Structure design and application of fabric-based wearable piezoresistive sensor
-
摘要: 柔性压阻式传感器作为一种新型的压力传感设备,因灵敏度高、易变形、重量轻、保形能力强,受到了广泛关注。然而柔性压阻式传感器多采用聚合物材料作为衬底,存在制造成本高、透气性和舒适度差等缺点,阻碍了其在可穿戴领域的发展。与之相比,纺织材料具有轻质、高弹的优良特性,搭配上灵活的编织方式和独特的多孔结构,使其具备良好的柔性、亲肤性和透气性,纱线之间的交织方式和粗糙的纤维表面组成的多级结构也可以极大地提升传感器的灵敏度,因此织物是新型柔性衬底的理想候选者。本文从纤维/纱线(1D)压阻式传感器和织物(3D)压阻式传感器两个角度出发,系统整理了织物基压阻式传感器衬底的设计工艺,讨论了织物基压阻式传感器的制造方法,阐述了织物基压阻式传感器在运动监测、医疗服务及人机交互领域的应用。最后,对本文进行了总结,并谈及了织物基压阻式传感器在未来的优化方向。Abstract: The flexible piezoresistive sensor is a new type of pressure sensing equipment. Because of its high sensitivity, easy deformation, light weight and strong shape-preserving ability, it has been widely concerned. However, flexible piezoresistive sensors often use polymer as substrate, which has some disadvantages such as high manufacturing cost, poor permeability and comfort. So it has hindered its development in the wearable field. In contrast, the textile fabric is light and elastic, with flexible weaving and unique porous structure. The sensor made with it has excellent flexibility, skin-friendly and breathability, and the interweaving of yarns and the multi-stage structure of rough fiber surfaces also greatly enhance the sensitivity of the sensor. Therefore, textile fabrics are ideal candidates for new flexible substrates. In this paper, based on the fiber/yarn (1D) piezoresistive sensor and the fabric (3D) piezoresistive sensor, the design process of textile piezoresistive sensor substrate is systematically finished. Secondly, the manufacturing method of fabric-based piezoresistive sensor is discussed. Then, the applications of textile-based piezoresistive sensors in the fields of motion monitoring, medical service and human-computer interaction are described. At last, the paper summarizes and discusses the optimization direction of textile sensor in the future.
-
Key words:
- fabric /
- piezoresistive sensor /
- structure design /
- wearable /
- application
-
图 3 织物(3D)衬底的设计工艺:(a)全机织间隔片压阻式传感器结构示意图[37];(b)具有夹层结构的压力传感器的制作过程[38];(c)静电纺丝制造压阻式传感器的过程[40]
Figure 3. Design process of fabric (3D) substrate: (a) Schematic diagram of the full woven spacer piezoresistive sensor[37]; (b) The manufacturing process of a pressure sensor having a sandwich structure[38]; (c) The process of making piezoresistive sensors by electrospinning[40]
图 4 涂层法制备织物基压阻式传感器:(a)浸涂法制备应变敏感纤维的过程[41];(b)喷涂法制备AENSY传感纱的过程[42];(c) oCVD制备聚吡咯涂层织物传感器的过程[43]
Figure 4. Fabric-based piezoresistive sensor were prepared by coating method: (a) The process of preparing strain-sensitive fibers by dip coating[41]; (b) The preparation of AENSY sensing yarn by spraying method[42]; (c) The preparation of polypyrrole-coated fabric sensor by oCVD[43];
图 5 掺杂法制备织物基压阻式传感器:(a)静电纺丝溶液的制作过程[50];(b)聚二甲基硅氧烷(PDMS)/多壁碳纳米管(MWCNTs)柔性压力传感器的制作过程[51]
Figure 5. Fabric-based piezoresistive sensor were prepared by doping method: (a) The preparation of electrospinning solutions[50]; (b) Fabrication of Polydimethylsiloxane (PDMS) multi-walled carbon nanotubes (MWCNTs) flexible pressure sensors[51]
图 6 织物基压阻式传感器的相关应用:(a)足底压力分布的热力学图[54];(b)传感器检测行走、下蹲和慢跑图像[55];(c)传感器监测手腕脉搏信号[56];(d)枕形压力传感器监测左卧、仰卧和右卧[57];(e)枕形压力传感器监测呼吸[57];(f)“Allah”和“ Allah o Akbar”的电阻响应区别[58];(g)“Hi”和“Hello”的电阻响应区别[58];(h)人与机械手的远程交互[38]
Figure 6. Application of fabric-based piezoresistive sensors: (a) Thermodynamic diagram of plantar pressure distribution[54]; (b) Sensors detect walking, squatting and jogging images[55]; (c) The sensor monitors the wrist pulse signal; (d) Pillow-shaped pressure sensors monitor left, supine, and right recumbent positions[57]; (e) Pillow-shaped pressure sensors monitor breathing[57]; (f) The difference between the resistance responses of “Allah” and “Allah o Akbar” [58]; (g) Resistance response difference between“Hi” and“Hello”[58]; (h) Remote human-robot interaction[38]
-
[1] LIU E, CAI Z, YE Y, et al. An overview of flexible sensors: development, application, and challenges[J]. Sensors, 2023, 23(2): 817. doi: 10.3390/s23020817 [2] SHARMA A, ANSARI M Z, CHO C. Ultrasensitive flexible wearable pressure/strain sensors: parameters, materials, mechanisms and applications[J]. Sensors and Actuators A: Physical, 2022, 347: 113934. doi: 10.1016/j.sna.2022.113934 [3] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1): 1-22.HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 1-22(in Chinese). [4] SEESAARD T, WONGCHOOSUK C. Flexible and stretchable pressure sensors: from basic principles to state-of-the-art applications[J]. Micromachines, 2023, 14(8): 1638. doi: 10.3390/mi14081638 [5] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 45-67.MEN Haijiao, SONG Jianyao, HUANG Bingjing, et al. Recent advances in flexible and wearable strain sensors[J]. Materials Review, 2023, 37(21): 45-67(in Chinese). [6] WANG M, ZHANG H, WU H, et al. Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range[J]. Bio-Design and Manufacturing, 2022, 6(3): 243-254. [7] BAO Y, XU J C, GUO R Y, et al. High-sensitivity flexible pressure sensor based on micro-nano structure[J]. Progress in Chemistry, 2023, 35(5): 709-720. [8] TIAN G, SHI Y, DENG J, et al. Low-cost, scalable fabrication of all-fabric piezoresistive sensors via binder-free, in-situ welding of carbon nanotubes on bicomponent nonwovens[J]. Advanced Fiber Materials, 2023: 1-13. [9] WANG Y, DUAN S, LIU J, et al. Highly-sensitive expandable microsphere-based flexible pressure sensor for human–machine interaction[J]. Journal of Micromechanics and Microengineering, 2023, 33(11): 115009. doi: 10.1088/1361-6439/acfdb5 [10] XU S, XU Z, LI D, et al. Recent advances in flexible piezoresistive arrays: materials, design, and applications[J]. Polymers, 2023, 15(12): 2699. doi: 10.3390/polym15122699 [11] DAS S, BHATTACHARJEE M, THIYAGARAJAN K, et al. Nonlinear response analysis of a polymer-based piezoresistive flexible tactile sensor at low pressure[J]. Ieee Sensors Letters, 2023, 7(11): 2504204. [12] ZHONG F, HU W, ZHU P, et al. Piezoresistive design for electronic skin: from fundamental to emerging applications[J]. Opto-Electronic Advances, 2022, 5(8): 210029-210029. doi: 10.29026/oea.2022.210029 [13] CHEN B, ZHANG L, LI H, et al. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection[J]. Journal of Colloid and Interface Science, 2022, 617: 478-488. doi: 10.1016/j.jcis.2022.03.013 [14] KONG M, XIANG Z, XU X Y, et al. Transparent and Stretchable Piezoresistive Strain Sensors with Buckled Indium Tin Oxide Film[J]. Advanced Electronic Materials, 2023, 9(8): 2300197. doi: 10.1002/aelm.202300197 [15] SHARMA S, CHHETRY A, MAHARJAN P, et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins[J]. Nano Energy, 2022, 95: 106970. doi: 10.1016/j.nanoen.2022.106970 [16] LONG Z, LIU X, XU J, et al. High-Sensitivity Flexible piezoresistive pressure sensor using PDMS/MWNTS nanocomposite membrane reinforced with isopropanol for pulse detection[J]. Sensors, 2022, 22(13): 4765. doi: 10.3390/s22134765 [17] YU Z, HU G, CHEN J, et al. Resonant printing flexible piezoresistive pressure sensor with spherical microstructures[J]. Smart Materials and Structures, 2023, 32(3): 035020. doi: 10.1088/1361-665X/acb6c9 [18] HE X, WANG F, LIANG Y, et al. Carbonization fabrication of a piezoresistive sensor with improved sensitivity via Ni decoration of carbonized cotton fibers[J]. Science China Technological Sciences, 2022, 65(12): 3000-3009. doi: 10.1007/s11431-022-2190-y [19] SU Y, MA K, LIU M, et al. Compressible, reliable, and flexible pressure sensor based on carbonized melamine foam capped by Ti3C2Tx MXene for versatile applications[J]. Physica Scripta, 2023, 98(3): 035032. [20] 王志伟, 黄继伟, 凌新龙. 纺织基柔性力学传感器的研究进展[J]. 纺织科学与工程学报, 2023, 40(4): 108-114. doi: 10.3969/j.issn.2096-5184.2023.04.019WANG Zhiwei, HUANG Jiwei, LING Xinlong. Research progress of textile-based flexible mechanical sensors[J]. Journal of Textile Science and Engineering, 2023, 40(4): 108-114(in Chinese). doi: 10.3969/j.issn.2096-5184.2023.04.019 [21] WANG R, SHEN Y, QIAN D, et al. Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signal[J]. Materials Horizons, 2020, 7(12): 3305-3315. doi: 10.1039/D0MH01003K [22] TIAN G L, ZHAN L, DENG J X, et al. Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors[J]. Chemical Engineering Journal, 2021, 425: 130682. doi: 10.1016/j.cej.2021.130682 [23] LU Y J, TIAN M W, SUN X T, et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate[J]. Composites Part a-Applied Science and Manufacturing, 2019, 117: 202-210. doi: 10.1016/j.compositesa.2018.11.023 [24] ONGGAR T, KRUPPKE I, CHERIF C. Techniques and processes for the realization of electrically conducting textile materials from intrinsically conducting polymers and their application potential[J]. Polymers, 2020, 12(12): 2867. doi: 10.3390/polym12122867 [25] SHU Q, HU T, XU Z, et al. Non-tensile piezoresistive sensor based on coaxial fiber with magnetoactive shell and conductive flax core[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106548. doi: 10.1016/j.compositesa.2021.106548 [26] WANG M X, WU J J, DONG L, et al. A highly aligned microgrid structure for wearable nanofibrous sensors with an enhanced sensitivity and detection range[J]. Journal of Materials Chemistry C, 2022, 10(34): 12323-12331. doi: 10.1039/D2TC02344J [27] JANG S J, KIM M, LIM J Y, et al. Development of mode-switchable touch sensor using MWCNT composite conductive nonwoven fabric[J]. Polymers, 2022, 14(8): 1545. doi: 10.3390/polym14081545 [28] DONG L, REN M, WANG Y, et al. Self-sensing coaxial muscle fibers with bi-lengthwise actuation[J]. Materials Horizons, 2021, 8(9): 2541-2552. doi: 10.1039/D1MH00743B [29] YAN T, WU Y, YI W, et al. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327: 112755. doi: 10.1016/j.sna.2021.112755 [30] HE Y, WAN C, YANG X, et al. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating[J]. Advanced Materials Technologies, 2023, 8(11): 2202079. doi: 10.1002/admt.202202079 [31] JAMATIA T, MATYAS J, OLEJNIK R, et al. Wearable and stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618. doi: 10.3390/polym15071618 [32] QU X, LI J, HAN Z, et al. Highly sensitive fiber pressure sensors over a wide pressure range enabled by resistive-capacitive hybrid response[J]. ACS Nano, 2023, 17(15): 14904-14915. doi: 10.1021/acsnano.3c03484 [33] RAWAL A, MUKHOPADHYAY S. Advances in filament yarn spinning of textiles and polymers [M]. Amsterdam: Elsevier Itd, 2014: 75-99. [34] BAUTISTA-QUIJANO J R, P TSCHKE P, BR NIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. doi: 10.1016/j.polymer.2015.11.030 [35] OZIPEK B, KARAKAS H. Advances in filament yarn spinning of textiles and polymers [M]. Amsterdam: Elsevier Itd, 2014: 174-186. [36] 徐鹏, 王冠韬, 刘奎, 等. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37. doi: 10.11868/j.issn.1001-4381.2018.000689XU Peng, WANG Guantao, LIU Kui, et al. Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites[J]. Journal of Materials Engineering, 2019, 47(9): 29-37(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000689 [37] JIANG M, HU H, JIN C, et al. Three-directional spacer-knitted piezoresistant strain and pressure sensor for electronic integration and on-body applications[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55009-55021. [38] HOU X, WU H, ZHAO J, et al. A portable somatosensory manipulator system based on graphene ink/paper film piezoresistive sensors for human–computer interaction[J]. IEEE Sensors Journal, 2023, 23(18): 21728-21738. doi: 10.1109/JSEN.2023.3299610 [39] ZHAO Z C, LI B T, XU L Q, et al. A sandwich-structured piezoresistive sensor with electrospun nanofiber mats as supporting, sensing, and packaging layers[J]. Polymers, 2018, 10(6): 575. doi: 10.3390/polym10060575 [40] XUE B, XIE H Y, ZHAO J X, et al. Flexible piezoresistive pressure sensor based on electrospun rough polyurethane nanofibers film for human motion monitoring[J]. Nanomaterials, 2022, 12(4): 723. doi: 10.3390/nano12040723 [41] INNOCENT M T, ZHANG Z, CAO R, et al. Piezoresistive fibers with large working factors for strain sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 15(1): 2277-2288. [42] DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-sensing textiles[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11244-11258. [43] MUKHERJEE A, DIANATDAR A, GŁADYSZ M Z, et al. Electrically conductive and highly stretchable piezoresistive polymer nanocomposites via oxidative chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31899-31916. [44] LAU K K S. Chemical vapor deposition [M]. Philadelphia: Medical Coatings and Deposition Technologies, 2016: 403-455. [45] XU Q, WANG C, HU J, et al. Graphene/SiC-coated textiles with excellent electromagnetic interference shielding, Joule heating, high-temperature resistance, and pressure-sensing performances[J]. Journal of Advanced Ceramics, 2023, 12(4): 778-791. doi: 10.26599/JAC.2023.9220719 [46] LAN L, ZHAO F, YAO Y, et al. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10689-10696. [47] CHOI J, KWON D, KIM K, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1698-1706. [48] LI F C, KONG Z, WU J H, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 100703. doi: 10.7498/aps.70.20210023 [49] 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737.TANG Guiyu, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737(in Chinese). [50] CHENG X, CAO X, WU Z, et al. A flexible conformal piezoresistive sensor based on electrospinning for deformation monitoring of carbon fiber-reinforced polymer[J]. Advanced Engineering Materials, 2023, 25(19): 2300341. doi: 10.1002/adem.202300341 [51] JIANG C S, LV R Y, ZOU Y L, et al. Flexible pressure sensor with wide pressure range based on 3D microporous PDMS/MWCNTs for human motion detection[J]. Microelectronic Engineering, 2024, 283: 112105. doi: 10.1016/j.mee.2023.112105 [52] LIU S L, ZHANG W T, HE J Z, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2023, 23(9): 338. [53] CHEN X, AN J, CAI G, et al. Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex[J]. Polymers, 2019, 11(3): 404. doi: 10.3390/polym11030404 [54] LI X, LIU X, ZENG W, et al. Carbon fiber-based smart plantar pressure mapping insole system for remote gait analysis and motion identification[J]. Advanced Materials Technologies, 2023, 8(16): 2300095. doi: 10.1002/admt.202300095 [55] GAO S, LI H, ZHENG L, et al. Superhydrophobic and conductive polydimethylsiloxane/titanium dioxide@reduced graphene oxide coated cotton fabric for human motion detection[J]. Cellulose, 2021, 28(11): 7373-7388. doi: 10.1007/s10570-021-03951-2 [56] WANG J, ZHANG D, WANG D, et al. Efficient fabrication of TPU/MXene/Tungsten disulfide fibers with ultra-fast response for human respiratory pattern recognition and disease diagnosis via deep learning[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37946-37956. [57] TIAN M, LU Y, QU L, et al. A pillow-shaped 3D hierarchical piezoresistive pressure sensor based on conductive silver components-coated fabric and random fibers assembly[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5737-5742. [58] AHMED S, NAUMAN S, KHAN Z M. Electrospun nanofibrous yarn based piezoresistive flexible strain sensor for human motion detection and speech recognition[J]. Journal of Thermoplastic Composite Materials, 2023, 36(6): 2459-2481. doi: 10.1177/08927057221095853
计量
- 文章访问数: 24
- HTML全文浏览量: 29
- 被引次数: 0