留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DCP原位增容PPCU/PLA共混物的增韧机制及性能

李景波 谭佳 于洪涛 刘小超 刘跃军 崔玲娜

李景波, 谭佳, 于洪涛, 等. DCP原位增容PPCU/PLA共混物的增韧机制及性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 李景波, 谭佳, 于洪涛, 等. DCP原位增容PPCU/PLA共混物的增韧机制及性能[J]. 复合材料学报, 2024, 42(0): 1-12.
LI Jingbo, TAN Jia, YU Hongtao, et al. In situ compatibilization of the toughening mechanism and properties in PPCU/PLA blends via DCP[J]. Acta Materiae Compositae Sinica.
Citation: LI Jingbo, TAN Jia, YU Hongtao, et al. In situ compatibilization of the toughening mechanism and properties in PPCU/PLA blends via DCP[J]. Acta Materiae Compositae Sinica.

DCP原位增容PPCU/PLA共混物的增韧机制及性能

基金项目: 国家自然科学基金 (12372245)
详细信息
    通讯作者:

    刘小超,博士,副教授,硕士生导师,研究方向为高分子材料加工工程、先进包装材料与技术 E-mail: xcliu_2014@163.com

  • 中图分类号: TB332

In situ compatibilization of the toughening mechanism and properties in PPCU/PLA blends via DCP

Funds: National Natural Science Foundation of China (12372245)
  • 摘要: 聚乳酸(PLA)的脆性严重限制了其应用,使用弹性体共混增韧PLA是一种可行的策略,然而共混物两相相容性较差的问题仍亟待解决。本文采用过氧化二异苯丙(DCP)为反应增容剂与PLA、聚碳酸亚丙酯-热塑性聚氨酯弹性体(PPCU)熔融共混制备了PPCU/PLA共混物,研究了DCP添加量对共混物相形貌、流变性能、力学性能等的影响。结果表明:DCP引发了PLA与PPCU分子链间的支化交联反应,随着DCP添加量增加,PPCU/PLA共混物的复数黏度以及储能模量也随之增大,弹性行为逐渐增强,Cole-Cole图表明当DCP添加量大于0.3wt%后,共混物具有较高的同质性;随着DCP添加量增加,共混物相界面逐渐变得模糊,分散相尺寸明显减小,共混物相形貌得到改善。DCP的加入可显著提高共混物的断裂伸长率,添加量为0.2wt%的共混物断裂伸长率达到最大值224.37%,是未添加DCP共混物断裂伸长率的10.68倍;PPCU/PLA共混物的缺口冲击强度随着DCP添加量的增加而增大,添加量为0.5wt%的共混物其冲击强度达到了7.91 kJ/m2,是未添加DCP的共混物的2.94倍,PPCU/PLA共混物力学性能的提高主要归因于其两相相容性的改善。

     

  • 图  1  熔融共混过程中的主要化学反应

    Figure  1.  Main chemical reactions in the melt blending process

    图  2  PLA、PLA-D、PPCU、PPCU-D (a) 以及各PPCU/PLA共混物 (b) 的FTIR谱图

    Figure  2.  FTIR spectra of PLA、PLA-D、PPCU、PPCU-D (a) and PPCU/PLA blends (b)

    图  3  PPCU/PLA共混物在熔融共混过程中的扭矩变化及其凝胶含量:(a) PPCU/PLA共混物的扭矩变化曲线;(b) PPCU/PLA共混物凝胶含量图

    Figure  3.  Torque change of PPCU/PLA blend during melt blending and gel content of PPCU/PLA blend: (a) Torque change curve of PPCU/PLA blend;(b) Gel Content Diagram of PPCU/PLA Blend

    图  4  PPCU/PLA共混物的动态流变曲线:(a) 复数黏度η*;(b) 储能模量G';(c) Han曲线;(d) Cole-Cole曲线

    Figure  4.  Dynamic rheological profiles of PPCU/PLA blends: (a) Complex viscosity η*; (b) Storage modulus G'; (c) Han plots; (d) Cole-Cole plots

    图  5  PPCU/PLA共混物脆断面SEM图:(a) PPCU/PLA; (b) PPCU/PLA-0.1 D; (c) PPCU/PLA-0.2 D; (d) PPCU/PLA-0.3 D; (e) PPCU/PLA-0.4 D;(f) PPCU/PLA-0.5 D

    Figure  5.  SEM micrographs showing cvro-fractured surface morphology of PPCU/PLA blends: (a) PPCU/PLA; (b) PPCU/PLA-0.1 D; (c) PPCU/PLA-0.2 D; (d) PPCU/PLA-0.4 D; (e) PPCU/PLA-0.4 D; (f) PPCU/PLA-0.5 D

    图  6  刻蚀后的PPCU/PLA共混物脆断面SEM图:(a') PPCU/PLA;(b') PPCU/PLA-0.1 D; (c') PPCU/PLA-0.2 D; (d') PPCU/PLA-0.3 D;(e') PPCU/PLA-0.4 D; (f ') PPCU/PLA-0.5 D

    Figure  6.  SEM micrographs showing cvro-fractured surface morphology of PPCU/PLA blends after etching: (a') PPCU/PLA; (b') PPCU/PLA-0.1 D; (c') PPCU/PLA-0.2 D; (d') PPCU/PLA-0.4 D; (e') PPCU/PLA-0.4 D; (f ') PPCU/PLA-0.5 D

    图  7  PPCU/PLA共混物的第二次升温DSC曲线

    Figure  7.  Second DSC heating curves of PPCU/PLA blends

    图  8  PPCU/PLA共混物的TGA图以及DTG图:(a) TGA图;(b) DTG图

    Figure  8.  TGA plots and DTG plots of PPCU/PLA blends: (a) TGA plots; (b) DTG plots

    图  9  PLA以及 PPCU/PLA共混物力学性能图:(a) 应力应变曲线;(b) 拉伸强度与断裂伸长率;(c) 缺口冲击强度

    Figure  9.  Mechanical properties of PLA and PPCU/PLA blends: (a) Stress-strain curve; (b) Tensile strength and elongation at break; (c) Notched impact strength

    图  10  PPCU/PLA共混物增韧机制示意图

    Figure  10.  Schematic diagram of the toughening mechanism in the PPCU/PLA blends

    图  11  PPCU/PLA共混物冲击断面SEM图:(a) PPCU/PLA;(b) PPCU/PLA-0.1 D;(c) PPCU/PLA-0.2 D;(d) PPCU/PLA-0.3 D;(e) PPCU/PLA-0.4 D;(f) PPCU/PLA-0.5 D

    Figure  11.  SEM micrographs of impact-fractured surfaces of PPCU/PLA blends: (a) PPCU/PLA;(b) PPCU/PLA-0.1 D; (c) PPCU/PLA-0.2 D;(d) PPCU/PLA-0.3 D;(e) PPCU/PLA-0.4 D;(f) PPCU/PLA-0.5 D

    表  1  PPCU/PLA共混物原料配比

    Table  1.   Composition of PLA/PPCU blends

    Sample PLA/wt% PPCU/wt% DCP/wt%
    PLA 100 0 0
    PPCU/PLA 75 25 0
    PPCU/PLA-0.1 D 75 25 0.1
    PPCU/PLA-0.2 D 75 25 0.2
    PPCU/PLA-0.3 D 75 25 0.3
    PPCU/PLA-0.4 D 75 25 0.4
    PPCU/PLA-0.5 D 75 25 0.5
    Notes:PLA—poly(lactic acid); PPCU—poly(propylene cabonate) polyurethane; The xD in the table represents the amount of diisopropyl peroxide (DCP) added, for example 0.1 D means the amount of DCP added to the blend is 0.1 wt%.
    下载: 导出CSV

    表  2  刻蚀后脆断PPCU/PLA共混物中PPCU相以及空穴尺寸

    Table  2.   PPCU phase and hole size in cvro-fractured PPCU/PLA blends after etching

    SamplePPCU/PLAPPCU/PLA-0.1 DPPCU/PLA-0.2 DPPCU/PLA-0.3 DPPCU/PLA-0.4 DPPCU/PLA-0.5 D
    PPCU particle size/nm178±72161±32175±37111±19106±20
    Hole diameter/nm525±159463±69414±140387±114352±154273±55
    下载: 导出CSV

    表  3  PPCU/PLA共混物热失重参数

    Table  3.   Thermal weight loss parameters of PPCU/PLA blends

    SampleT5%/℃T50%/℃Tmax/℃
    PLA342.3366.7369.8
    PPCU269.3325.6339.3
    PPCU/PLA285.4323.5325.1
    PPCU/PLA-0.1 D294.3324.4325.9
    PPCU/PLA-0.2 D305.0335.5330.1
    PPCU/PLA-0.3 D293.0323.5325.4
    PPCU/PLA-0.4 D294.7332.3325.7
    PPCU/PLA-0.5 D284.9320.3319.2
    Notes:T5%, T50% and Tmax are the temperatures at which the weight loss of the sample is 5%, 50% and the weight loss rate is the highest, respectively.
    下载: 导出CSV

    表  4  PPCU/PLA共混物力学性能

    Table  4.   Mechanical properties of PPCU/PLA blends

    Sample Tensile strength /MPa Elongation at break /% Notched impact strength
    /(kJ·m2)
    PLA 68.61±0.74 7.06±0.63 2.25±0.18
    PPCU/PLA 52.36±2.99 21.00±6.51 2.69±0.62
    PPCU/PLA-0.1 D 44.84±1.32 122.12±13.53 3.20±0.60
    PPCU/PLA-0.2 D 42.34±0.67 224.37±44.98 5.53±1.45
    PPCU/PLA-0.3 D 43.19±1.63 173.80±20.37 6.33±0.94
    PPCU/PLA-0.4 D 44.78±0.70 187.50±22.44 6.05±1.19
    PPCU/PLA-0.5 D 43.78±0.57 22.69±3.82 7.91±2.19
    下载: 导出CSV
  • [1] MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science, 2021, 373(6550): 61-65. doi: 10.1126/science.abg5433
    [2] RAMEZANI DANA H, EBRAHIMI F. Synth-esis, properties, and applications of polylactic acid-based polymers[J]. Polymer Engineering & Science, 2023, 63(1): 22-43.
    [3] CASTRO-AGUIRRE E, IÑIGUEZ-FRANCO F, SAMSUDIN H, et al. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life[J]. Advanced Drug Delivery Reviews, 2016, 107: 333-366. doi: 10.1016/j.addr.2016.03.010
    [4] LI X, LIN Y, LIU M, et al. A review of research and application of polylactic acid composites[J]. Journal of Applied Polymer Science, 2023, 140(7): e53477. doi: 10.1002/app.53477
    [5] NOFAR M, SALEHIYAN R, SINHA RAY S. Rheology of poly (lactic acid)-based systems[J]. Polymer Reviews, 2019, 59(3): 465-509. doi: 10.1080/15583724.2019.1572185
    [6] YANG J, PAN H, LI X, et al. A study on the mechanical, thermal properties and crystalli-zation behavior of poly(lactic acid)/thermop-lastic poly(propylene carbonate) polyurethane blends[J]. RSC Adv., 2017, 7(73): 46183-46194. doi: 10.1039/C7RA07424G
    [7] ZHANG Y, JIA S, PAN H, et al. Preparation, characterization and properties of biodegradable poly(butylene adipate-co-butylene terephthala-te)/ther-moplastic poly(propylene carbonate) polyurethane blend films[J]. Polymers for Advanced Technologies, 2021, 32(2): 613-629. doi: 10.1002/pat.5115
    [8] 赵健雄, 何和智, 杨以科, 等. PLA/PPCU全降解复合材料的制备与性能[J]. 塑料, 2023, 52(6): 76-81.

    ZHAO Jianxion, HE Hezhi, YANG Yike, et al. Preparation and Properties of Biodegradable PLA/PPCU Composite[J]. PLASTICS, 2023, 52(6): 76-81(in Chinese).
    [9] ZHAO J-L, PAN H-W, YANG H-L, et al. Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends[J]. Chinese Journal of Polymer Science, 2019, 37(12): 1273-1282. doi: 10.1007/s10118-019-2276-2
    [10] JIA S, ZHAO L, WANG X, et al. Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents[J]. Int J Biol Macromol, 2022, 201: 662-675. doi: 10.1016/j.ijbiomac.2022.01.126
    [11] ZHAO J, HE H, ZHU Z. Fabrication of Biodegradable Poly(Lactic Acid) Composites with High Toughness via In Situ Fibrillation Method and Facile Annealing Process[J]. Industrial & Engineering Chemistry Research, 2023, 62(9): 3952-3961.
    [12] 莫智翔, 刘小超, 刘跃军, 等. 苯乙烯-马来酸酐共聚物对PLA/PBAT共混物的相形态及其性能的影响[J]. 复合材料学报, 2023, 40(4): 2096-2106.

    MO Zhixiang, LIU Xiaochao, LIU Yuejun, et al. Effect of styrene-maleic anhydride on phase morphology and properties of PLA/PBAT blends[J]. Acta Mater Compos Sin, 2023, 40(4): 2096-2106(in Chinese).
    [13] AVERSA C, BARLETTA M, CAPPIELLO G, et al. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review[J]. European Poly-mer Journal, 2022, 173: 111304. doi: 10.1016/j.eurpolymj.2022.111304
    [14] QIN S-X, YU C-X, CHEN X-Y, et al. Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Comp-atibilization by Dicumyl Peroxide[J]. Chinese Journal of Polymer Science, 2018, 36(6): 783-790. doi: 10.1007/s10118-018-2065-3
    [15] CAI K, LIU X, MA X, et al. Preparation of biodegradable PLA/PBAT blends with balanced toughness and strength by dynamic vulcanization process[J]. Polymer, 2024, 291: 126587. doi: 10.1016/j.polymer.2023.126587
    [16] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040−2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties : GB/T 1040−2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [17] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of izod impact strength: GB/T 1843—2008[S]. Bei-jing: Standards Press of China, 2008(in Chinese).
    [18] MA P, XU P, ZHAI Y, et al. Biobased Poly(lactide)/ethylene-co-vinyl Acetate Ther-moplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2211-2219.
    [19] 张也. 生物可降解聚己二酸对苯二甲酸丁二酯(PBAT)共混物及薄膜的制备与性能研究[D]. 长春: 长春工业大学, 2022.

    ZHANG Ye. Preparation and properties of biodegradable poly(butylene adipate tereph-thalate) (PBAT) blends and films[D]. Changchun: Changchun University of Techn-ology, 2022.
    [20] YANG J, PAN H, LI X, et al. A study on the mechanical, thermal properties and crystal-lization behavior of poly(lactic acid)/thermop-lastic poly(propylene carbonate) polyurethane blends[J]. RSC Advances, 2017, 7(73): 46183-46194. doi: 10.1039/C7RA07424G
    [21] PRZYBYSZ-ROMATOWSKA M, HAPONIUK J, FORMELA K. Poly(ε-Caprolactone)/Poly-(Lactic Acid) Blends Compatibilized by Peroxi-de Initiators: Comparison of Two Strategies, Polymers, 2020 , 12(1): 228.
    [22] 吴其晔, 巫静安. 高分子材料流变学(第二版)[M]. 北京: 高等教育出版社, 2002: 351-373.

    WU Qiye, WU Jingan. Polymer Pheology (Second Edition)[M]. Beijing: Higher Education Press, 2002: 351-373(in Chinese).
    [23] TESFAYE M, PATWA R, DHAR P, et al. Nanosilk-Grafted Poly(lactic acid) Films: Infl-uence of Cross-Linking on Rheology and The-rmal Stability[J]. ACS Omega, 2017, 2(10): 7071-7084. doi: 10.1021/acsomega.7b01005
    [24] HUANG Y, ZHANG C, PAN Y, et al. Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend[J]. Journal of Polymers and the Envir-onment, 2013, 21(2): 375-387. doi: 10.1007/s10924-012-0544-0
    [25] YAMOUM C, MAIA J, MAGARAPHAN R. Rheological and thermal behavior of PLA modified by chemical crosslinking in the pre-sence of ethoxylated bisphenol A dimeth-acrylates[J]. Polymers for Advanced Techn-ologies, 2017, 28(1): 102-112. doi: 10.1002/pat.3864
    [26] ZHAO J, LI X, PAN H, et al. Rheological, thermal and mechanical properties of biode-gradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/poly(prop-ylene carbonate) po-lyurethane trinary blown films[J]. Polymer Bulletin, 2020, 77(8): 4235-4258. doi: 10.1007/s00289-019-02942-5
    [27] COLE K S, COLE R H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351. doi: 10.1063/1.1750906
    [28] BALKAN O, EZDEŞIR A. Rheological behaviors of glass bead- and wollastonite-filled polypropylene composites modified with ther-moplastic elastomers[J]. Polymer Composites, 2012, 33(7): 1162-1187. doi: 10.1002/pc.22245
    [29] ZHAO F, HUANG H-X, ZHANG S-D. Largely toughening biodegradable poly(lactic acid)/ thermoplastic polyurethane blends by adding MDI[J]. Journal of Applied Polymer Science, 2015, 132(48): 42511. doi: 10.1002/app.42511
    [30] JIA S, CHEN Y, BIAN J, et al. Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blen-ding acrylic ester based impact resistance agent[J]. International Journal of Biological Macromolecules, 2021, 183: 1871-1880. doi: 10.1016/j.ijbiomac.2021.05.177
    [31] LAMNAWAR K, MAAZOUZ A, CABRERA G, et al. Interfacial Tension Properties in Biopolymer Blends: From Deformed Drop Retraction Method (DDRM) to Shear and Elongation Rheology-Application to Blown Film Extrusion[J]. International Polymer Processing, 2018, 33(3): 411-424. doi: 10.3139/217.3614
    [32] CALDERÓN B A, MCCAUGHEY M S, THO-MPSON C W, et al. Evaluating the Influence of Specific Mechanical Energy on Biopolymer Blends Prepared via High-Speed Reactive Extrusion[J]. ACS Applied Polymer Materials, 2019, 1(6): 1410-1419. doi: 10.1021/acsapm.9b00177
    [33] HAN Y, SHI J, MAO L, et al. Improvement of Compatibility and Mechanical Performances of PLA/PBAT Composites with Epoxidized Soybean Oil as Compatibilizer[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21779-21790.
    [34] DI LORENZO M L, OVYN R, MALINCO-NICO M, et al. Peculiar crystallization kinetics of biodegradable poly(lactic acid)/poly(propy-lene carbonate) blends[J]. Polymer Engineering & Science, 2015, 55(12): 2698-2705.
    [35] MONIKA, PAL A K, BHASNEY S M, et al. Effect of Dicumyl Peroxide on a Poly(lactic acid) (PLA)/Poly(butylene succinate) (PBS)/Func-tionalized Chitosan-Based Nanobiocomposite for Packaging: A Reactive Extrusion Study[J]. ACS Omega, 2018, 3(10): 13298-13312. doi: 10.1021/acsomega.8b00907
    [36] TIWARY P, KONTOPOULOU M. Tuning the Rheological, Thermal, and Solid-State Properties of Branched PLA by Free-Radical-Mediated Reactive Extrusion[J]. ACS Sustainable Chem-istry & Engineering, 2018, 6(2): 2197-2206.
    [37] YANG S-L, WU Z-H, YANG W, et al. Thermal and mechanical properties of chemical cross-linked polylactide (PLA)[J]. Polymer Testing, 2008, 27(8): 957-963. doi: 10.1016/j.polymertesting.2008.08.009
    [38] ZHAO X, HU H, WANG X, et al. Super tough poly(lactic acid) blends: a comprehensive revi-ew[J]. RSC Advances, 2020, 10(22): 13316-13368. doi: 10.1039/D0RA01801E
    [39] RIGOUSSEN A, RAQUEZ J-M, DUBOIS P, et al. A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives[J]. European Polymer Journal, 2019, 114: 118-126. doi: 10.1016/j.eurpolymj.2019.02.017
    [40] WANG X, PENG S, CHEN H, et al. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization[J]. Composites Part B: Engineering, 2019, 173: 107028. doi: 10.1016/j.compositesb.2019.107028
    [41] WU B G, ZENG Q T, NIU D Y, et al. Design of Supertoughened and Heat-Resistant PLLA /Elastomer Blends by Controlling the Distribution of Stereocomplex Crystallites and the Morphology[J]. Macromolecules, 2019, 52(3): 1092-1103. doi: 10.1021/acs.macromol.8b02262
    [42] CHEN X, ZENG Z, JU Y, et al. Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compa-tibilization and dynamic vulcanization[J]. Polymer, 2023, 266: 125620. doi: 10.1016/j.polymer.2022.125620
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-09-02
  • 录用日期:  2024-09-07
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回