可穿戴织物基压阻式传感器的设计与应用

姚文涛, 杨博凯, 毛宝华, 李春红, 李伟

姚文涛, 杨博凯, 毛宝华, 等. 可穿戴织物基压阻式传感器的设计与应用[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 姚文涛, 杨博凯, 毛宝华, 等. 可穿戴织物基压阻式传感器的设计与应用[J]. 复合材料学报, 2024, 43(0): 1-10.
YAO Wentao, YANG Bokai, MAO Baohua, et al. Structure design and application of fabric-based wearable piezoresistive sensor[J]. Acta Materiae Compositae Sinica.
Citation: YAO Wentao, YANG Bokai, MAO Baohua, et al. Structure design and application of fabric-based wearable piezoresistive sensor[J]. Acta Materiae Compositae Sinica.

可穿戴织物基压阻式传感器的设计与应用

详细信息
    通讯作者:

    李春红,博士研究生,讲师,硕士生导师,研究方向为功能纺织品开发 E-mail: lyf532@163.com

    李伟,博士研究生,讲师,硕士生导师,研究方向为智能可穿戴 E-mail: lweiyuanb@163.com

  • 中图分类号: TP212;TB332

Structure design and application of fabric-based wearable piezoresistive sensor

  • 摘要: 柔性压阻式传感器作为一种新型的压力传感设备,因灵敏度高、易变形、重量轻、保形能力强,受到了广泛关注。然而柔性压阻式传感器多采用聚合物材料作为衬底,存在制造成本高、透气性和舒适度差等缺点,阻碍了其在可穿戴领域的发展。与之相比,纺织材料具有轻质、高弹的优良特性,搭配上灵活的编织方式和独特的多孔结构,使其具备良好的柔性、亲肤性和透气性,纱线之间的交织方式和粗糙的纤维表面组成的多级结构也可以极大地提升传感器的灵敏度,因此织物是新型柔性衬底的理想候选者。本文从纤维/纱线(1D)压阻式传感器和织物(3D)压阻式传感器两个角度出发,系统整理了织物基压阻式传感器衬底的设计工艺,讨论了织物基压阻式传感器的制造方法,阐述了织物基压阻式传感器在运动监测、医疗服务及人机交互领域的应用。最后,对本文进行了总结,并谈及了织物基压阻式传感器在未来的优化方向。

     

    Abstract: The flexible piezoresistive sensor is a new type of pressure sensing equipment. Because of its high sensitivity, easy deformation, light weight and strong shape-preserving ability, it has been widely concerned. However, flexible piezoresistive sensors often use polymer as substrate, which has some disadvantages such as high manufacturing cost, poor permeability and comfort. So it has hindered its development in the wearable field. In contrast, the textile fabric is light and elastic, with flexible weaving and unique porous structure. The sensor made with it has excellent flexibility, skin-friendly and breathability, and the interweaving of yarns and the multi-stage structure of rough fiber surfaces also greatly enhance the sensitivity of the sensor. Therefore, textile fabrics are ideal candidates for new flexible substrates. In this paper, based on the fiber/yarn (1D) piezoresistive sensor and the fabric (3D) piezoresistive sensor, the design process of textile piezoresistive sensor substrate is systematically finished. Secondly, the manufacturing method of fabric-based piezoresistive sensor is discussed. Then, the applications of textile-based piezoresistive sensors in the fields of motion monitoring, medical service and human-computer interaction are described. At last, the paper summarizes and discusses the optimization direction of textile sensor in the future.

     

  • 乙烯-四氟乙烯(ETFE)薄膜凭借其良好的物理特性及力学性能,在新型建筑、能源等领域中已被广泛应用。在实际工程应用中,ETFE膜结构的撕裂破坏可归结为内部因素与外部环境因素的协同作用。膜面处膜材在制造与安装过程中,不可避免地会存在微小孔洞、细微折痕和微裂纹等初始缺陷,以及偶发的外来飞致物刺穿引起的切缝;这使膜材在预应力、极端风荷载及雨雪荷载的复合作用下,极易产生应力集中而诱发缺陷不断扩展,最终膜材撕裂损伤,严重情况下甚至会引发膜结构的整体失效,对结构安全构成重大威胁。并且当膜材在中心区域处受到集中载荷或存在制造缺陷时,极有可能会出现显著的中心撕裂行为[1, 2]。因此,除了需对ETFE薄膜的常规力学性能进行研究,也有必要对其撕裂力学行为开展深入研究。

    吴明儿[3-5]、崔家春[6, 7]、胡建辉[8]、Zhang[9]、Surholt[10]和Zhao[11-13]等分别对ETFE薄膜进行了系列试验与分析,揭示了薄膜的单轴和双轴力学行为,研究了弹性模量、屈服强度、断裂强度和徐变等力学参数和规律。整体上,现有研究多集中在ETFE母材的粘-弹塑性行为及本构关系等,在撕裂性能的研究尚十分欠缺。而随着ETFE膜结构的社会需求增长,对其撕裂性能研究的欠缺势必会阻碍ETFE膜结构的进一步应用和发展。另外,国内外学者已对织物类膜材的撕裂强度及破坏规律开展了深入研究[14-20],可为ETFE薄膜撕裂力学性能的研究提供一定参考。Chen等[14, 15]对层压织物进行了系统的单轴撕裂试验,分析了切缝长度、切缝角度、偏轴角对其撕裂行为和撕裂强度的影响;Sun等[18, 19]深入研究了单轴拉伸下切缝长度和切缝角度对PTFE涂层织物撕裂性能的影响;Zhang等[20]论证了切口样式、切缝尺寸和试样尺寸对PVC涂层织物单轴中心撕裂特性的影响。

    鉴于此,本文针对典型ETFE薄膜,进行单轴中心撕裂试验,研究切缝长度、切缝角度和切口样式对ETFE薄膜的破坏形态特征及撕裂力学行为的影响。另外,数字图像相关(DIC)技术具有全场测量、非接触、高分辨率等优势[21-23],可为撕裂力学行为分析提供准确可靠的数据支撑,将用于薄膜撕裂全过程薄膜位移场和应变场的测量与重构。所得结论可为ETFE薄膜材料的撕裂力学性能研究和ETFE膜结构的安全性评估提供有益参考。

    试验采用ETFE #250/NJ/1600/NT薄膜,其厚度为250μm,密度为1.75 g·cm−3。材料由乙烯和四氟乙烯聚合生成,无色透明,具有优秀的耐化学腐蚀性能和自洁性能[24]。考虑到当前暂无专门的ETFE膜材撕裂性能检测标准,因此参照GB/T 1040.3-2006[25],以ETFE薄膜单轴拉伸试验的长条形试件的尺寸,直接作为单轴中心撕裂试验的试样尺寸,以实现测试需求。试件尺寸为150 mm×25 mm,夹持端长为25 mm,有效测试区域为100 mm×25 mm。散斑区域设置为50 mm×25 mm,散斑直径为0.5 mm。其中,切缝长度为5 mm,切缝方向角以膜材机器展开方向(MD)的垂直线为基准线,逆时针旋转θ。试件示意图如图1所示。另外,为保证试件在拉伸过程中的滑移量可控,采用在试件夹持端处使用粘结剂粘附砂纸的方法,通过增大夹具与试件接触面之间的摩擦系数,提升夹持的稳定性与可靠性。

    图  1  含中心切缝的乙烯-四氟乙烯(ETFE)薄膜典型试件示意图
    Figure  1.  Schematic diagram of a typical specimen of ethylene tetrafluoroethylene (ETFE) foils with a central slit

    试验选用深圳三思UTM4000型电子万能试验机和尼康D3200高像素照相机。其中,试验机位移速率范围为0.001~500.000 mm·min−1;变形测量范围为10~800 mm,±1‰变形精度;拉压力传感器量程为200 N、精度为0.2 N;尼康D3200高像素照相机拥有2400万像素。含中心切缝的ETFE薄膜加载过程中的夹持示意图如图2所示。试验中先对试件施加5 N的预张力,再匀速(50 mm·min−1)加载至试件破坏,并记录试件在试验过程中的变形、荷载和图像数据。

    图  2  含中心切缝的ETFE薄膜加载过程中的夹持示意图
    Figure  2.  Clamping schematic of ETFE foils with a central slit during loading

    试验工况设置为切缝长度、切缝角度和切口样式。其中,切缝长度以2.5 mm为梯度,选取为2.5、5.0、7.5、10.0、12.5和15.0 mm;切缝角度以MD方向为基准,逆时针每旋转15°为一个梯度,选取0°、15°、30°、45°、60°、75°和90°七个角度;切口样式则将典型试件的“一”形切缝更换为其它切口样式,且切口样式可分为开放性切缝(如“一、V、X和十”形等)和封闭性切口(如圆形、椭圆形和矩形切口等)[26];不同切缝角度和切口样式的示意图如图3所示。每个工况的有效试件为3个,以保证试验的有效性。

    图  3  切缝角度和切口样式的切缝示意图(单位:mm)
    Figure  3.  Slit diagram of slit angles and notch shapes (Unit: mm)

    试验温度控制在(20±2.0)℃,相对湿度控制在(65±4.0)%。

    ETFE薄膜在不同工况下典型撕裂过程如图4所示,其膜面含散斑贴膜以便于观察,三种工况下的ETFE薄膜的撕裂过程均呈现出4个特征状态:

    图  4  不同工况下ETFE薄膜典型撕裂过程:(a)切缝长度、(b)切缝角度和(c)切口样式
    Figure  4.  Typical tearing process of ETFE foils under different conditions: (a) Slit length; (b) Slit angle; (c) Notch shape

    (ⅰ)切缝初始状态:在外加5 N预张力时,因其外加荷载较小,切缝保持未张开状态。

    (ⅱ)切缝张开状态:随着外加荷载不断增加,切缝逐渐张开,切缝张开形状近似呈现椭圆形;薄膜在切缝尖端上下邻域展现出显著的面外屈曲现象。

    (ⅲ)极限撕裂状态:随着外加荷载进一步增大,切缝开口进一步扩大,面外屈曲现象也变得更加明显,薄膜的塑性变形显著增加;其切缝尖端处由于应力集中效应显著,会形成撕裂三角区,出现明显的颈缩现象,并且切缝开始沿着垂直于加载方向扩展。

    (ⅳ)完全破坏状态:在薄膜到达极限撕裂状态以后,随着荷载的增大,切缝扩展速度加剧,薄膜的承载能力不断下降,薄膜最终达到完全破坏状态,丧失所有承载能力,并且不同切口样式导致薄膜呈现的破坏形态各异。

    图5为ETFE薄膜在切缝张开状态下的切缝邻域εxy应变云图,该云图可直观的展现出薄膜面外屈曲的位置分布及其方向。据图可知,薄膜的面外屈曲的位置集中分布于切口上下邻域;εxy应变云图集中区呈现“X”型分布,其中,“X”型的中心点与切口的中心点重合。在构成“X”型的同一边上,面外屈曲的方向相同;而在构成“X”型的不同边上,面外屈曲的方向相反。随着切缝长度变化,薄膜面外屈曲的位置几乎保持不变。随着切缝角度变化,面外屈曲的位置仍处于切口上下邻域,随之发生相同角度的倾斜。随着切口样式变化,切口会沿着拉伸方向发生不同的张开变形,从而使薄膜面外屈曲的位置随之变化。

    不同切缝长度的ETFE薄膜的撕裂抗力-位移曲线如图6(a)所示,撕裂曲线随切缝长度改变存在规律性衍变,但存在典型共同特征,不妨提取典型撕裂曲线对ETFE薄膜撕裂力学行为进行深入阐释(见图6(b))。

    图  5  不同工况下ETFE薄膜切缝邻域的εxy应变云图
    Figure  5.  εxy strain nephogram of ETFE foils in the neighborhood of the slit under different conditions
    图  6  不同切缝长度的ETFE薄膜撕裂抗力-位移曲线及其典型撕裂曲线
    Figure  6.  Tearing strength-displacement curves and typical tearing curve of ETFE foils with different slit lengths

    图6(a)所示,随着切缝长度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化。在撕裂抗力上升阶段,曲线斜率增加的部分随切缝长度增大而逐渐消失;当切缝长度为2.5 mm、5.0 mm时,可明显观察到曲线斜率上升的趋势,而当切缝长度增大至7.5 mm后,曲线的斜率随着位移的增大而越来越小,无法观察到曲线斜率上升。在撕裂后段,当薄膜的切缝长度从2.5 mm增大到15.0 mm,薄膜有效承载截面不断减小,其极限撕裂抗力从130.74 N下降至57.94 N,下降55.68%;断裂位移由45.48 mm下降至11.05 mm,下降75.70%。

    图6(b)所示,典型撕裂曲线以4个特征点为界,可分为3个特征阶段。其中,初始点O为曲线与纵轴的交点,类屈服点A为曲线斜率首次发生变化点,峰值点B为曲线撕裂抗力最大点和破坏点C为曲线与横轴的交点;4特征点分别与典型撕裂过程的4个特征状态相对应。

    (OA)撕裂前段:曲线从不为零的初始点O开始,对应着试验前施加的预张力状态;在该阶段ETFE薄膜呈现出显著的线弹性行为,薄膜的初始弹性模量较大。

    (AB)撕裂抗力上升阶段:曲线到达类屈服点A后,斜率迅速减小,明显小于撕裂前段的斜率,开始出现较大的塑性变形;随着位移增大,薄膜内部结构会充分发生变化,撕裂抗力不断增加,曲线斜率明显上升;随后由于变形继续增大导致刚度下降,撕裂抗力增加的速度变缓,曲线斜率又开始下降至零。

    (BC)撕裂后段:曲线到达峰值点B时,薄膜达到极限撕裂抗力,开始发生显著的撕裂扩展;随着位移增加,撕裂抗力不断下降,并且撕裂扩展的速度不断加快,撕裂抗力下降幅度逐渐变大,最终下降到破坏点C,对应着薄膜完全破坏。

    不同切缝角度的ETFE薄膜撕裂抗力-位移曲线如图7所示。随着切缝角度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化,并且类屈服点对应的位移由1.52 mm上升至1.57 mm,撕裂前段所历经的位移仅增加1.97%,曲线几乎同时进入下一阶段。在撕裂抗力上升阶段,不同切缝角度的薄膜的曲线均会呈现出斜率增大的趋势,并且撕裂抗力上升阶段随切缝角度增加而显著变长。在撕裂后段,当切缝角度由0°增大至90°时,对应的等效切缝长度[27]由5 mm减少至0 mm,其极限撕裂抗力由107.69 N上升至134.25 N,断裂位移由24.39 mm上升至79.90 mm。

    可见,随着切缝角度的增大,对应的等效切缝长度随之减小,薄膜的承载途径逐渐恢复,用来承受拉伸荷载的有效截面增大,薄膜的极限撕裂强度增强,使薄膜不易到达极限撕裂状态,使得其断裂位移也随之增大。并且当切缝长度保持为5 mm时,切缝角度由0°增大到90°,其极限撕裂抗力和断裂位移分别上升了24.66%和227.59%,断裂位移的变化率远大于极限撕裂抗力的变化率。因此,切缝角度的改变对薄膜的极限撕裂抗力影响较小,而会显著影响薄膜完全破坏时对应的断裂位移。

    图  7  不同切缝角度的ETFE薄膜撕裂抗力-位移曲线
    Figure  7.  Tearing strength-displacement curves for ETFE foils with different slit angles

    图8为不同切缝角度的ETFE薄膜的切缝尖端邻域的竖向应变场云图。据图可知,当预制切缝长度为5 mm的“一”形切缝时,薄膜在切缝邻域出现明显的应变集中区(红色区域),并且其应变集中区分布于切缝尖端邻域上,随切缝角度的增加而发生相应的偏转。这是由于薄膜在预制初始切缝后,在切缝尖端邻域,随着拉伸应力的增大,切缝张开导致薄膜沿着切缝方向发生横向收缩,并且在切缝上下邻域处发生面外屈曲,薄膜会向面外凸出,导致切缝尖端邻域处承受的应力远高于其它区域,从而使薄膜在该区域处的竖向应变较大而出现应变集中区。因此,随着切缝角度的增大,薄膜切缝张开所致的横向收缩效应及面外屈曲现象发生相应的变化,使薄膜的应变集中区始终分布于切缝尖端邻域,从而使得薄膜的应变集中区发生相应的偏转。

    图  8  不同切缝角度的ETFE薄膜切缝尖端邻域的竖向应变场云图
    Figure  8.  Vertical strain field nephograms in the neighborhood of the slit tip of ETFE foils with different slit angles

    图9为不同切口样式的ETFE薄膜的撕裂抗力-位移曲线。不同切口样式对薄膜撕裂曲线的撕裂后段影响显著,导致含不同切口样式的薄膜在完全破坏时,整体上表现出两种破坏模式:类脆性破坏和类延性破坏。如图9(a)和图9(f)所示,对于无切缝和含圆形切口的ETFE薄膜,撕裂曲线到达峰值点后立即发生破坏,在撕裂后段历经的位移占整个撕裂过程发生的位移比例极小;并且在试验过程中可听到轻脆的崩断声,薄膜突然发生破坏,展现出类脆性破坏特性。而对于图9其它切口样式的ETFE薄膜,则呈现类延性破坏特性。撕裂曲线到达峰值点后,薄膜虽然达到了极限撕裂强度,但并不会立即发生断裂破坏;薄膜的切缝不断扩展,有效承载截面逐渐减小,薄膜在历经较大的位移后才完全破坏,可观察到明显预兆。

    图  9  不同切口样式的ETFE薄膜撕裂抗力-位移曲线
    Figure  9.  Tearing strength-displacement curves of ETFE foils with different notch shapes

    图10为撕裂试样典型损伤模式示意图。可知,含切口的ETFE薄膜,在拉伸撕裂过程中,切口破坏了薄膜的完整性,使薄膜较易出现面外屈曲和颈缩,从而使薄膜在切口邻域处出现显著的大变形区。这会导致薄膜的应力分布不均匀,在大变形区出现应力集中,从而引发撕裂,使薄膜在切口尖端处出现撕裂三角区,薄膜的承载性能下降。并随着撕裂三角区的逐渐扩展,薄膜的有效承载区域不断减小,薄膜的承载性能逐渐下降为零。并且,不同切口样式会使薄膜的大变形区不同,从而使其应力集中各不相同,导致不同切口样式使薄膜承载性能的衰减程度各异。

    图  10  典型撕裂试样损伤模式示意图:(a)“一”形切缝和(b)圆形切口
    Figure  10.  Schematic representation of typical damage modes of the tearing specimens: (a) “—” shaped slit ,and (b) circle notch

    图11为不同切口样式的ETFE薄膜对应的极限撕裂抗力。对于含开放性切缝的薄膜,相较于无切缝薄膜,含“V、X和十”形切缝的薄膜的极限撕裂抗力均约为138.13 N,下降40.58%,而含“一”形切缝的薄膜仅为107.25 N,下降53.86%。因此,当切缝的横向尺寸相同时,“一”形切缝贯穿了薄膜的主要受力方向,应力集中显著,对薄膜的极限撕裂强度的不利影响最大。对于含封闭性切口的薄膜,相较于无切缝薄膜,含圆形和椭圆形切口的薄膜的极限撕裂强度约为151.88 N,下降34.66%,含矩形-I切口的薄膜仅为115.19 N,下降50.44%。因此,当切口的横向尺寸相同时,矩形-I切口由于具有直角边缘等特性,使薄膜的应力集中程度远大于含圆形和椭圆形切口的薄膜,使薄膜承载性能的衰减程度更大。另外,含矩形-II切口的薄膜的极限撕裂强度为129.63 N,相较于无切缝薄膜的下降44.23%。可见,当切口几何外形相同时,对于横向尺寸较大的切口,其周围的应力集中区域较大,薄膜较易产生撕裂扩展,故对薄膜极限撕裂强度的不利影响更大。

    图  11  不同切口样式的ETFE薄膜极限撕裂抗力
    Figure  11.  Ultimate tearing strength of ETFE foils with different notch shapes

    结合系列试验与数字图像相关(DIC)技术,深入分析了乙烯-四氟乙烯(ETFE)薄膜的单轴中心撕裂行为,主要结论如下:

    (1) ETFE薄膜的典型撕裂扩展过程呈现出4个特征状态;不同切缝参数显著影响薄膜面外屈曲的位置和破坏形态,但不影响薄膜切缝扩展的方向始终为垂直于加载方向;

    (2) ETFE薄膜的撕裂抗力-位移曲线随不同工况的变化而发生非线性衍变,但存在典型共同特征,可划分为3个特征阶段:撕裂前段、撕裂抗力上升阶段和撕裂后段;

    (3)当切缝长度从2.5 mm增大到15.0 mm时,薄膜的有效承载截面变小,其极限撕裂强度和断裂位移分别减小了55.75%和75.70%;当切缝角度从0°增大到90°时,薄膜承载途径逐渐恢复,其极限撕裂强度增大了24.67%,而断裂位移却增大了227.59%;

    (4)切口样式使薄膜在完全破坏时呈现出类脆性破坏特征或类延性破坏特征。当横向尺寸相同时,在开放性切缝中,“一”形切缝贯穿薄膜主要受力方向,应力集中显著,对薄膜极限撕裂强度的不利影响最大;在封闭性切口中,与光滑边缘切口相比,直角边缘切口使薄膜的应力集中效应更显著,使薄膜易在切口尖角处发生撕裂,造成薄膜承载性能的显著衰减。所得结论可为相关均质性膜材的撕裂力学性能研究和膜结构的安全性评估提供有益参考。

  • 图  1   压阻式传感器的相关应用[21-29]

    Figure  1.   Application of piezoresistive sensor[21-29]

    图  2   纤维/纱线(1D)衬底的设计工艺:(a)LMFS的热拉伸过程[30];(b)注射器挤压制作纤维过程[31];(c)同轴湿纺丝法过程[32]

    Figure  2.   Design process of fiber/yarn (1D) substrate: (a) Thermal tensile process of LMFS[30]; (b) The process of extruding fibers from syringe[31]; (c) Coaxial wet spinning process[32]

    图  3   织物(3D)衬底的设计工艺:(a)全机织间隔片压阻式传感器结构示意图[37];(b)具有夹层结构的压力传感器的制作过程[38];(c)静电纺丝制造压阻式传感器的过程[40]

    Figure  3.   Design process of fabric (3D) substrate: (a) Schematic diagram of the full woven spacer piezoresistive sensor[37]; (b) The manufacturing process of a pressure sensor having a sandwich structure[38]; (c) The process of making piezoresistive sensors by electrospinning[40]

    图  4   涂层法制备织物基压阻式传感器:(a)浸涂法制备应变敏感纤维的过程[41];(b)喷涂法制备AENSY传感纱的过程[42];(c) oCVD制备聚吡咯涂层织物传感器的过程[43]

    Figure  4.   Fabric-based piezoresistive sensor were prepared by coating method: (a) The process of preparing strain-sensitive fibers by dip coating[41]; (b) The preparation of AENSY sensing yarn by spraying method[42]; (c) The preparation of polypyrrole-coated fabric sensor by oCVD[43];

    图  5   掺杂法制备织物基压阻式传感器:(a)静电纺丝溶液的制作过程[50];(b)聚二甲基硅氧烷(PDMS)/多壁碳纳米管(MWCNTs)柔性压力传感器的制作过程[51]

    Figure  5.   Fabric-based piezoresistive sensor were prepared by doping method: (a) The preparation of electrospinning solutions[50]; (b) Fabrication of Polydimethylsiloxane (PDMS) multi-walled carbon nanotubes (MWCNTs) flexible pressure sensors[51]

    图  6   织物基压阻式传感器的相关应用:(a)足底压力分布的热力学图[54];(b)传感器检测行走、下蹲和慢跑图像[55];(c)传感器监测手腕脉搏信号[56];(d)枕形压力传感器监测左卧、仰卧和右卧[57];(e)枕形压力传感器监测呼吸[57];(f)“Allah”和“ Allah o Akbar”的电阻响应区别[58];(g)“Hi”和“Hello”的电阻响应区别[58];(h)人与机械手的远程交互[38]

    Figure  6.   Application of fabric-based piezoresistive sensors: (a) Thermodynamic diagram of plantar pressure distribution[54]; (b) Sensors detect walking, squatting and jogging images[55]; (c) The sensor monitors the wrist pulse signal; (d) Pillow-shaped pressure sensors monitor left, supine, and right recumbent positions[57]; (e) Pillow-shaped pressure sensors monitor breathing[57]; (f) The difference between the resistance responses of “Allah” and “Allah o Akbar” [58]; (g) Resistance response difference between“Hi” and“Hello”[58]; (h) Remote human-robot interaction[38]

  • [1]

    LIU E, CAI Z, YE Y, et al. An overview of flexible sensors: development, application, and challenges[J]. Sensors, 2023, 23(2): 817. DOI: 10.3390/s23020817

    [2]

    SHARMA A, ANSARI M Z, CHO C. Ultrasensitive flexible wearable pressure/strain sensors: parameters, materials, mechanisms and applications[J]. Sensors and Actuators A: Physical, 2022, 347: 113934. DOI: 10.1016/j.sna.2022.113934

    [3] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1): 1-22.

    HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 1-22(in Chinese).

    [4]

    SEESAARD T, WONGCHOOSUK C. Flexible and stretchable pressure sensors: from basic principles to state-of-the-art applications[J]. Micromachines, 2023, 14(8): 1638. DOI: 10.3390/mi14081638

    [5] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 45-67.

    MEN Haijiao, SONG Jianyao, HUANG Bingjing, et al. Recent advances in flexible and wearable strain sensors[J]. Materials Review, 2023, 37(21): 45-67(in Chinese).

    [6]

    WANG M, ZHANG H, WU H, et al. Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range[J]. Bio-Design and Manufacturing, 2022, 6(3): 243-254.

    [7]

    BAO Y, XU J C, GUO R Y, et al. High-sensitivity flexible pressure sensor based on micro-nano structure[J]. Progress in Chemistry, 2023, 35(5): 709-720.

    [8]

    TIAN G, SHI Y, DENG J, et al. Low-cost, scalable fabrication of all-fabric piezoresistive sensors via binder-free, in-situ welding of carbon nanotubes on bicomponent nonwovens[J]. Advanced Fiber Materials, 2023: 1-13.

    [9]

    WANG Y, DUAN S, LIU J, et al. Highly-sensitive expandable microsphere-based flexible pressure sensor for human–machine interaction[J]. Journal of Micromechanics and Microengineering, 2023, 33(11): 115009. DOI: 10.1088/1361-6439/acfdb5

    [10]

    XU S, XU Z, LI D, et al. Recent advances in flexible piezoresistive arrays: materials, design, and applications[J]. Polymers, 2023, 15(12): 2699. DOI: 10.3390/polym15122699

    [11]

    DAS S, BHATTACHARJEE M, THIYAGARAJAN K, et al. Nonlinear response analysis of a polymer-based piezoresistive flexible tactile sensor at low pressure[J]. Ieee Sensors Letters, 2023, 7(11): 2504204.

    [12]

    ZHONG F, HU W, ZHU P, et al. Piezoresistive design for electronic skin: from fundamental to emerging applications[J]. Opto-Electronic Advances, 2022, 5(8): 210029-210029. DOI: 10.29026/oea.2022.210029

    [13]

    CHEN B, ZHANG L, LI H, et al. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection[J]. Journal of Colloid and Interface Science, 2022, 617: 478-488. DOI: 10.1016/j.jcis.2022.03.013

    [14]

    KONG M, XIANG Z, XU X Y, et al. Transparent and Stretchable Piezoresistive Strain Sensors with Buckled Indium Tin Oxide Film[J]. Advanced Electronic Materials, 2023, 9(8): 2300197. DOI: 10.1002/aelm.202300197

    [15]

    SHARMA S, CHHETRY A, MAHARJAN P, et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins[J]. Nano Energy, 2022, 95: 106970. DOI: 10.1016/j.nanoen.2022.106970

    [16]

    LONG Z, LIU X, XU J, et al. High-Sensitivity Flexible piezoresistive pressure sensor using PDMS/MWNTS nanocomposite membrane reinforced with isopropanol for pulse detection[J]. Sensors, 2022, 22(13): 4765. DOI: 10.3390/s22134765

    [17]

    YU Z, HU G, CHEN J, et al. Resonant printing flexible piezoresistive pressure sensor with spherical microstructures[J]. Smart Materials and Structures, 2023, 32(3): 035020. DOI: 10.1088/1361-665X/acb6c9

    [18]

    HE X, WANG F, LIANG Y, et al. Carbonization fabrication of a piezoresistive sensor with improved sensitivity via Ni decoration of carbonized cotton fibers[J]. Science China Technological Sciences, 2022, 65(12): 3000-3009. DOI: 10.1007/s11431-022-2190-y

    [19]

    SU Y, MA K, LIU M, et al. Compressible, reliable, and flexible pressure sensor based on carbonized melamine foam capped by Ti3C2Tx MXene for versatile applications[J]. Physica Scripta, 2023, 98(3): 035032.

    [20] 王志伟, 黄继伟, 凌新龙. 纺织基柔性力学传感器的研究进展[J]. 纺织科学与工程学报, 2023, 40(4): 108-114. DOI: 10.3969/j.issn.2096-5184.2023.04.019

    WANG Zhiwei, HUANG Jiwei, LING Xinlong. Research progress of textile-based flexible mechanical sensors[J]. Journal of Textile Science and Engineering, 2023, 40(4): 108-114(in Chinese). DOI: 10.3969/j.issn.2096-5184.2023.04.019

    [21]

    WANG R, SHEN Y, QIAN D, et al. Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signal[J]. Materials Horizons, 2020, 7(12): 3305-3315. DOI: 10.1039/D0MH01003K

    [22]

    TIAN G L, ZHAN L, DENG J X, et al. Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors[J]. Chemical Engineering Journal, 2021, 425: 130682. DOI: 10.1016/j.cej.2021.130682

    [23]

    LU Y J, TIAN M W, SUN X T, et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate[J]. Composites Part a-Applied Science and Manufacturing, 2019, 117: 202-210. DOI: 10.1016/j.compositesa.2018.11.023

    [24]

    ONGGAR T, KRUPPKE I, CHERIF C. Techniques and processes for the realization of electrically conducting textile materials from intrinsically conducting polymers and their application potential[J]. Polymers, 2020, 12(12): 2867. DOI: 10.3390/polym12122867

    [25]

    SHU Q, HU T, XU Z, et al. Non-tensile piezoresistive sensor based on coaxial fiber with magnetoactive shell and conductive flax core[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106548. DOI: 10.1016/j.compositesa.2021.106548

    [26]

    WANG M X, WU J J, DONG L, et al. A highly aligned microgrid structure for wearable nanofibrous sensors with an enhanced sensitivity and detection range[J]. Journal of Materials Chemistry C, 2022, 10(34): 12323-12331. DOI: 10.1039/D2TC02344J

    [27]

    JANG S J, KIM M, LIM J Y, et al. Development of mode-switchable touch sensor using MWCNT composite conductive nonwoven fabric[J]. Polymers, 2022, 14(8): 1545. DOI: 10.3390/polym14081545

    [28]

    DONG L, REN M, WANG Y, et al. Self-sensing coaxial muscle fibers with bi-lengthwise actuation[J]. Materials Horizons, 2021, 8(9): 2541-2552. DOI: 10.1039/D1MH00743B

    [29]

    YAN T, WU Y, YI W, et al. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327: 112755. DOI: 10.1016/j.sna.2021.112755

    [30]

    HE Y, WAN C, YANG X, et al. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating[J]. Advanced Materials Technologies, 2023, 8(11): 2202079. DOI: 10.1002/admt.202202079

    [31]

    JAMATIA T, MATYAS J, OLEJNIK R, et al. Wearable and stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618. DOI: 10.3390/polym15071618

    [32]

    QU X, LI J, HAN Z, et al. Highly sensitive fiber pressure sensors over a wide pressure range enabled by resistive-capacitive hybrid response[J]. ACS Nano, 2023, 17(15): 14904-14915. DOI: 10.1021/acsnano.3c03484

    [33]

    RAWAL A, MUKHOPADHYAY S. Advances in filament yarn spinning of textiles and polymers [M]. Amsterdam: Elsevier Itd, 2014: 75-99.

    [34]

    BAUTISTA-QUIJANO J R, P TSCHKE P, BR NIG H, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. DOI: 10.1016/j.polymer.2015.11.030

    [35]

    OZIPEK B, KARAKAS H. Advances in filament yarn spinning of textiles and polymers [M]. Amsterdam: Elsevier Itd, 2014: 174-186.

    [36] 徐鹏, 王冠韬, 刘奎, 等. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37. DOI: 10.11868/j.issn.1001-4381.2018.000689

    XU Peng, WANG Guantao, LIU Kui, et al. Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites[J]. Journal of Materials Engineering, 2019, 47(9): 29-37(in Chinese). DOI: 10.11868/j.issn.1001-4381.2018.000689

    [37]

    JIANG M, HU H, JIN C, et al. Three-directional spacer-knitted piezoresistant strain and pressure sensor for electronic integration and on-body applications[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55009-55021.

    [38]

    HOU X, WU H, ZHAO J, et al. A portable somatosensory manipulator system based on graphene ink/paper film piezoresistive sensors for human–computer interaction[J]. IEEE Sensors Journal, 2023, 23(18): 21728-21738. DOI: 10.1109/JSEN.2023.3299610

    [39]

    ZHAO Z C, LI B T, XU L Q, et al. A sandwich-structured piezoresistive sensor with electrospun nanofiber mats as supporting, sensing, and packaging layers[J]. Polymers, 2018, 10(6): 575. DOI: 10.3390/polym10060575

    [40]

    XUE B, XIE H Y, ZHAO J X, et al. Flexible piezoresistive pressure sensor based on electrospun rough polyurethane nanofibers film for human motion monitoring[J]. Nanomaterials, 2022, 12(4): 723. DOI: 10.3390/nano12040723

    [41]

    INNOCENT M T, ZHANG Z, CAO R, et al. Piezoresistive fibers with large working factors for strain sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 15(1): 2277-2288.

    [42]

    DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-sensing textiles[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11244-11258.

    [43]

    MUKHERJEE A, DIANATDAR A, GŁADYSZ M Z, et al. Electrically conductive and highly stretchable piezoresistive polymer nanocomposites via oxidative chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31899-31916.

    [44]

    LAU K K S. Chemical vapor deposition [M]. Philadelphia: Medical Coatings and Deposition Technologies, 2016: 403-455.

    [45]

    XU Q, WANG C, HU J, et al. Graphene/SiC-coated textiles with excellent electromagnetic interference shielding, Joule heating, high-temperature resistance, and pressure-sensing performances[J]. Journal of Advanced Ceramics, 2023, 12(4): 778-791. DOI: 10.26599/JAC.2023.9220719

    [46]

    LAN L, ZHAO F, YAO Y, et al. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10689-10696.

    [47]

    CHOI J, KWON D, KIM K, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1698-1706.

    [48]

    LI F C, KONG Z, WU J H, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 100703. DOI: 10.7498/aps.70.20210023

    [49] 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737.

    TANG Guiyu, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737(in Chinese).

    [50]

    CHENG X, CAO X, WU Z, et al. A flexible conformal piezoresistive sensor based on electrospinning for deformation monitoring of carbon fiber-reinforced polymer[J]. Advanced Engineering Materials, 2023, 25(19): 2300341. DOI: 10.1002/adem.202300341

    [51]

    JIANG C S, LV R Y, ZOU Y L, et al. Flexible pressure sensor with wide pressure range based on 3D microporous PDMS/MWCNTs for human motion detection[J]. Microelectronic Engineering, 2024, 283: 112105. DOI: 10.1016/j.mee.2023.112105

    [52]

    LIU S L, ZHANG W T, HE J Z, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2023, 23(9): 338.

    [53]

    CHEN X, AN J, CAI G, et al. Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex[J]. Polymers, 2019, 11(3): 404. DOI: 10.3390/polym11030404

    [54]

    LI X, LIU X, ZENG W, et al. Carbon fiber-based smart plantar pressure mapping insole system for remote gait analysis and motion identification[J]. Advanced Materials Technologies, 2023, 8(16): 2300095. DOI: 10.1002/admt.202300095

    [55]

    GAO S, LI H, ZHENG L, et al. Superhydrophobic and conductive polydimethylsiloxane/titanium dioxide@reduced graphene oxide coated cotton fabric for human motion detection[J]. Cellulose, 2021, 28(11): 7373-7388. DOI: 10.1007/s10570-021-03951-2

    [56]

    WANG J, ZHANG D, WANG D, et al. Efficient fabrication of TPU/MXene/Tungsten disulfide fibers with ultra-fast response for human respiratory pattern recognition and disease diagnosis via deep learning[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37946-37956.

    [57]

    TIAN M, LU Y, QU L, et al. A pillow-shaped 3D hierarchical piezoresistive pressure sensor based on conductive silver components-coated fabric and random fibers assembly[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5737-5742.

    [58]

    AHMED S, NAUMAN S, KHAN Z M. Electrospun nanofibrous yarn based piezoresistive flexible strain sensor for human motion detection and speech recognition[J]. Journal of Thermoplastic Composite Materials, 2023, 36(6): 2459-2481. DOI: 10.1177/08927057221095853

  • 目的 

    传统的柔性压阻式传感器多采用聚合物材料作为衬底,存在制造成本高、透气性和舒适度差等缺点,阻碍了压阻式传感器在可穿戴领域的发展。与之相比,纺织材料具有轻质、高弹的优良特性,搭配上灵活的编织方式和独特的多孔结构,以此制备的传感器具备良好的柔性、亲肤性和透气性。除此之外,纱线之间不同的交织方式和粗糙的纤维表面组成的多级结构也可以极大地提升传感器的灵敏度,因此织物基非常适合作为可穿戴压阻式传感器的柔性衬底。希望通过本综述整理的织物基压阻式传感器的相关研究,可以帮助读者快速地了解织物基压阻式传感器的发展进程,为读者以后的研究提供引导和支持。

    方法 

    与常见的柔性压阻式传感器相似,纺织基传感器由电极和柔性传感层组成,传感层感知应力变化并反馈电信号,电极与外电路连接,作为电信号传输的媒介。但与多数聚合物材料制成的柔性传感器不同,纺织基压阻式传感器的传感层是由纤维/纱线(1D)或者织物(3D)作为衬底与导电材料结合制成。因此通过合理的结构设计、材料选择与纺织加工工艺,可以制备出低成本、易制作、高性能的织物基压阻式传感器。

    结果 

    本文将织物基压阻式传感器的研究分为了织物基压阻式传感器的设计、应用与展望。在织物基压阻式传感器的设计部分,从纤维/纱线(1D)和三维织物两个角度出发,系统阐述了织物基压阻式传感器衬底的制造方法,如热拉伸法、挤压法、熔融纺丝及湿法纺丝,在经过测试后发现,制造出的织物衬底具有良好的柔韧性、回弹性、透气性和结构可设计性。该部分内容还整理了制造织物基压阻式传感器经常使用到的涂层法与掺杂法,总结制造原理的同时对比了两种方法的优点。涂层法是将导电材料涂覆在织物衬底上,以形成压阻式传感器,该方法不需要复杂的混合和加工过程,并且可以根据需要调整涂层的厚度与导电性,因此该方法制造传感器时具有灵活性高、成本低等优点。掺杂法则是将导电物质均匀地分散到织物材料中,以形成具有压阻效应的复合材料。通过掺杂导电物质,可以显著提高传感层的导电性,从而增强传感器的压阻效应,掺杂的导电物质还可以增强传感器的耐用性和稳定性。在实际应用中,可以根据具体的需求和条件选择合适的方法来制造传感器。在织物基压阻式传感器的应用部分,讨论了织物基压阻式传感器在运动监测、医疗服务及人机交互领域的应用。在运动监测领域,织物基压阻式传感器可以帮助检测用户的运动类型,并对运动姿势加以矫正。在医学服务领域,织物基压阻式传感器可以用于监测患者的生命体征,如心率、呼吸等,为医疗诊断和治疗提供辅助。在人机交互领域,织物基压阻式传感器可以用作手势识别以及身体姿态识别。文章最后一部分对织物基压阻式传感器的研究现状进行了总结,并从改善传感器柔性、增强检测范围与提高耐用性的三个方面提出了织物基压阻式传感器在未来的优化方向。

    结论 

    织物基压阻式传感器具有高灵敏度、强透气性、亲肤性等特点,可以在满足穿着舒适性要求的同时实现传感器的监测功能。织物基压阻式传感器的研究已经发展到一个较成熟的阶段,但在可穿戴性、舒适性以及传感性能方面依然存在进步空间。

图(6)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  76
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2024-10-05
  • 录用日期:  2024-10-20
  • 网络出版日期:  2024-11-01

目录

/

返回文章
返回