留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质纤维素基日间辐射制冷材料的研究进展

蔡晨阳 丁春香 武小丹 陈溢

蔡晨阳, 丁春香, 武小丹, 等. 生物质纤维素基日间辐射制冷材料的研究进展[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 蔡晨阳, 丁春香, 武小丹, 等. 生物质纤维素基日间辐射制冷材料的研究进展[J]. 复合材料学报, 2024, 42(0): 1-12.
CAI Chenyang, DING Chunxiang, WU Xiaodan, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica.
Citation: CAI Chenyang, DING Chunxiang, WU Xiaodan, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica.

生物质纤维素基日间辐射制冷材料的研究进展

基金项目: 江苏省自然科学基金青年项目(BK20230404);南京林业大学高层次人才启动基金
详细信息
    通讯作者:

    蔡晨阳,博士,副教授,硕士生导师,研究方向为生物质辐射制冷材料。E-mail: ccy@njfu.edu.cn

  • 中图分类号: TQ323.8;TB332

Research progress of biomass cellulose based daytime radiative cooling materials

Funds: Natural Science Foundation of Jiangsu Province (BK20230404); Start-up Funds for Scientific Research at the Nanjing Forestry University
  • 摘要: 辐射制冷是一种通过红外辐射来实现降温的零能耗的被动降温技术,对缓解全球气候变暖和能源消耗具有重要意义。目前现有的日间辐射制冷材料主要为光子晶体、光学超材料、无机涂层等石油基材料,其价格昂贵、生产工艺复杂且不可再生,而纤维素作为一种可再生可降解的生物质,其具有高红外发射率、绿色可再生以及易加工等特性,在日间辐射制冷领域表现出巨大的应用前景。基于此,本文从辐射制冷的基本原理出发,介绍了日间辐射制冷的物理光学机制,综述了近几年薄膜类、织物类、气凝胶类、结构块材类等不同结构形态纤维素辐射制冷材料的研究进展,从微纳米尺度上阐释了纤维素不同尺寸结构对日间辐射制冷性能的影响机制,并展望了纤维素基辐射制冷材料在高功率、动态及智能化生物质辐射制冷材料领域的应用优势和前景。

     

  • 图  1  日间辐射制冷的物理学机制. (a) 日间辐射制冷中的辐射换热过程;(b) 日间辐射制冷的热平衡状态

    Figure  1.  Physical mechanism of daytime radiative cooling. (a) Radiative heat-exchange process of daytime radiative cooling; (b) Thermal balance of daytime radiative cooling

    图  2  纤维素的结构与性质. (a) 纤维素的多层次结构(红色箭头代表化学结构诱导的高红外发射)[15];(b) 纳米纤维素的电镜图和本征优势[16, 17]

    Figure  2.  Structure and property of cellulose. (a) Hierarchical structure of cellulose (arrow represents high infrared emissivity attributed to the chemical structure of cellulose[15]; (b) SEM images and advantages of nanocellulose[16, 17].

    图  3  纳米纤维素辐射制冷透光薄膜的制备及性能[18, 20, 21]. (a) 纳米纤维素/SiO2辐射制冷薄膜;(b) 具有结构色的纳米纤维素辐射制冷薄膜的制备及实物图;(c) 具有结构色的纳米纤维素/乙基纤维素二元结构辐射制冷材料的光学散射机制和偏光显微镜图

    Figure  3.  Preparation and performance of cellulose based aerogel cooler[18, 20, 21]. (a) Nanocellulose/SiO2 based transparent radiative cooler; (b) Preparation and optical image of CNC radiative cooler with structural color; (c) Optical scattering mechanism and POM images of CNC/EC radiative cooling materials

    图  4  具有孔结构纤维素基辐射制冷膜的制备及性能[25, 32, 33]. (a) 多孔纤维素辐射制冷膜的散射/辐射机制及微观形貌图;(b) 采用离子液体制备多孔纤维素辐射制冷薄膜及其热管理性能;(c) 纤维素/AlPO4多孔辐射制冷膜的实物图以及日间辐射制冷效果

    Figure  4.  Preparation and performance of porous cellulose based cooler[25, 32, 33]. (a) The scattering, radiation mechanism and microstructure of porous cellulose radiative cooling film; (b) The thermal regulation performance of porous cellulose cooling film by using ionic liquid; (c) The optical images of cellulose/AlPO4 porous radiative cooling film and its daytime radiative cooling performance

    图  5  纤维素辐射制冷织物的制备及性能[36, 39, 40]. (a) 纤维素织物的辐射制冷机制和微观结构;(b) 纤维素/MgO复合织物的辐射制冷示意图和柔性演示图;(c) 静电纺丝制备纤维素织物和其微观结构

    Figure  5.  Preparation and performance of cellulose based fabric cooler[36, 39, 40]. (a) The radiative cooling mechanism and microstructure of cellulose fabric; (b) The radiative cooling mechanism and flexibility of cellulose/MgO fabric; (c) Preparation of cellulose fabric via electrospinning and its microstructure

    图  6  纤维素基辐射制冷气凝胶的制备及性能[43, 44]. (a) 纳米纤维素辐射制冷气凝胶;(b) 仿生表面超结构的纳米纤维素辐射制冷气凝胶的光学散射机制;(c) 具有自清洁功能的纳米纤维素辐射制冷气凝胶在微米尺度、纳米尺度和分子尺度的太阳光反射/辐射机制.

    Figure  6.  Preparation and performance of cellulose based aerogel cooler[43, 44]. (a) Nanocellulose based aerogel cooler; (b) Optical scattering mechanism of bioinspired nanocellulose aerogel cooler with metasurface; (c) Solar reflectivity and infrared emissivity mechanism of nanocellulose aerogel cooler at micro/nano/molecular level

    图  7  纤维素基辐射制冷结构材料的制备及性能[50-52, 54]. (a) 辐射制冷木材;(b) 纤维素/SiO2复合辐射制冷结构材料的制备过程;(c) 辐射制冷木材的户外红外相机图;(d) 纤维素基辐射制冷窗户的热管理机制

    Figure  7.  Preparation and performance of cellulose based structural cooler[50-52, 54]. (a) Radiative cooling wood; (b) Preparation of cellulose/SiO2 based structural cooler; (c) IR image of radiative cooling outdoor; (d) Heat regulation mechanism of cellulose based radiative cooling window

  • [1] WU X K, LI J L, XIE F, et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance[J]. Nat Commun, 2024, 15(1): 815. doi: 10.1038/s41467-024-45095-4
    [2] XIONG L H, WEI Y, CHEN C L, et al. Thin lamellar films with enhanced mechanical properties for durable radiative cooling[J]. Nature Communications, 2023, 14(1): 6129. doi: 10.1038/s41467-023-41797-3
    [3] FAN S H, LI W. Photonics and thermodynamics concepts in radiative cooling[J]. Nature Photonics, 2022, 16(3): 182-190. doi: 10.1038/s41566-021-00921-9
    [4] ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287. doi: 10.1073/pnas.1509453112
    [5] ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696. doi: 10.1126/science.abi5484
    [6] ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. doi: 10.1126/science.aai7899
    [7] ZHAO X P, LI T Y, XIE H, et al. A solution-processed radiative cooling glass[J]. Science, 2023, 382(6671): 684-691. doi: 10.1126/science.adi2224
    [8] LIN K X, CHEN S R, ZENG Y J, et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity[J]. Science, 2023, 382(6671): 691-697. doi: 10.1126/science.adi4725
    [9] MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. doi: 10.1126/science.aat9513
    [10] CAI C Y, SUN Y B, CHEN Y, et al. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 421-429. doi: 10.1016/j.jobab.2023.06.004
    [11] ZHANG K, MO C Q, TANG X L, et al. Hierarchically Porous Cellulose-Based Radiative Cooler for Zero-Energy Food Preservation[J]. ACS Sustain Chem Eng, 2023, 11(20): 7745-7754. doi: 10.1021/acssuschemeng.3c00170
    [12] ZHAO D L, AILI A, ZHAI Y, et al. Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling[J]. Joule, 2019, 3(1): 111-123. doi: 10.1016/j.joule.2018.10.006
    [13] WANG Q Q, ZHOU R, SUN J Z, et al. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures[J]. ACS Nano, 2022, 16(9): 13468-13491. doi: 10.1021/acsnano.2c04883
    [14] GENG A B, HAN Y M, CAO J Y, et al. Strong double networked hybrid cellulosic foam for passive cooling[J]. International Journal of Biological Macromolecules, 2024, 264: 130676. doi: 10.1016/j.ijbiomac.2024.130676
    [15] YE Y H, YU L, LIZUNDIA E, et al. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices[J]. Chemical Reviews, 2023, 123(15): 9204-9264. doi: 10.1021/acs.chemrev.2c00618
    [16] CAI C Y, WEI Z C, DENG L X, et al. Temperature-Invariant Superelastic Multifunctional MXene Aerogels for High-Performance Photoresponsive Supercapacitors and Wearable Strain Sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54170-54184.
    [17] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose[J]. Biomacromolecules, 2007, 8(8): 2485-2491. doi: 10.1021/bm0703970
    [18] SHANKER R, RAVI ANUSUYADEVI P, GAMAGE S, et al. Structurally Colored Cellulose Nanocrystal Films as Transreflective Radiative Coolers[J]. ACS Nano, 2022, 16(7): 10156-10162. doi: 10.1021/acsnano.1c10959
    [19] GAMAGE S, KANG E S H, ÅAKERLIND C, et al. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling[J]. Journal of Materials Chemistry C, 2020, 8(34): 11687-11694. doi: 10.1039/D0TC01226B
    [20] ZHU W K, DROGUET B, SHEN Q C, et al. Structurally Colored Radiative Cooling Cellulosic Films[J]. Advanced Science, 2022, 9(26): 2202061. doi: 10.1002/advs.202202061
    [21] GAMAGE S, KANG E S H, ÅKERLIND C, et al. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling[J]. Journal of Materials Chemistry C, 2020, 8(34): 11687-11694. doi: 10.1039/D0TC01226B
    [22] ZHU W K, ZHANG Y, MOHAMMAD N, et al. Large-scale industry-compatible sub-ambient radiative cooling pulp[J]. Cell Reports Physical Science, 2022, 3(11): 101125. doi: 10.1016/j.xcrp.2022.101125
    [23] TIAN Y P, SHAO H, LIU X J, et al. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22521-22530.
    [24] SUN H D, CHEN Y W, ZENG W C, et al. Solution-processable, robust and sustainable cooler via nano-structured engineering[J]. Carbohydrate Polymers, 2023, 314: 120948. doi: 10.1016/j.carbpol.2023.120948
    [25] JARAMILLO-FERNANDEZ J, YANG H, SCHERTEL L, et al. Highly-Scattering Cellulose-Based Films for Radiative Cooling[J]. Advanced Science, 2022, 9: 2104758. doi: 10.1002/advs.202104758
    [26] CAI C Y, CHEN F L, WEI Z C, et al. Large scalable, anti-ultraviolet, strong cellulose film with well-defined dual-pores for longtime daytime radiative cooling[J]. Chemical Engineering Journal, 2023, 476: 146668. doi: 10.1016/j.cej.2023.146668
    [27] XIANG B, ZHANG R, LUO Y C, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. doi: 10.1016/j.nanoen.2020.105600
    [28] CHEN X, HE M, FENG S J, et al. Cellulose-based porous polymer film with auto-deposited TiO2 as spectrally selective materials for passive daytime radiative cooling[J]. Optical Materials, 2021, 120: 111431. doi: 10.1016/j.optmat.2021.111431
    [29] FENG S J, ZHOU Y M, LIU C H, et al. Skeleton-inspired optical-selective cellulose-based bio-film as passive radiative cooler and the energy-saving performance evaluation[J]. Chemical Engineering Journal, 2023, 452: 139377. doi: 10.1016/j.cej.2022.139377
    [30] LIU C H, FENG S J, HE M, et al. 3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling[J]. Materials Today Communications, 2022, 31: 103530. doi: 10.1016/j.mtcomm.2022.103530
    [31] SUN H D, TANG F J, CHEN Q F, et al. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort[J]. Chemical Engineering Journal, 2023, 455: 139786. doi: 10.1016/j.cej.2022.139786
    [32] FENG S J, ZHOU Y M, CHEN X, et al. Bio-skin inspired 3D porous cellulose/AlPO4 nano-laminated film with structure-enhanced selective emission for all-day non-power cooling[J]. Journal of Materials Chemistry A, 2021, 9(44): 25178-25188. doi: 10.1039/D1TA07576D
    [33] SUN H D, TANG F J, BI Y H, et al. Hierarchically Porous Cellulose Membrane via Self-Assembly Engineering for Ultra High-Power Thermoelectrical Generation in Natural Convection[J]. Advanced Functional Materials, 2023, 33(52): 2307960. doi: 10.1002/adfm.202307960
    [34] ZHONG H M, LI Y N, ZHANG P, et al. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings[J]. ACS Nano, 2021, 15(6): 10076-10083. doi: 10.1021/acsnano.1c01814
    [35] DINUWAN GUNAWARDHANA K R S, SIMORANGKIR R B V B, MCGUINNESS G B, et al. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems[J]. ACS Nano, 2024, 18(4): 2649-2684. doi: 10.1021/acsnano.3c09077
    [36] ZHANG Y, ZHU W K, ZHANG C, et al. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric[J]. Nano Letters, 2022, 22(7): 2618-2626. doi: 10.1021/acs.nanolett.1c04143
    [37] LI J L, LIANG Y, LI W, et al. Protecting ice from melting under sunlight via radiative cooling[J]. Science Advances, 2022, 8(6): eabj9756. doi: 10.1126/sciadv.abj9756
    [38] LI J G, TANG F J, BI Y H, et al. Engineering biomimetic cellulose fabric for sustainably and durably cooling human body[J]. Nano Energy, 2023, 117: 108921. doi: 10.1016/j.nanoen.2023.108921
    [39] GAMAGE S, BANERJEE D, ALAM M M, et al. Reflective and transparent cellulose-based passive radiative coolers[J]. Cellulose, 2021, 28(14): 9383-9393. doi: 10.1007/s10570-021-04112-1
    [40] DU L L, ZHOU Z G, LI J J, et al. Highly efficient subambient all-day passive radiative cooling textiles with optically responsive MgO embedded in porous cellulose acetate polymer[J]. Chemical Engineering Journal, 2023, 469: 143765. doi: 10.1016/j.cej.2023.143765
    [41] YANG W Q, XIAO P, LI S, et al. Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation[J]. Small, 2023, 19(30): 2302509. doi: 10.1002/smll.202302509
    [42] LIU X H, ZHANG M T, HOU Y Z, et al. Hierarchically Superhydrophobic Stereo-Complex Poly (Lactic Acid) Aerogel for Daytime Radiative Cooling[J]. Advanced Functional Materials, 2022, 32(46): 2207414. doi: 10.1002/adfm.202207414
    [43] CAI C Y, WEI Z C, DING C X, et al. Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building[J]. Nano Lett, 2022, 22(10): 4106-4114. doi: 10.1021/acs.nanolett.2c00844
    [44] CAI C Y, CHEN W B, WEI Z C, et al. Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings[J]. Nano Energy, 2023, 114: 108625. doi: 10.1016/j.nanoen.2023.108625
    [45] WANG Q, ZHONG S L, ZHENG Z H, et al. Bacterial cellulose based three-dimensional porous composites with remarkable amphiphobic monolith properties for passive daytime radiative cooling[J]. Materials Letters, 2023, 352: 135220. doi: 10.1016/j.matlet.2023.135220
    [46] CAI C Y, CHEN Y, DING C X, et al. Eliminating trade-offs between optical scattering and mechanical durability in aerogels as outdoor passive cooling metamaterials[J]. Materials Horizons, 2024, 11: 1502-1514 doi: 10.1039/D3MH01802D
    [47] ZHONG S J, YUAN S X, ZHANG X, et al. Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling[J]. ACS Appl Mater Inter, 2023, 15(33): 39807-39817. doi: 10.1021/acsami.3c06178
    [48] SHE Y N, WANG J, ZHU C F, et al. From nature back to nature: Spectrally modified poplar and its all-day passive radiative cooling[J]. Industrial Crops and Products, 2023, 193: 116242. doi: 10.1016/j.indcrop.2023.116242
    [49] HU X, ZHANG Y B, ZHANG J, et al. Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications[J]. Renewable Energy, 2022, 193: 398-406. doi: 10.1016/j.renene.2022.05.008
    [50] LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. doi: 10.1126/science.aau9101
    [51] CHEN Y P, DANG B K, FU J Z, et al. Cellulose-Based Hybrid Structural Material for Radiative Cooling[J]. Nano Letters, 2021, 21(1): 397-404. doi: 10.1021/acs.nanolett.0c03738
    [52] LI G W, HUANG J W, ZHOU J, et al. A flame-retardant wood-based composite with magnesium–aluminium layered double hydroxides for efficient daytime radiative cooling[J]. Journal of Materials Chemistry A, 2024, 12(3): 1609-1616. doi: 10.1039/D3TA06065A
    [53] PIAO X X, CAO Y W, GUO H X, et al. Multifunctional Bamboo Fiber Hybrid Structural Materials for Daytime Radiation Cooling[J]. ACS Sustain Chem Eng, 2022, 10(48): 15692-15698. doi: 10.1021/acssuschemeng.2c03801
    [54] SUN H, HOU C Y, JI T, et al. Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building[J]. Composites Part B: Engineering, 2023, 250: 110426. doi: 10.1016/j.compositesb.2022.110426
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-04-19
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-05-28

目录

    /

    返回文章
    返回