留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体纤维的制备及应用研究进展

孔亚杰 唐明宇 符婉琳 孟祥钰 孙岳明 代云茜

孔亚杰, 唐明宇, 符婉琳, 等. 光子晶体纤维的制备及应用研究进展[J]. 复合材料学报, 2023, 41(0): 1-16
引用本文: 孔亚杰, 唐明宇, 符婉琳, 等. 光子晶体纤维的制备及应用研究进展[J]. 复合材料学报, 2023, 41(0): 1-16
Yajie KONG, Mingyu TANG, Wanlin FU, Xiangyu MENG, Yueming SUN, Yunqian DAI. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica.
Citation: Yajie KONG, Mingyu TANG, Wanlin FU, Xiangyu MENG, Yueming SUN, Yunqian DAI. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica.

光子晶体纤维的制备及应用研究进展

基金项目: 江苏省“六大人才高峰”项目XCL-082;江苏省优势学科建设项目
详细信息
    通讯作者:

    孙岳明,博士,教授,博士生导师,研究方向为材料分子设计、新能源材料 E-mail: sun@seu.edu.cn

    代云茜,博士,教授,博士生导师,研究方向为清洁能源、催化、环境领域中低维纳米材料的构效关系及其表、界面效应 E-mail: daiy@seu.edu.cn

  • 中图分类号: O734;TB34

Research progress in the preparation and application of photonic crystal fibers

Funds: Project of Six Talents Climax Foundation of Jiangsu (XCL-082); Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 摘要: 光子晶体(PC)是介质材料经周期性排列后产生的结构,它凭借独特的光调控特性在光学和光子学领域获得了广泛关注。其中,光子晶体纤维(PCFs)凭借高比表面积和三维结构可控等优势,为发展检测传感、智能穿戴、光电传输等工业产业提供了新机会。本文从PC的结构生色机制、基元材料出发,综述了PCFs的制备方法和应用,并展望了未来可能的研究重点和方向。光子晶体是折射率不同的两种以上介质形成的具有一定序列的周期性结构,能够产生类似于半导体中电子带隙的光子带隙(PBG)。当可见光通过这一结构时,波长处于PBG范围内的光被禁止继续传播,展现出对光波的选择和调制能力。PC结构色凭借高饱和度、高亮度、永不褪色、绿色环保等优势,有望解决传统纺织印刷行业的高污染、高能耗等棘手问题。制备和应用研究的基础是原理和机制,结构生色的主要机制有薄膜干涉、光栅衍射、光散射、漫反射等效应。PC最主要的特征就是PBG,光波遵循布拉格公式,经过强烈散射或多次干涉形成独特的光学显示。此外,相较于规整周期性结构的PC,非晶PC拥有各向同性、非虹彩效应和光局域化等优点,能满足光电和印染等多个领域的特定需求。PC的成功构建离不开基元材料和构造策略这两大关键因素,通过选择合适的基元材料,采取可行的构造策略可以设计特定光子应用的PC。依据组成,制备PC的基元材料可以分为无机材料、有机材料和有机-无机复合材料三大类。PCFs是具有PC结构的纤维材料,根据是否借助模板,制备PCFs的方法可以分为直接制备法和模板合成法,根据是否去除模板又可分为去除模板法和保留模板法。在直接制备法中,静电纺丝作为一种工艺简单、损耗低、绿色环保、可快速制备大量PCFs的方法,具备良好的灵活性和易操作性,能轻松生产直径从几十纳米到几微米的连续纤维。同时,由静电纺丝得到的纳米纤维具有高长径比、高比表面积、孔隙可控的特点以及出色的力学性能和生物相容性。快速发展的绿色静电纺丝技术将对PFCs的简单制备、结构优化、产业化、量产和大规模应用起到重要推动作用。PCFs的周期性微结构精巧地调控着光子的运动,向人们呈现出高亮度和永不褪色的结构生色。PCFs在有色纺织和印刷方面的实际生产中已经取得一定成果,并展现出优异性能和广阔前景。通过改变晶格间距等结构参数或基元材料,PCFs表现出动态可调的变色性能,尤其是引入光、电、溶剂等外部因素敏感物质后,进一步拓展了PCFs的应用领域。此外,PCFs在疏水、光纤等领域也有着独特的应用优势。为推动目前存在的制备技术和生产设备开发低而导致的材料实际应用存在局限性等问题的解决,本文提出以下方向可作为重点开展研究:开发连续流工艺以提高基元材料产率,借助静电纺丝制备技术调控结构本征特性,充分发挥静电纺丝连续化制备高长径比纳米纤维优势,综合PC和纤维的双重特点实现材料智能化。相信在科技高度发展的背景下,随着研究的不断深入和技术的快速发展,PCFs将在智能穿戴、微型机器人、全息显示等领域展现更加出彩的性能。

     

  • 图  1  不同维度的三种光子晶体(PC)模型:1D PC结构(a),2D PC结构(b),3D PC结构(c)

    Figure  1.  Three kinds of photonic crystal (PC) models in different dimensions: 1D PC structure (a), 2D PC structure (b), 3D PC structure (c)

    图  2  产生结构色的光学效应和光子晶体显色结构的示意图:(a)多层膜干涉效应,(b)光栅衍射效应,(c)相干散射效应,(d)非相干散射效应 [9];(e) PC,(f)非晶PC [13]

    Figure  2.  Schematic diagram of optical effects that produce structural color and color structure of photonic crystals: (a) multi-film interference effect, (b) diffraction effect of grating, (c) coherent scattering effect, (d) incoherent scattering effect[9]; (e) PC, (f) amorphous PC [13]

    图  3  光子晶体纤维的制备方法[14,32-35]

    Figure  3.  Preparation method of photonic crystal fibers[14,32-35]

    图  4  静电纺丝制备光子晶体纤维(PCFs):(a)纳米粒子与高分子聚合物前驱液通过静电纺丝技术及后处理制备PC结构色纤维 [32];(b)静电纺丝制备ZnO种子层及其显色 [12]

    Figure  4.  Preparation of photonic crystal fibers (PCFs) by electrospinning: (a) PC structured color fibers were prepared by electrospinning and post-processing of nanoparticles and polymer precursor solution [32]; (b) ZnO seed layer prepared by electrospinning and its color rendering [12]

    图  5  微流控纺丝法制备SiO2 PCFs[33]

    Figure  5.  Preparation of SiO2 PCFs by microfluidic spinning[33]

    图  6  挤压固化法制备磁性Fe3O4粒子混合聚N-异丙基丙烯酰胺凝胶1D链状热响应PCFs[14]

    Figure  6.  1D chain thermal response PCFs of Magnetic Fe3O4 particle mixed poly (N-isopropylacrylamide) gel prepared by extrusion curing method[14]

    NIPAM—N-isopropylacrylamide;MBAAM—N,N-methylene-bisacrylamide;APS—ammonium persulfate;CNCs—colloidal nanocrystal clusters;TEMED—N,N,N’,N-tetramethylethy-lenediamine

    图  7  制备反蛋白石PCFs[34]

    Figure  7.  Preparation of anti-opal PCFs[34]

    图  8  将玻璃纤维垂直浸渍到胶体分散体中并保留玻璃纤维模板得到PCFs[35]

    Figure  8.  Glass fiber was vertically impregnated into colloidal dispersion and the glass fiber template was retained to obtain PCFs[35]

    图  9  依次喷涂SiO2胶体粒子和PA制备彩色PET织物的示意图及其微观形貌[29]

    Figure  9.  The schematic diagram and microstructure of color PET fabric prepared by spraying SiO2 colloidal particles and PA in turn[29]

    PA—polyacrylate;PET—polyester

    图  10  由PCFs编制的手链(a)、带图案的织物(b)及纤维的应力变色(c)[54]

    Figure  10.  Bracelet made by PCFs (a), patterned fabric (b), and stress discoloration of such fibers (c)[54]

    图  11  应用MET传感器检测人体关节运动[61]

    Figure  11.  The MET sensor was used to detect human joint motion[61]

    R—real-time resistances;R0—initial resistances;MET—Mechanochromic electronic textile

    图  12  SiO2-PA/PET织物的可图案化(a)、透气性(b)、角度依赖特性及其大规模合成的潜力(c)[29]

    Figure  12.  Patternability (a), air permeability (b), angle-dependent properties of SiO2-PA/PET fabrics and their potential for large-scale synthesis (c)[29]

    PA—polyacrylate;PET—polyeste

    图  13  基于反蛋白石碳纤维电极的可穿戴眼健康监测传感器[68]

    Figure  13.  Wearable eye health monitoring sensor based on inverse opal carbon fiber electrode[68]

    图  14  基于TPU/Fe3O4/PC纤维薄膜制备磁驱动动态仿生蝴蝶[70]

    Figure  14.  Magnetically driven dynamic biomimetic butterfly fabricated by TPU/Fe3O4/PC fiber film[70]

    TPU—Thermoplastic polyurethane

    图  15  聚碳酸酯和聚偏氟乙烯制备的PCFs的不同颜色(a)、(b),接触角(c)及其微观形貌(d)[71]

    Figure  15.  Different colors (a), contact angle (c), and morphology (d) of PCFs prepared by polycarbonate and polyvinylidene fluoride[71]

    图  16  不同类别的3 D打印PCFs[72]

    Figure  16.  Different classes of 3 D printed PCFs[72]

  • [1] WU Y, WANG Y, ZHANG S F, et al. Artificial chameleon skin with super-sensitive thermal and mechanochromic response[J]. ACS Nano,2021,15(10):15720-15729. doi: 10.1021/acsnano.1c05612
    [2] ISAPOUR G, LATTUADA M. Bioinspired stimuli-responsive color-changing systems[J]. Advanced Materials,2018,30(19):e1707069. doi: 10.1002/adma.201707069
    [3] BIAN F K, SUN L Y, CHEN H X, et al. Bioinspired perovskite nanocrystals-integrated photonic crystal microsphere arrays for information security[J]. Advanced Science,2022,9(9):e2105278. doi: 10.1002/advs.202105278
    [4] GONG X B, HOU C Y, ZHANG Q H, et al. Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release[J]. ACS Applied Materials & Interfaces,2020,12(46):51225-51235.
    [5] LIU W, MA H L, WALSH A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews,2019,116:109436. doi: 10.1016/j.rser.2019.109436
    [6] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [7] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [8] HUANG M L, LU S G, REN Y C, et al. Structural coloration and its application to textiles: A review[J]. The Journal of The Textile Institute,2019,111(5):756-764.
    [9] SUN J Y, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances,2013,3(35):14862-14889. doi: 10.1039/c3ra41096j
    [10] 周敬伊, 王慧, 杨辉宇, 等. 光子晶体结构色织物研究进展[J]. 化学通报, 2021, 84(10):1008-1022. doi: 10.14159/j.cnki.0441-3776.2021.10.002

    ZHOU Jingyi, WANG Hui, YANG Huiyu, et al. Research progress in photonic crystal induced structural colored fabrics[J]. Chemistry Bulletin,2021,84(10):1008-1022(in Chinese). doi: 10.14159/j.cnki.0441-3776.2021.10.002
    [11] ROTHAMMER M, ZOLLFRANK C, BUSCH K, et al. Tailored disorder in photonics: Learning from nature[J]. Advanced Optical Materials,2021,9(19):2100787. doi: 10.1002/adom.202100787
    [12] KIM G H, AN T, LIM G. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters,2018,13:204. doi: 10.1186/s11671-018-2614-2
    [13] 陈欢欢, 高伟洪, 陈凯凯, 等. 光子晶体结构色纺织材料的制备及应用研究进展[J]. 化工进展, 2022, 41(8):4327-4340.

    CHEN Huanhuan, GAO Weihong, CHEN Kaikai, et al. Research progress on the fabrication and application of textile materials with photonic crystal structural colors[J]. Chemical Industry and Engineering Progress,2022,41(8):4327-4340(in Chinese).
    [14] SHANG S L, ZHU P, WANG H Z, et al. Thermally responsive photonic fibers consisting of chained nanoparticles[J]. ACS Applied Materials & Interfaces,2020,12(45):50844-50851.
    [15] WU X J, LAN D P, ZHANG R F, et al. Fabrication of opaline ZnO photonic crystal film and its slow-photon effect on photoreduction of carbon dioxide[J]. Langmuir,2019,35(1):194-202. doi: 10.1021/acs.langmuir.8b03327
    [16] WANG F, FENG L, QIN Y, et al. Dual functional SiO2@TiO2 photonic crystals for dazzling structural colors and enhanced photocatalytic activity[J]. Journal of Materials Chemistry C,2019,7(38):11972-11983. doi: 10.1039/C9TC03426A
    [17] YANG D Q, LUO W J, HUANG Y D, et al. Facile synthesis of monodispersed SiO2@Fe3O4 core-shell colloids for printing and three-dimensional coating with noniridescent structural colors[J]. ACS Omega,2019,4(1):528-534. doi: 10.1021/acsomega.8b02987
    [18] ZHENG L L, TRAN T N T, ZHALMURATOVA D, et al. Colorimetric voltmeter using colloidal Fe3O4@SiO2 nanoparticles as an overpotential alarm system for zinc-air batteries[J]. ACS Applied Nano Materials,2019,2(11):6982-6988. doi: 10.1021/acsanm.9b01464
    [19] LIU T Y, LIU T Y, GAO F Y, et al. Structural color spectral response of dense structures of discoidal particles generated by evaporative assembly[J]. Journal of Physical Chemistry B,2022,126(6):1315-1324. doi: 10.1021/acs.jpcb.1c10015
    [20] FATHI F, CHAGHAMIRZAEI P, ALLAHVEISI S, et al. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,611:125842. doi: 10.1016/j.colsurfa.2020.125842
    [21] WANG X H, LI Y C, ZHENG J Y, et al. Polystyrene@poly(methyl methacrylate-butyl acrylate) core-shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors[J]. ACS Applied Nano Materials,2022,5(1):729-736. doi: 10.1021/acsanm.1c03474
    [22] HUANG Y, LIU L X, YANG X, et al. A diverse micromorphology of photonic crystal chips for multianalyte sensing[J]. Small,2021,17(12):e2006723. doi: 10.1002/smll.202006723
    [23] DONG X, ZHANG Z L, ZHAO Y Y, et al. Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite films with balanced ordered/disordered arrays[J]. Composites Part B:Engineering,2022,229:109456. doi: 10.1016/j.compositesb.2021.109456
    [24] LAI X T, PENG J S, CHENG Q F, et al. Bioinspired color switchable photonic crystal silicone elastomer kirigami[J]. Angewandte Chemie, International Edition in English,2021,60(26):14307-14312. doi: 10.1002/anie.202103045
    [25] LIU J C, WANG Y, WANG J X, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch[J]. ACS Applied Materials & Interfaces,2021,13(10):12383-12392.
    [26] CHEN J L, LIU P M, DU X, et al. Clickable colloidal photonic crystals for structural color pattern[J]. Langmuir,2018,34(44):13219-13224. doi: 10.1021/acs.langmuir.8b00996
    [27] MA W, KOU Y S, ZHAO P, et al. Bioinspired structural color patterns derived from 1 d photonic crystals with high saturation and brightness for double anti-counterfeiting decoration[J]. ACS Applied Polymer Materials,2020,2(4):1605-1613. doi: 10.1021/acsapm.0c00047
    [28] LI S, XIAO Y S, SHAN G H, et al. Rapid preparation of structural color coatings on flexible textiles by simple vacuum-assisted filtration self-assembly[J]. Physica E:Low-dimensional Systems and Nanostructures,2022,144:115424. doi: 10.1016/j.physe.2022.115424
    [29] HE Y Y, LIU L Y, FU Q Q, et al. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and durable fabrics with saturated structural colors[J]. Advanced Functional Materials,2022,32(24):2200330. doi: 10.1002/adfm.202200330
    [30] 李壮, 金梦婷, 须秋洁, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2):637-644.

    LI Z, JIN M T, XU Q J, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 Sol[J]. Acta Materiae Compositae Sinica,2022,39(2):637-644(in Chinese).
    [31] ZHANG Y L, WANG Y, WANG H, et al. Super-elastic magnetic structural color hydrogels[J]. Small,2019,15(35):e1902198. doi: 10.1002/smll.201902198
    [32] YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces,2015,7(25):14064-14071.
    [33] LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Materials Letters,2019,242:179-182. doi: 10.1016/j.matlet.2019.01.093
    [34] MOON J H, KIM S, YI G R, et al. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries[J]. Langmuir,2004,20(5):2033-2035. doi: 10.1021/la0358015
    [35] YUAN W, LI Q S, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS Applied Materials & Interfaces,2019,11(21):19388-19396.
    [36] WANG C Y, WANG S L, PAN H, et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties[J]. Science Advance,2020,6(36):eabb4700.
    [37] WANG C Y, HOU Y Q, WANG X Y, et al. Structural and interfacial effects on drug release kinetics of liquid-based fibrous catheter[J]. Advanced Fiber Materials,2022,4(6):1645-1655. doi: 10.1007/s42765-022-00201-3
    [38] LEI W, LI H, TANG Y X, et al. Progress and perspectives on electrospinning techniques for solid-state lithium batteries[J]. Carbon Energy,2022,4(4):539-575. doi: 10.1002/cey2.180
    [39] CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527
    [40] 王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2022, 40(3):1286-1297.

    WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica,2022,40(3):1286-1297(in Chinese).
    [41] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [42] 刘桦, 王昊, 张程, 等. 无机纳米粒子/聚合物复合电纺纤维的制备及其仿生矿化研究[J]. 材料研究与应用, 2020, 14(4):294-300.

    LIU Hua, WANG Hao, ZHANG Cheng, et al. The preparation and biomimetic mineralization of inorganic nanoparticles/polymer composite nanofibers[J]. Materials Research and Application,2020,14(4):294-300(in Chinese).
    [43] YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir,2012,28(43):15418-15424. doi: 10.1021/la303312q
    [44] YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science,2019,37(8):729-736. doi: 10.1007/s10118-019-2286-0
    [45] 肖浪. 金属纳米颗粒表面等离激元作用下的结构色纤维研究[D]. 苏州: 苏州大学, 2014.

    XIAO Lang. Fabrication research of structurally-colored fibers basing on metal nanoparticles SPPs mechanism[D]. Su Zhou: Soochow University, 2014(in Chinese).
    [46] CHENG X T, LIU Y T, SI Y, et al. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3 D reaction electrospinning[J]. Nature Communications,2022,13(1):2637. doi: 10.1038/s41467-022-30435-z
    [47] BIAN F K, SUN L Y, CAI L J, et al. Colloidal crystals from microfluidics[J]. Small,2020,16(9):e1903931. doi: 10.1002/smll.201903931
    [48] ZHANG Y, TIAN Y, XU L L, et al. Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a rayleigh instability guiding strategy[J]. Chemical Communications (Cambridge, England),2015,51(99):17525-17528. doi: 10.1039/C5CC08263C
    [49] CHENG Y, ZHANG X X, LIU R, et al. Bioinspired vascular stents with microfluidic electrospun multilayer coatings for preventing in-stent restenosis[J]. Advanced Healthcare Materials,2022,11(17):e2200965. doi: 10.1002/adhm.202200965
    [50] JIN J, SAIDING Q, WANG X J, et al. Rapid extracellular matrix remodeling via gene-electrospun fibers as a “patch” for tissue regeneration[J]. Advanced Functional Materials,2021,31(15):2009879. doi: 10.1002/adfm.202009879
    [51] FINLAYSON C E, GODDARD C, PAPACHRISTODOULOU E, et al. Ordering in stretch-tunable polymeric opal fibers[J]. Optics Express,2011(19):3144-3154.
    [52] BOYLE B M, FRENCH T A, PEARSON R M, et al. Structural color for additive manufacturing: 3 D-printed photonic crystals from block copolymers[J]. ACS Nano,2017,11(3):3052-3058. doi: 10.1021/acsnano.7b00032
    [53] KOLLE M, LETHBRIDGE A, KREYSING M, et al. Bio-inspired band-gap tunable elastic optical multilayer fibers[J]. Advanced Materials,2013,25(15):2239-2245. doi: 10.1002/adma.201203529
    [54] ZHANG J, HE S S, LIU L M, et al. The continuous fabrication of mechanochromic fibers[J]. Journal of Materials Chemistry C,2016,4(11):2127-2133. doi: 10.1039/C5TC04073F
    [55] LIU Z F, ZHANG Q H, WANG H Z, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method[J]. Nanoscale,2013,5(15):6917-6922. doi: 10.1039/c3nr01766d
    [56] ZHAO Y L, LI R, WANG B S, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy[J]. ACS Nano,2023,17(3):2893-2900. doi: 10.1021/acsnano.2c11296
    [57] HAN C, KIM H, JUNG H, et al. Origin and biomimicry of weak iridescence in black-billed magpie feathers[J]. Optica,2017,4(4):464-467. doi: 10.1364/OPTICA.4.000464
    [58] ZHOU C T, QI Y, ZHANG S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments,2020,176:108226. doi: 10.1016/j.dyepig.2020.108226
    [59] LIU G J, ZHOU L, ZHANG G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology[J]. Materials & Design,2017,114:10-17.
    [60] NIU W B, ZHANG L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces,2019,11(35):32261-32268.
    [61] ZHAO K, CAO X F, ALSAID Y, et al. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics[J]. Chemical Engineering Journal,2021,426(22):130870.
    [62] GONG X B, HOU C Y, ZHANG Q H, et al. Solvatochromic structural color fabrics with favorable wearability properties[J]. Journal of Materials Chemistry C,2019,7(16):4855-4862. doi: 10.1039/C9TC00580C
    [63] WANG H, ZHANG H, CHEN Z Y, et al. Polymer-based responsive structural color materials[J]. Progress in Materials Science,2023,135:101091. doi: 10.1016/j.pmatsci.2023.101091
    [64] ZHAO R L, HE Y, HE Y, et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection[J]. ACS Applied Materials & Interfaces,2023,15(12):16063-16071.
    [65] LI Y C, FAN Q S, WANG X H, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials,2021,31(19):2010746. doi: 10.1002/adfm.202010746
    [66] CHEN Z Y, YU Y R, GUO J H, et al. Heterogeneous structural color microfibers for cardiomyocytes tug-of-war[J]. Advanced Functional Materials,2021,31(9):2007527. doi: 10.1002/adfm.202007527
    [67] CHENG J, ZHANG L L, ZHAO K, et al. Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors[J]. Industrial & Engineering Chemistry Research,2021,60(23):8442-8450.
    [68] GAO B B, HE Z Z, HE B F, et al. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon[J]. Sensors and Actuators B:Chemical,2019,288:734-741. doi: 10.1016/j.snb.2019.03.029
    [69] YU Y R, FU F F, SHANG L R, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials,2017,29(18):1605765. doi: 10.1002/adma.201605765
    [70] YU X Q, HU X H, ZHU L L, et al. Fabrication of magnetically driven photonic crystal fiber film via microfluidic blow-spinning towards dynamic biomimetic butterfly[J]. Materials Letters,2021,291:129450. doi: 10.1016/j.matlet.2021.129450
    [71] KHUDIYEV T, DOGAN T, BAYINDIR M. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L. ) drakes[J]. Scientific Reports,2014,4(4):4718.
    [72] BERTONCINI A, LIBERALE C. 3 D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices[J]. Optica,2020,7(11):1487-1494. doi: 10.1364/OPTICA.397281
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-03-23
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回