留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体纤维的制备及应用研究进展

孔亚杰 唐明宇 符婉琳 孟祥钰 孙岳明 代云茜

孔亚杰, 唐明宇, 符婉琳, 等. 光子晶体纤维的制备及应用研究进展[J]. 复合材料学报, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002
引用本文: 孔亚杰, 唐明宇, 符婉琳, 等. 光子晶体纤维的制备及应用研究进展[J]. 复合材料学报, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002
KONG Yajie, TANG Mingyu, FU Wanlin, et al. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002
Citation: KONG Yajie, TANG Mingyu, FU Wanlin, et al. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002

光子晶体纤维的制备及应用研究进展

doi: 10.13801/j.cnki.fhclxb.20230423.002
基金项目: 江苏省“六大人才高峰”项目(XCL-082);江苏省优势学科建设项目
详细信息
    通讯作者:

    孙岳明,博士,教授,博士生导师,研究方向为材料分子设计、新能源材料 E-mail: sun@seu.edu.cn

    代云茜,博士,教授,博士生导师,研究方向为清洁能源、催化、环境领域中低维纳米材料的构效关系及其表、界面效应E-mail: daiy@seu.edu.cn

  • 中图分类号: O734;TB34;TB332

Research progress in the preparation and application of photonic crystal fibers

Funds: Project of Six Talents Climax Foundation of Jiangsu (XCL-082); Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 摘要: 光子晶体(PC)是介质材料经周期性排列后生成的结构,它凭借独特的光调控特性在光学和光子学领域获得了广泛关注。从其结构、机制、材料和功能应用等多角度出发,开展了深入的研究和持续性拓展。特别地,凭借高比表面积和三维结构可控等优势,光子晶体纤维(PCFs)为发展检测传感、智能穿戴、光电传输等工业产业提供了新机会。本文综述了PC的结构生色机制、基元材料及PCFs的制备方法和应用,其中突出介绍了静电纺丝技术在PCFs领域的贡献,探讨了PCFs在织物印染及智能化、响应及传感检测和疏水调控等方面的功能性应用。最后提出了PCFs在宏量制备和实际生产应用方面存在的问题,并展望了未来可能的研究重点和方向。

     

  • 图  1  不同维度的3种光子晶体(PC)模型:(a) 1D PC结构;(b) 2D PC结构;(c) 3D PC结构

    Figure  1.  Three kinds of photonic crystal (PC) models in different dimensions: (a) 1D PC structure; (b) 2D PC structure; (c) 3D PC structure

    图  2  产生结构色的光学效应和PC显色结构的示意图:(a) 多层膜干涉效应;(b) 光栅衍射效应;(c) 相干散射效应;(d) 非相干散射效应[9];(e) PC;(f) 非晶PC[13]

    Figure  2.  Schematic diagram of optical effects that produce structural color and color structure of PC: (a) Multi-film interference effect; (b) Diffraction effect of grating; (c) Coherent scattering effect; (d) Incoherent scattering effect[9]; (e) PC; (f) Amorphous PC[13]

    dA, dB—Thickness of A and B; nA, nB—Refractive index of A and B; θA, θB—Angle of refraction at A and B; θ1, θ2—Angle of incidence and diffraction; d—Groove spacing in (b); d—Lattice spacing in (e); θ—Angle of incidence

    图  3  光子晶体纤维(PCFs)的制备方法[14, 32-35]

    Figure  3.  Preparation method of photonic crystal fibers (PCFs)[14, 32-35]

    v—Drawing speed; k—Layer number of colloid coating; L—Meniscus height; C—Carbon; NIPAM—N-isopropylacrylamide; MBAAM—N, N-methylene-bisacrylamide; APS—Ammonium persulfate; CNCs—Colloidal nanocrystal clusters; TEMED—N, N, N', N'-tetramethylethy-lenediamine

    图  4  静电纺丝制备PCFs:(a) 纳米粒子与高分子聚合物前驱液通过静电纺丝技术及后处理制备PC结构色纤维 [32];(b) 静电纺丝制备ZnO种子层及其显色 [12]

    Figure  4.  Preparation of PCFs by electrospinning: (a) PC structured color fibers were prepared by electrospinning and post-processing of nanoparticles and polymer precursor solution[32]; (b) ZnO seed layer prepared by electrospinning and its color rendering[12]

    图  5  微流控纺丝法制备SiO2 PCFs[33]

    Figure  5.  Preparation of SiO2 PCFs by microfluidic spinning[33]

    图  6  挤压固化法制备磁性Fe3O4粒子混合聚N-异丙基丙烯酰胺凝胶1D链状热响应PCFs[14]

    Figure  6.  1D chain thermal response PCFs of magnetic Fe3O4 particle mixed poly (N-isopropylacrylamide) gel prepared by extrusion curing method[14]

    图  7  制备反蛋白石PCFs[34]

    Figure  7.  Preparation of anti-opal PCFs[34]

    图  8  将玻璃纤维垂直浸渍到胶体分散体中并保留玻璃纤维模板得到PCFs[35]

    Figure  8.  PCFs obtained by glass fiber vertically impregnated into colloidal dispersion and the glass fiber template retained[35]

    图  9  依次喷涂SiO2胶体粒子和聚丙烯酸酯(PA)制备彩色聚酯(PET)织物的示意图及其微观形貌[58]

    Figure  9.  Schematic diagram and microstructures of color polyester (PET) fabric prepared by spraying SiO2 colloidal particles and polyacrylate (PA) in turn[58]

    图  10  由PCFs编制的手链 (a)、带图案的织物 (b) 及纤维的应力变色 (c)[54]

    Figure  10.  Bracelet made by PCFs (a), patterned fabric (b) and stress discoloration of such fibers (c)[54]

    图  11  应用机械变色电子纺织品(MET)传感器检测人体关节运动[28]

    Figure  11.  Mechanochromic electronic textile (MET) sensor used to detect human joint motion[28]

    Δλ—Wavelength difference; R—Real-time resistances; ΔR—Real-time resistance change amount; R0—Initial resistances; ΔR/R0—Gauge factor

    图  12  SiO2-PA/PET织物的可图案化 (a)、透气性 (b)、角度依赖特性及其大规模合成的潜力 (c)[58]

    Figure  12.  Patternability (a), air permeability (b), angle-dependent properties and their potential for large-scale synthesis (c) of SiO2-PA/PET fabrics[58]

    图  13  基于反蛋白石碳纤维电极的可穿戴眼健康监测传感器[68]

    Figure  13.  Wearable eye health monitoring sensor based on inverse opal carbon fiber electrode[68]

    d1, d2—Distance between the two electrodes; d—Plate distance; A—Twin electrode-based supercapacitor for eye-movement monitoring; B—Parallel electrodes for tear glucose sensing; C—Parallel electrodes for tear lactoferrin sensing; C0—Capacitance initial value; ΔC—Capacitance change amount

    图  14  基于热塑性聚氨酯(TPU)/Fe3O4/PC纤维薄膜制备磁驱动动态仿生蝴蝶[70]

    Figure  14.  Magnetically driven dynamic biomimetic butterfly fabricated by thermoplastic polyurethane (TPU)/Fe3O4/PC fiber film[70]

    图  15  聚碳酸酯和聚偏氟乙烯制备的PCFs的不同颜色 ((a), (b))、微观形貌(c)及其接触角(d)[71]

    Figure  15.  Different colors ((a), (b)), morphology (c), and contact angle (d) of PCFs prepared by polycarbonate and polyvinylidene fluoride[71]

    图  16  不同类别的3D打印PCFs[72]

    Figure  16.  Different classes of 3D printed PCFs[72]

  • [1] WU Y, WANG Y, ZHANG S F, et al. Artificial chameleon skin with super-sensitive thermal and mechanochromic response[J]. ACS Nano,2021,15(10):15720-15729. doi: 10.1021/acsnano.1c05612
    [2] ISAPOUR G, LATTUADA M. Bioinspired stimuli-responsive color-changing systems[J]. Advanced Materials,2018,30(19):e1707069. doi: 10.1002/adma.201707069
    [3] BIAN F K, SUN L Y, CHEN H X, et al. Bioinspired perovskite nanocrystals-integrated photonic crystal microsphere arrays for information security[J]. Advanced Science,2022,9(9):e2105278. doi: 10.1002/advs.202105278
    [4] GONG X B, HOU C Y, ZHANG Q H, et al. Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release[J]. ACS Applied Materials & Interfaces,2020,12(46):51225-51235.
    [5] LIU W, MA H L, WALSH A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews,2019,116:109436. doi: 10.1016/j.rser.2019.109436
    [6] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [7] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [8] HUANG M L, LU S G, REN Y C, et al. Structural coloration and its application to textiles: A review[J]. The Journal of the Textile Institute,2019,111(5):756-764.
    [9] SUN J Y, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances,2013,3(35):14862-14889. doi: 10.1039/c3ra41096j
    [10] 周敬伊, 王慧, 杨辉宇, 等. 光子晶体结构色织物研究进展[J]. 化学通报, 2021, 84(10):1008-1022. doi: 10.14159/j.cnki.0441-3776.2021.10.002

    ZHOU Jingyi, WANG Hui, YANG Huiyu, et al. Research progress in photonic crystal induced structural colored fabrics[J]. Chemistry Bulletin,2021,84(10):1008-1022(in Chinese). doi: 10.14159/j.cnki.0441-3776.2021.10.002
    [11] ROTHAMMER M, ZOLLFRANK C, BUSCH K, et al. Tailored disorder in photonics: Learning from nature[J]. Advanced Optical Materials,2021,9(19):2100787. doi: 10.1002/adom.202100787
    [12] KIM G H, AN T, LIM G. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters,2018,13:204. doi: 10.1186/s11671-018-2614-2
    [13] 陈欢欢, 高伟洪, 陈凯凯, 等. 光子晶体结构色纺织材料的制备及应用研究进展[J]. 化工进展, 2022, 41(8):4327-4340.

    CHEN Huanhuan, GAO Weihong, CHEN Kaikai, et al. Research progress on the fabrication and application of textile materials with photonic crystal structural colors[J]. Chemical Industry and Engineering Progress,2022,41(8):4327-4340(in Chinese).
    [14] SHANG S L, ZHU P, WANG H Z, et al. Thermally responsive photonic fibers consisting of chained nanoparticles[J]. ACS Applied Materials & Interfaces,2020,12(45):50844-50851. doi: 10.1021/acsami.0c14749
    [15] WU X J, LAN D P, ZHANG R F, et al. Fabrication of opaline ZnO photonic crystal film and its slow-photon effect on photoreduction of carbon dioxide[J]. Langmuir,2019,35(1):194-202. doi: 10.1021/acs.langmuir.8b03327
    [16] WANG F, FENG L, QIN Y, et al. Dual functional SiO2@TiO2 photonic crystals for dazzling structural colors and enhanced photocatalytic activity[J]. Journal of Materials Chemistry C,2019,7(38):11972-11983. doi: 10.1039/C9TC03426A
    [17] YANG D Q, LUO W J, HUANG Y D, et al. Facile synthesis of monodispersed SiO2@Fe3O4 core-shell colloids for printing and three-dimensional coating with noniridescent structural colors[J]. ACS Omega,2019,4(1):528-534. doi: 10.1021/acsomega.8b02987
    [18] ZHENG L L, TRAN T N T, ZHALMURATOVA D, et al. Colorimetric voltmeter using colloidal Fe3O4@SiO2 nanoparticles as an overpotential alarm system for zinc-air batteries[J]. ACS Applied Nano Materials,2019,2(11):6982-6988. doi: 10.1021/acsanm.9b01464
    [19] LIU T Y, LIU T Y, GAO F Y, et al. Structural color spectral response of dense structures of discoidal particles generated by evaporative assembly[J]. Journal of Physical Chemistry B,2022,126(6):1315-1324. doi: 10.1021/acs.jpcb.1c10015
    [20] FATHI F, CHAGHAMIRZAEI P, ALLAHVEISI S, et al. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,611:125842. doi: 10.1016/j.colsurfa.2020.125842
    [21] WANG X H, LI Y C, ZHENG J Y, et al. Polystyrene@poly(methyl methacrylate-butyl acrylate) core-shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors[J]. ACS Applied Nano Materials,2022,5(1):729-736. doi: 10.1021/acsanm.1c03474
    [22] HUANG Y, LIU L X, YANG X, et al. A diverse micromorphology of photonic crystal chips for multianalyte sensing[J]. Small,2021,17(12):e2006723. doi: 10.1002/smll.202006723
    [23] DONG X, ZHANG Z L, ZHAO Y Y, et al. Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite films with balanced ordered/disordered arrays[J]. Composites Part B: Engineering,2022,229:109456. doi: 10.1016/j.compositesb.2021.109456
    [24] LAI X T, PENG J S, CHENG Q F, et al. Bioinspired color switchable photonic crystal silicone elastomer kirigami[J]. Angewandte Chemie, International Edition in English,2021,60(26):14307-14312. doi: 10.1002/anie.202103045
    [25] LIU J C, WANG Y, WANG J X, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch[J]. ACS Applied Materials & Interfaces,2021,13(10):12383-12392.
    [26] CHEN J L, LIU P M, DU X, et al. Clickable colloidal photonic crystals for structural color pattern[J]. Langmuir,2018,34(44):13219-13224. doi: 10.1021/acs.langmuir.8b00996
    [27] MA W, KOU Y S, ZHAO P, et al. Bioinspired structural color patterns derived from 1D photonic crystals with high saturation and brightness for double anti-counterfeiting decoration[J]. ACS Applied Polymer Materials,2020,2(4):1605-1613. doi: 10.1021/acsapm.0c00047
    [28] ZHAO K, CAO X F, ALSAID Y, et al. Interactively mechano chromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics[J]. Chemical Engineering Journal,2021,426(22):130870. doi: 10.1016/j.cej.2021.130870
    [29] HUANG H W, LI H T , SHEN X Q, et al. Gecko-inspired smart photonic crystal films with versatile color and brightness variation for smart windows[J]. Chemical Engineering Journal,2022,429:132437. doi: 10.1016/j.cej.2021.132437
    [30] 李壮, 金梦婷, 须秋洁, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2):637-644.

    LI Zhuang, JIN Mengting, XU Qiujie, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 sol[J]. Acta Materiae Compositae Sinica,2022,39(2):637-644(in Chinese).
    [31] ZHANG Y L, WANG Y, WANG H, et al. Super-elastic magnetic structural color hydrogels[J]. Small,2019,15(35):e1902198. doi: 10.1002/smll.201902198
    [32] YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces,2015,7(25):14064-14071.
    [33] LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Materials Letters,2019,242:179-182. doi: 10.1016/j.matlet.2019.01.093
    [34] MOON J H, KIM S, YI G R, et al. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries[J]. Langmuir,2004,20(5):2033-2035. doi: 10.1021/la0358015
    [35] YUAN W, LI Q S, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS Applied Materials & Interfaces,2019,11(21):19388-19396.
    [36] WANG C Y, WANG S L, PAN H, et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties[J]. Science Advance,2020,6(36):eabb4700.
    [37] WANG C Y, HOU Y Q, WANG X Y, et al. Structural and interfacial effects on drug release kinetics of liquid-based fibrous catheter[J]. Advanced Fiber Materials,2022,4(6):1645-1655. doi: 10.1007/s42765-022-00201-3
    [38] LEI W, LI H, TANG Y X, et al. Progress and perspectives on electrospinning techniques for solid-state lithium batteries[J]. Carbon Energy,2022,4(4):539-575. doi: 10.1002/cey2.180
    [39] CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527
    [40] 王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2022, 40(3):1286-1297.

    WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica,2022,40(3):1286-1297(in Chinese).
    [41] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [42] 刘桦, 王昊, 张程, 等. 无机纳米粒子/聚合物复合电纺纤维的制备及其仿生矿化研究[J]. 材料研究与应用, 2020, 14(4):294-300.

    LIU Hua, WANG Hao, ZHANG Cheng, et al. The preparation and biomimetic mineralization of inorganic nanoparticles/polymer composite nanofibers[J]. Materials Research and Application,2020,14(4):294-300(in Chinese).
    [43] YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir,2012,28(43):15418-15424. doi: 10.1021/la303312q
    [44] YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science,2019,37(8):729-736. doi: 10.1007/s10118-019-2286-0
    [45] 肖浪. 金属纳米颗粒表面等离激元作用下的结构色纤维研究[D]. 苏州: 苏州大学, 2014.

    XIAO Lang. Fabrication research of structurally-colored fibers basing on metal nanoparticles SPPs mechanism[D]. Suzhou: Soochow University, 2014(in Chinese).
    [46] CHENG X T, LIU Y T, SI Y, et al. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning[J]. Nature Communications,2022,13(1):2637. doi: 10.1038/s41467-022-30435-z
    [47] BIAN F K, SUN L Y, CAI L J, et al. Colloidal crystals from microfluidics[J]. Small,2020,16(9):e1903931. doi: 10.1002/smll.201903931
    [48] ZHANG Y, TIAN Y, XU L L, et al. Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a rayleigh instability guiding strategy[J]. Chemical Communications (Cambridge, England),2015,51(99):17525-17528. doi: 10.1039/C5CC08263C
    [49] CHENG Y, ZHANG X X, LIU R, et al. Bioinspired vascular stents with microfluidic electrospun multilayer coatings for preventing in-stent restenosis[J]. Advanced Healthcare Materials,2022,11(17):e2200965. doi: 10.1002/adhm.202200965
    [50] JIN J, SAIDING Q, WANG X J, et al. Rapid extracellular matrix remodeling via gene-electrospun fibers as a "patch" for tissue regeneration[J]. Advanced Functional Materials,2021,31(15):2009879. doi: 10.1002/adfm.202009879
    [51] FINLAYSON C E, GODDARD C, PAPACHRISTODOULOU E, et al. Ordering in stretch-tunable polymeric opal fibers[J]. Optics Express,2011(19):3144-3154.
    [52] BOYLE B M, FRENCH T A, PEARSON R M, et al. Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers[J]. ACS Nano,2017,11(3):3052-3058. doi: 10.1021/acsnano.7b00032
    [53] KOLLE M, LETHBRIDGE A, KREYSING M, et al. Bio-inspired band-gap tunable elastic optical multilayer fibers[J]. Advanced Materials,2013,25(15):2239-2245. doi: 10.1002/adma.201203529
    [54] ZHANG J, HE S S, LIU L M, et al. The continuous fabrication of mechanochromic fibers[J]. Journal of Materials Chemistry C,2016,4(11):2127-2133. doi: 10.1039/C5TC04073F
    [55] LIU Z F, ZHANG Q H, WANG H Z, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method[J]. Nanoscale,2013,5(15):6917-6922. doi: 10.1039/c3nr01766d
    [56] ZHAO Y L, LI R, WANG B S, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy[J]. ACS Nano,2023,17(3):2893-2900. doi: 10.1021/acsnano.2c11296
    [57] HAN C, KIM H, JUNG H, et al. Origin and biomimicry of weak iridescence in black-billed magpie feathers[J]. Optica,2017,4(4):464-467. doi: 10.1364/OPTICA.4.000464
    [58] HE Y Y, LIU L Y, FU Q Q, et al. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and dur- able fabrics with saturated structural colors[J]. Advanced Functional Materials,2022,32(24):2200330. doi: 10.1002/adfm.202200330
    [59] ZHOU C T, QI Y, ZHANG S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments,2020,176:108226. doi: 10.1016/j.dyepig.2020.108226
    [60] LIU G J, ZHOU L, ZHANG G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology[J]. Materials & Design,2017,114:10-17.
    [61] NIU W B, ZHANG L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces,2019,11(35):32261-32268.
    [62] GONG X B, HOU C Y, ZHANG Q H, et al. Solvatochromic structural color fabrics with favorable wearability properties[J]. Journal of Materials Chemistry C,2019,7(16):4855-4862. doi: 10.1039/C9TC00580C
    [63] LI Y C, FAN Q S, WANG X H, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials,2021,31(19):2010746. doi: 10.1002/adfm.202010746
    [64] WANG H, ZHANG H, CHEN Z Y, et al. Polymer-based responsive structural color materials[J]. Progress in Materials Science,2023,135:101091. doi: 10.1016/j.pmatsci.2023.101091
    [65] ZHAO R L, HE Y, HE Y, et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection[J]. ACS Applied Materials & Interfaces,2023,15(12):16063-16071.
    [66] CHEN Z Y, YU Y R, GUO J H, et al. Heterogeneous structural color microfibers for cardiomyocytes tug-of-war[J]. Advanced Functional Materials,2021,31(9):2007527. doi: 10.1002/adfm.202007527
    [67] CHENG J, ZHANG L L, ZHAO K, et al. Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors[J]. Industrial & Engineering Chemistry Research,2021,60(23):8442-8450.
    [68] GAO B B, HE Z Z, HE B F, et al. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon[J]. Sensors and Actuators B: Chemical,2019,288:734-741. doi: 10.1016/j.snb.2019.03.029
    [69] YU Y R, FU F F, SHANG L R, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials,2017,29(18):1605765. doi: 10.1002/adma.201605765
    [70] YU X Q, HU X H, ZHU L L, et al. Fabrication of magnetically driven photonic crystal fiber film via microfluidic blow-spinning towards dynamic biomimetic butterfly[J]. Materials Letters,2021,291:129450. doi: 10.1016/j.matlet.2021.129450
    [71] KHUDIYEV T, DOGAN T, BAYINDIR M. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L. ) drakes[J]. Scientific Reports,2014,4(4):4718.
    [72] BERTONCINI A, LIBERALE C. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices[J]. Optica,2020,7(11):1487-1494. doi: 10.1364/OPTICA.397281
  • 加载中
图(16)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  316
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-03-23
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回