Effect of porosity of ceramic-coats and interface on lifetime and failure mechanism of thermal barrier coating
-
摘要: 以NiCoCrAlY作为粘结层、8wt%Y2O3稳定的ZrO2(8YSZ)为陶瓷层,利用等离子喷涂(PS)技术制备2种在陶瓷层及陶瓷层/粘结层界面处具有不同孔隙率的热障涂层(TBCs),研究TBCs的热循环寿命差异,分析不同孔隙率TBCs的失效机制。结合有限元模拟计算了TBCs应力分布,分析了高孔隙率TBCs中重复平行裂纹形成的原因及2种TBCs剥落的失效模式。利用光学显微镜(OM)、SEM和EDX分析TBCs的断面微观结构及元素分布。结果显示:高孔隙率TBCs比致密TBCs的寿命增加了1倍。高孔隙率TBCs在陶瓷层及界面处存在更多的孔隙和微裂纹,释放了TBCs中积累的应变能,同时氧化铝层中出现的重复平行裂纹能进一步减小了陶瓷层与粘结层之间的应力,进而延长了高孔隙率TBCs的寿命。为制备长寿命TBCs奠定结构设计基础。Abstract: Two kinds of thermal barrier coatings(TBCs) with different porosities at ceramic-coat and ceramic-coat/bond-coat interface by plasma spraying (PS) technology with NiCoCrAlY as bond-coat and 8wt% Y2O3 stabilized ZrO2 (8YSZ) as ceramic-coat. The difference of thermal cyclic lifetime of TBCs were studied, and the failure mechanism of TBCs with different porosities was analyzed. The distribution of stress in TBCs was calculated with finite element simulation, and the formation reason of the repeated parallel cracks in the porous TBCs and the failure mode of the two TBCs peeling were also analyzed. The cross-section microstructures and element distribution of TBCs were analyzed by using optical microscope(OM), SEM and EDX. The results show that the porous TBCs have a double longer lifetime than the dense TBCs. For the porous TBCs, as a consequence of the more pores and micro-cracks in ceramic-coats and interface to release the accumulated strain energy within the TBCs. At this time, the repeated parallel cracks in alumina layer further decrease the stress between ceramic-coats and bond-coats, which can prolong the lifetime of porous TBCs. Foundation for the structure design of the longer lifetime TBCs was laid.
-
Keywords:
- porosity /
- thermal barrier coating /
- parallel cracks /
- thermal cyclic lifetime /
- stress calculation /
- failure mode
-
-
期刊类型引用(11)
1. 刘延宽,王源生,王璐璐. 有限元方法在热障涂层研究领域中的发展与应用. 航空动力学报. 2024(10): 157-169 . 百度学术
2. 赵安安,张鸿帅,燕国强,郭跃文. 铝合金化铣保护胶激光刻型热应力耦合分析. 激光技术. 2023(03): 419-424 . 百度学术
3. 郭维华,陈艺文,赖雨秋,裴玉冰,李定骏,巩秀芳. 两种用于热障涂层孔隙率的定量检测方法. 东方汽轮机. 2023(02): 28-34 . 百度学术
4. 陈智勇,徐颖强,肖立,李妙玲,李彬,高铭远. C/C-SiC复合材料致密度影响因素. 航空材料学报. 2021(01): 67-73 . 百度学术
5. 解志欣,孙文磊. 激光熔覆技术制备梯度涂层的研究现状. 热加工工艺. 2021(24): 7-12+16 . 百度学术
6. 叶东东,王卫泽,周海婷,方焕杰,黄继波,龚汉红,李振. 基于太赫兹技术的热障涂层平行裂纹监测研究. 表面技术. 2020(05): 91-97 . 百度学术
7. 晋小超,侯成,吉新阔,陈垚,范学领. 热障涂层系统损伤与断裂研究进展. 中国材料进展. 2020(11): 897-910 . 百度学术
8. 贾涵,高培虎,郭永春,杨忠,王建东,李全平. 热喷涂热障涂层孔隙与涂层性能关系研究进展. 表面技术. 2018(06): 151-160 . 百度学术
9. 刘冬冬,唐达培. 有限元分析热障涂层孔隙对其热力行为的影响. 重庆理工大学学报(自然科学). 2018(03): 135-141 . 百度学术
10. 刘飞,刘敏,毛杰,邓子谦,马景涛,邓畅光,曾德长. H_2对等离子喷涂-物理气相沉积热障涂层的结构和抗冲刷性能的影响. 材料研究学报. 2018(09): 641-646 . 百度学术
11. 张巍. 氧化锆基陶瓷热障涂层的研究进展. 航空工程进展. 2018(04): 464-482 . 百度学术
其他类型引用(9)
-
计量
- 文章访问数: 1253
- HTML全文浏览量: 87
- PDF下载量: 333
- 被引次数: 20