留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ECC轴拉循环加载变形与疲劳寿命

霍海峰 杨雅静 李长辉 刘汉磊 陈宇 吴堃

霍海峰, 杨雅静, 李长辉, 等. ECC轴拉循环加载变形与疲劳寿命[J]. 复合材料学报, 2022, 39(11): 5453-5464. doi: 10.13801/j.cnki.fhclxb.20220225.003
引用本文: 霍海峰, 杨雅静, 李长辉, 等. ECC轴拉循环加载变形与疲劳寿命[J]. 复合材料学报, 2022, 39(11): 5453-5464. doi: 10.13801/j.cnki.fhclxb.20220225.003
HUO Haifeng, YANG Yajing, LI Changhui, et al. Uniaxial cyclic loading deformation and fatigue life of ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5453-5464. doi: 10.13801/j.cnki.fhclxb.20220225.003
Citation: HUO Haifeng, YANG Yajing, LI Changhui, et al. Uniaxial cyclic loading deformation and fatigue life of ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5453-5464. doi: 10.13801/j.cnki.fhclxb.20220225.003

ECC轴拉循环加载变形与疲劳寿命

doi: 10.13801/j.cnki.fhclxb.20220225.003
基金项目: 国家重点研发计划项目(2020YFB1600100);中央高校基金(3122019106);天津交通运输委员会面上项目(2019-18)
详细信息
    通讯作者:

    李长辉,博士,讲师,研究方向为高性能混凝土材料 E-mail:lichanghui0531@126.com

  • 中图分类号: TU526

Uniaxial cyclic loading deformation and fatigue life of ECC

  • 摘要: 高延性水泥基复合材料(ECC)多用于结构的抗震补强,其疲劳性能是工程中关注的重点。为研究其疲劳性能,通过疲劳试验机进行单轴拉伸循环加载试验,利用数字图像相关(DIC)技术实时监测位移发展与开裂行为。分析ECC试件的动力变形、疲劳规律并建立疲劳方程。结果表明:ECC试件的应变和轴向位移发展规律相似,分为初始阶段、稳定发展阶段、加速变形阶段和破坏阶段;动应力比越小,应变发展越快,破坏发生时的累积轴向应变越大;刚度比发展曲线分为三部分:快速下降阶段、稳定下降阶段和破坏阶段;其疲劳寿命可较好服从双参数Weibull分布;通过建立两种形式的疲劳方程:S-lgNS-lgN-F疲劳方程,将极限疲劳寿命带入平均寿命疲劳方程,针对本文配合比得到疲劳极限应力水平为70.80%,对应的疲劳极限强度为2.69 MPa。

     

  • 图  1  试验概况图

    σd—Tensile stress

    Figure  1.  Test overview diagram

    图  2  ECC轴向位移发展曲线

    Figure  2.  Axial displacement development curve of ECC

    图  3  同一应力水平Pmax下的ECC试件应变云图

    Figure  3.  Strain cloud diagram of ECC specimen under the same stress level Pmax

    图  4  ECC疲劳开裂后应变随周期的变化曲线

    Figure  4.  Variation curve of strain with cycles after ECC fatigue cracking

    图  5  ECC疲劳开裂后的刚度比变化曲线

    Figure  5.  Rigidity ratio curves of ECC after fatigue cracking with cycle times

    图  6  ECC疲劳方程的二次曲线拟合

    S—Maximum stress ratio; N—Number of fatigue loads

    Figure  6.  Quadratic curve fitting of tensile fatigue equation of ECC

    图  7  ECC的S-lgN-F疲劳方程拟合曲线

    Figure  7.  Fitting curves of S-lgN-F fatigue equation

    表  1  聚乙烯醇(PVA)纤维的各项性能指标

    Table  1.   Various performance indexes of polyvinyl alcohol (PVA) fiber

    Length/mmDiameter/μmLength-diameter ratio/103Tensile strength/MPaElastic modulus
    /GPa
    Elongation/%Density/(g·cm−3)
    12390.31160039170.91
    下载: 导出CSV

    表  2  高延性水泥基复合材料(ECC)试件相对配合比 (kg/m3)

    Table  2.   Relative fit ratio of engineered cementitious composites (ECC) specimens (kg/m3)

    CementWaterSandPVA fiberFly ashWater-reducing admixture
    662.00329.19331.3545.23440.90176.22
    下载: 导出CSV

    表  3  不同应力水平下的ECC疲劳寿命N的Weibull参数分布

    Table  3.   Weibull distribution test of fatigue life N of ECC under different stress levels

    Stress
    level S
    Number of specimen iCycles number
    Ni
    $P = 1 - \dfrac{i}{{\left( {1 + K} \right)}}$$\ln {N_i}$$\ln \left[ {\ln \left( {1/P} \right)} \right]$
    0.95 1 16 0.83333 2.77259 −1.70198
    2 26 0.66667 3.25810 −0.90272
    3 38 0.50000 3.63759 −0.36651
    4 42 0.33333 3.73767 0.09405
    5 64 0.16667 4.15888 0.58320
    0.90 1 106 0.83333 4.66344 −1.70198
    2 305 0.66667 5.72031 −0.90272
    3 405 0.50000 6.00389 −0.36651
    4 1054 0.33333 6.96035 0.09405
    5 2208 0.16667 7.69984 0.58320


    0.85
    1 4035 0.83333 8.30276 −1.70198
    2 6524 0.66667 8.78324 −0.90272
    3 12054 0.50000 9.39715 −0.36651
    4 13518 0.33333 9.51178 0.09405
    5 25478 0.16667 10.14557 0.58320


    0.80
    1 9225 0.83333 9.12967 −1.70198
    2 15652 0.66667 9.65835 −0.90272
    3 36584 0.50000 10.50737 −0.36651
    4 42536 0.33333 10.65811 0.09405
    5 45821 0.16667 10.73250 0.58320


    0.75
    1 36598 0.83333 10.50775 −1.70198
    2 44750 0.66667 10.70885 −0.90272
    3 46524 0.50000 10.74772 −0.36651
    4 67546 0.33333 11.12056 0.09405
    5 70451 0.16667 11.16267 0.58320


    0.70
    1 65894 0.83333 11.09580 −1.70198
    2 76954 0.66667 11.25096 −0.90272
    3 84572 0.50000 11.34536 −0.36651
    4 88258 0.33333 11.38802 0.09405
    5 95871 0.16667 11.47076 0.58320
    Notes: P—Probability corresponding to the fatigue life NP; K—Total number of fatigue test data obtained at a given stress level.
    下载: 导出CSV

    表  4  ECC疲劳拉伸试验分析结果

    Table  4.   Analysis results of ECC fatigue tensile test

    Stress
    level $S$
    Regression coefficients $b$$b\ln{N_{\text{a} } }$Correlation coefficient R
    0.951.68006.3620.9852
    0.900.74925.1110.9663
    0.851.235011.8600.9643
    0.801.199012.6200.8920
    0.752.996032.9600.8793
    0.706.135069.8600.9886
    Note: Na—Number of cycle loads.
    下载: 导出CSV

    表  5  不同应力比下ECC的拉伸疲劳寿命

    Table  5.   Tensile fatigue life of ECC under different stress ratios

    Stress
    level $S$
    Average fatigue
    life $N$
    ${\text{lg}}N$${\text{lg}}S$
    0.9537.21.5705–0.0223
    0.90815.62.9115–0.0458
    0.8512321.84.0907–0.0706
    0.8029963.64.4766–0.0969
    0.7553173.84.7257–0.1249
    0.7082309.84.9155–0.1549
    下载: 导出CSV

    表  6  不同应力水平S及失效概率F下ECC的疲劳寿命

    Table  6.   Fatigue life of ECC under different failure probabilities F and stress levels S

    Probability
    of failure F
    Stress level S
    0.950.900.850.800.750.70
    0.05817133731282224754338
    0.101246239557022828961103
    0.20181244397106623634069053
    0.30242326428157664249974539
    0.40303748598212734791279034
    0.503556311009274405305183065
    下载: 导出CSV

    表  7  ECC的S-lgN-F疲劳方程的回归参数

    Table  7.   Regression parameters of S-lgN-F fatigue equation of ECC

    Fatigue equationFailure probability FR2
    ${{S}} = - 0.0098{({\rm{lg}}{{N}})^2} - 0.0037{\rm{lg}}{{N}} + 0.9430$0.050.9701
    ${{S}} = - 0.0125{({\rm{lg}}{{N}})^2} + 0.0117{\rm{lg}}{{N}} + 0.9377$0.100.9749
    ${{S}} = - 0.0164{({\rm{lg}}{{N}})^2} + 0.0364{\rm{lg}}{{N}} + 0.9185$0.200.9752
    ${{S}} = - 0.0193{({\rm{lg}}{{N}})^2} + 0.0564{\rm{lg}}{{N}} + 0.8986$0.300.9721
    ${{S}} = - 0.0218{({\rm{lg}}{{N}})^2} + 0.7039{\rm{lg}}{{N}} + 0.8790$0.400.9672
    ${{S}} = - 0.0239{({\rm{lg}}{{N}})^2} + 0.0891{\rm{lg}}{{N}} + 0.8608$0.500.9605
    下载: 导出CSV
  • [1] LI V C. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE,1992,188(11):2246-2264.
    [2] LI V C. Engineered cementitious composites-Tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology,1998,1(3):1-38.
    [3] SUTHIWARAPIRA K P. Flexural fatigue failure characteristics of an engineered cementitious composites and polymer cement mortars[J]. Materials, Concrete Structural. Pavement, JSCE, 2002, 57: 121-134.
    [4] CACHIM P B, FIGUEIRAS J A, PEREIRA P A A. Fatigue behavior of fiber-reinforced concrete in compression[J]. Cement and Concrete Composites,2002,24(2):211-217. doi: 10.1016/S0958-9465(01)00019-1
    [5] 邓明科, 杨铄, 梁兴文. 高延性混凝土单面加固构造柱约束砖砌体墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(4):10-19.

    DENG Mingke, YANG Shuo, LIANG Xingwen. Experimental studies on seismic behavior of confined masonry walls strengthened with single ECC layer[J]. China Civil Engi-neering Journal,2018,51(4):10-19(in Chinese).
    [6] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3):159-166.

    DENG Mingke, ZHANG Yangxi, HU Hongbo. Experimental study and calculation of the shear capacity of RC columns strengthened with high ductile concrete[J]. Engineering Mechanics,2018,35(3):159-166(in Chinese).
    [7] 霍海峰, 刘汉磊, 杨雅静, 等. ECC单轴拉伸疲劳变形特性及寿命预测[J]. 复合材料学报, 2022, 39(7): 3404-3414 .

    HUO Haifeng, LIU Hanlei, YANG Yajing, et al. Fatigue deformation characteristics and life prediction of ECC under uniaxial tension[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3404-3414(in Chinese).
    [8] 余江滔, 许万里, 张远淼. ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18(6):958-963, 970. doi: 10.3969/j.issn.1007-9629.2015.06.008

    YU Jiangtao, XU Wanli, ZHANG Yuanmiao. Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials,2015,18(6):958-963, 970(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.008
    [9] 林建辉, 余江滔, LI Victor C. PVA纤维增强水泥基复合材料热处理后的力学性能[J]. 复合材料学报, 2016, 33(1):116-122.

    LIN Jianhui, YU Jiangtao, LI Victor C. Mechanical properties of PVA fiber reinforced engineered cementitious composite after thermal treatment[J]. Acta Materiae Compositae Sinica,2016,33(1):116-122(in Chinese).
    [10] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese).
    [11] 韦选纯, 汤盛文, 何真, 等. 聚乙烯醇纤维增强钢渣粉-水泥复合材料基本力学性能及微观结构[J]. 复合材料学报, 2019, 36(8):1918-1925.

    WEI Xuanchun, TANG Shengwen, HE Zhen, et al. Mecha-nical and microstructural characteristics of polyvinyl alcohol fiber reinforced cementitious composites containing steel slag powder[J]. Acta Materiae Compositae Sinica,2019,36(8):1918-1925(in Chinese).
    [12] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642.

    CAO Mingli, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composites[J]. Journal of the Chinese Ceramic Society,2015,43(5):632-642(in Chinese).
    [13] 周英武, 胡智恒, 胡彪. 受压区局部钢筋混凝土梁抗剪性能[J]. 深圳大学学报理工版, 2021, 38(5):479-488. doi: 10.3724/SP.J.1249.2021.05479

    ZHOU Yingwu, HU Zhiheng, HU Biao. Shear performance of local reinforced concrete beams in compression zone[J]. Journal of Shenzhen University Science and Technology Edition,2021,38(5):479-488(in Chinese). doi: 10.3724/SP.J.1249.2021.05479
    [14] 金文. 超高性能混凝土弯曲疲劳性能及破坏中裂缝发展研究[D]. 广州: 华南理工大学, 2018.

    JIN Wen. Research on the flexural fatigue properties and fracture development of ultra-high-performance concrete[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
    [15] DENG M, PAN J, SUN H. Bond behavior of deformed bar embedded in engineered cementitious composites under cyclic loading[J]. Construction and Building Materials,2019,197(9):164-174.
    [16] DENG M, DONG Z, MA P. Cyclic loading tests of flexural-failure dominant URM walls strengthened with engi-neered cementitious composite[J]. Engineering Structures,2019,194:173-182. doi: 10.1016/j.engstruct.2019.05.073
    [17] DENG M, YANG S. Cyclic testing of unreinforced masonry walls retrofitted with engineered cementitious compo-sites[J]. Construction & Building Materials,2018,177:395-408.
    [18] AHMAD K E, ABD-ELRAHMAN A M. Updating a nonlinear discriminant function estimated from a mixture of two Weibull distributions[J]. Mathematical & Computer Modelling,1994,19(11):41-51.
    [19] 朱劲松. 混凝土双轴疲劳试验与破坏预测理论研究[D]. 大连: 大连理工大学, 2003.

    ZHU Jinsong. Research on concrete biaxial fatigue test and failure prediction theory[D]. Dalian: Dalian University of Technology, 2003(in Chinese).
    [20] 杨健辉. 侧压下混凝土静态受拉与受拉疲劳性能研究[D]. 大连: 大连理工大学, 2003.

    YANG Jianhui. Research on static tensile and tensile fatigue properties of concrete under lateral compression[D]. Dalian: Dalian University of Technology, 2003(in Chinese).
    [21] 易勇. 高韧性工程水泥基复合材料基本力学[D]. 北京: 北京工业大学, 2018.

    YI Yong. Basic mechanics of high toughness engineering cement-based composites[D]. Beijing: Beijing University of Technology, 2018(in Chinese).
    [22] 张小辉. 钢纤维混凝土弯曲疲劳及其损伤特性和细观强度研究[D]. 昆明: 昆明理工大学, 2001.

    ZHANG Xiaohui. Research on bending fatigue and damage characteristics and meso-strength of steel fiber concrete[D]. Kunming: Kunming University of Science and Technology, 2001(in Chinese).
    [23] 中国建筑材料联合会. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Standard test method for the mechanical properties of the ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [24] 中国建筑科学研究院. 普通混凝土拌合物性能试验方法标准: GB/T 50081—2016[S]. 北京: 中国建筑工业出版社, 2016.

    China Academy of Building Research. Standard for test method of performance on ordinary fresh concrete: GB/T 50081-2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).
    [25] 靳敏超, 沈健, 冯仲仁. 带预裂纹混凝土单双轴疲劳试验分析[J]. 施工技术, 2019, 48(S1):452-454.

    JIN Minchao, SHEN Jian, FENG Zhongren. Analysis of single and biaxial fatigue test of pre-cracked concrete[J]. Construction Technology,2019,48(S1):452-454(in Chinese).
    [26] JING L. Experimental and analytical study on uniaxial compressive fatigue behavior of self-compacting rubber lightweight aggregate concrete[J]. Construction and Building Materials,2020,237:1-13.
    [27] 白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D]. 沈阳: 东北大学, 2011.

    BAI Xiaohong. Application of digital image correlation method in study of material deformation[D]. Shenyang: Northeastern University, 2011(in Chinese).
    [28] YIN L H. Experimental study on the fatigue damage of high strength concrete under uniaxial compression[J]. Key Engineering Materials,2014(619):109-115.
    [29] CHEN X D, BU J W, FAN X Q, et al. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension[J]. Construction and Building Materials, 2017, 133(2): 367-375.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  507
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2022-02-07
  • 录用日期:  2022-02-10
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回