]. Engineering Mechanics,2019,36(9):50-59(in Chinese).
    [16] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(S2):23-67.

    LI Qinghua, XU Shilang. Performance and application of ultra-high toughness cementitious composite: A review[J]. Engineering Mechanics,2009,26(S2):23-67(in Chinese).
    [17] 丁一, 陈小兵, 李荣. ECC材料的研究进展与应用[J]. 建筑结构, 2007, 37(S1):378-382.

    DING Yi, CHEN Xiaobing, LI Rong. The research and application of engineered cementitious composites[J]. Building Structure,2007,37(S1):378-382(in Chinese).
    [18] 陈杨, 章红梅. 高延性纤维增强水泥基复合材料在建筑结构中的应用现状[J]. 结构工程师, 2017, 33(3):208-221. doi: 10.3969/j.issn.1005-0159.2017.03.028

    CHEN Yang, ZHANG Hongmei. State of the application of engineered cementitious composites in structure[J]. Structural Engineers,2017,33(3):208-221(in Chinese). doi: 10.3969/j.issn.1005-0159.2017.03.028
    [19] 王万鹏, 胡永乐, 林俊德, 等. 高应变率下混凝土准一维大变形压缩实验研究[J]. 兵工学报, 2010, 31(S1):246-250.

    WANG Wanpeng, HU Yongle, LIN Junde, et al. Experimental study on concrete under quasi-one-dimension large deformation compression in high strain rate[J]. Acta Armamentarii,2010,31(S1):246-250(in Chinese).
    [20] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 8.

    WANG Lili. Foundation of stress waves [M]. 2nd edition. Beijing: National Defense Industry Press, 2005: 8(in Chinese).
    [21] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42(1):93-106. doi: 10.1007/BF02411056
    [22] 商兴艳, 陆洲导. 冷却方式对高温后ECC力学性能的影响[J]. 湖南大学学报(自然科学版), 2015, 42(7):81-86.

    SHANG Xingyan, LU Zhoudao. Influence of cooling regimes on the mechanical properties of ECC after high temperatures[J]. Journal of Hunan University (Natural Sciences),2015,42(7):81-86(in Chinese).
    [23] 田砾, 史建丽, 赵铁军, 等. 应变硬化水泥基复合材料高温后弯曲韧性研究[J]. 硅酸盐通报, 2015, 34(4):1011-1014.

    TIAN Li, SHI Jianli, ZHAO Tiejun, et al. Research on flexural toughness of strain hardening cementitious composites (SHCC) after high temperature[J]. Bulletin of the Chinese Ceramic Society,2015,34(4):1011-1014(in Chinese).
    [24] 赖建中, 徐升, 杨春梅, 等. 聚乙烯醇纤维对超高性能混凝土高温性能的影响[J]. 南京理工大学学报, 2013, 37(4):633-639.

    LAI Jianzhong, XU Sheng, YANG Chunmei, et al. Influence of polyvinyl alcohol fibers on properties of ultra-high performance concrete at high temperature[J]. Journal of Nanjing University of Science and Technology,2013,37(4):633-639(in Chinese).
    [25] 孙超杰. 极端温度下高韧性混凝土及其组合结构性能研究[D]. 杭州: 浙江大学, 2020.

    SUN Chaojie. Research on performance of ultra-high toughness cementitious composite and composite structures under extreme temperatures[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
    [26] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究[D]. 杭州: 浙江大学, 2018.

    ZHAO Xin. Experimental and theoretical study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [27] 彭宇, 赵昕, 徐世烺, 等. 高温后超高韧性水泥基复合材料的微观结构特征研究[J]. 电子显微学报, 2019, 38(3):236-244. doi: 10.3969/j.issn.1000-6281.2019.03.005

    PENG Yu, ZHAO Xin, XU Shilang, et al. Microstructure characteristics of ultra-high toughness cementitious composites after exposure to high temperature[J]. Journal of Chinese Electron Microscopy Society,2019,38(3):236-244(in Chinese). doi: 10.3969/j.issn.1000-6281.2019.03.005
    [28] 任韦波, 许金余, 白二雷, 等. 高温后玄武岩纤维增强混凝土的动态力学特性[J]. 爆炸与冲击, 2015, 35(1):36-42. doi: 10.11883/1001-1455(2015)01-0036-07

    REN Weibo, XU Jinyu, BAI Erlei, et al. Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures[J]. Explosion and Shock Waves,2015,35(1):36-42(in Chinese). doi: 10.11883/1001-1455(2015)01-0036-07
    [29] 杜曦, 陈有亮, 王苏然, 等. 喷水冷却对聚丙烯纤维混凝土高温后力学性能的影响[J]. 力学季刊, 2015, 36(1):148-155.

    DU Xi, CHEN Youliang, WANG Suran, et al. Effect of water spraying on post-high-temperature mechanical properties of polypropylene fiber concrete[J]. Chinese Quarterly of Mechanics,2015,36(1):148-155(in Chinese).
    [30] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [31] COTSOVOS D M, PAVLOVIĆ M N. Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates[J]. Computers and Structures,2008,86(1-2):145-163. doi: 10.1016/j.compstruc.2007.05.014
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  475
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-02-25
  • 录用日期:  2022-03-09
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回