留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响

王海涛 卞致宁 熊浩 陈敏生 吴琼

王海涛, 卞致宁, 熊浩, 等. 粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响[J]. 复合材料学报, 2023, 40(3): 1718-1728. doi: 10.13801/j.cnki.fhclxb.20220409.001
引用本文: 王海涛, 卞致宁, 熊浩, 等. 粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响[J]. 复合材料学报, 2023, 40(3): 1718-1728. doi: 10.13801/j.cnki.fhclxb.20220409.001
WANG Haitao, BIAN Zhining, XIONG Hao, et al. Effects of the adhesive layer and prestress on the flexural behavior of damaged steel beams strengthened with CFRP plates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1718-1728. doi: 10.13801/j.cnki.fhclxb.20220409.001
Citation: WANG Haitao, BIAN Zhining, XIONG Hao, et al. Effects of the adhesive layer and prestress on the flexural behavior of damaged steel beams strengthened with CFRP plates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1718-1728. doi: 10.13801/j.cnki.fhclxb.20220409.001

粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响

doi: 10.13801/j.cnki.fhclxb.20220409.001
基金项目: 国家自然科学基金(51708174);中建股份科技研发计划项目(CSCEC-2020-Z-1);上海市科技计划项目(20DZ2253000)
详细信息
    通讯作者:

    熊浩,硕士,高级工程师,研究方向为新材料在土木工程中的应用 E-mail:xionghao@cscec.com

  • 中图分类号: TU399

Effects of the adhesive layer and prestress on the flexural behavior of damaged steel beams strengthened with CFRP plates

Funds: National Natural Science Foundation of China (51708174); CSCEC Technology R&D Program (CSCEC-2020-Z-1); Shanghai Science and Technology Program (20DZ2253000)
  • 摘要: 为了对比粘结层和预应力对碳纤维增强聚合物复合材料(CFRP)板加固损伤钢梁抗弯性能的影响,进行了5根H型损伤钢梁的抗弯试验,分析了特征荷载、荷载-挠度曲线、CFRP板应变及其强度利用率的变化。试验结果表明:有粘结和无粘结CFRP板具有相近的加固效果,特征荷载差值小于2%;非预应力CFRP板在正常使用阶段的加固效果很小,而预应力CFRP板加固钢梁的特征荷载比非预应力CFRP板提高了近30%。平截面假定适用于有粘结CFRP板-钢梁复合截面,而不适用于无粘结CFRP板-钢梁复合截面。相比于非预应力CFRP板,对CFRP板施加预应力可以显著提高CFRP板的强度利用率。建立的有限元模型可以较好地预测试件的抗弯性能,增加CFRP板的预应力、厚度和弹性模量可以提高损伤钢梁的抗弯加固效果。

     

  • 图  1  CFRP板预应力张拉系统

    Figure  1.  Prestress tensioning system of the CFRP plate

    图  2  试验加载装置

    Figure  2.  Test setup of the experiment

    图  3  典型试验现象照片

    Figure  3.  Photos of typical test phenomena

    图  4  CFRP板加固损伤钢梁跨中截面的典型应变分布

    Figure  4.  Typical strain distributions at mid-span section of damaged steel beams strengthened with CFRP plates

    图  5  CFRP板加固损伤钢梁荷载-挠度曲线

    Figure  5.  Load-deflection curves of damaged steel beams strengthened with CFRP plates

    图  6  CFRP板的应变分布

    Figure  6.  Strain distributions of CFRP plates

    图  7  CFRP板加固损伤钢梁的界面粘结-滑移关系

    Figure  7.  Interfacial bond-slip relationship of damaged steel beams strengthened with CFRP plates

    图  8  CFRP板加固损伤钢梁有限元模型

    Figure  8.  Finite element model of damaged steel beams strengthened with CFRP plates

    图  9  CFRP板加固损伤钢梁荷载-挠度曲线对比

    Figure  9.  Comparisons of load-deflection curves of damaged steel beams strengthened with CFRP plates

    图  10  试件B-PUR的位移和应力分布

    Figure  10.  Displacement and stress distributions of the specimen B-PUR

    图  11  CFRP板预应力对CFRP板加固损伤钢梁荷载-挠度曲线的影响

    Figure  11.  Effect of the CFRP plate prestress on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    图  12  CFRP板厚度对CFRP板加固损伤钢梁荷载-挠度曲线的影响

    Figure  12.  Effect of the CFRP plate thickness on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    图  13  CFRP板弹性模量对CFRP板加固损伤钢梁荷载-挠度曲线的影响

    Figure  13.  Effect of the CFRP plate elastic modulus on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    表  1  材料的主要力学性能

    Table  1.   Main mechanical properties of materials

    Material typeElasticity modulus/GPaYielding stress/MPaTensile strength/MPaElongation/%
    Q235 B steel 207.0 271 429.0 15.78
    CFRP plate 163.0 - 2516.0 1.54
    Adhesive 4.5 - 49.2 1.64
    Note: CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV

    表  2  CFRP板加固损伤钢梁试件的加固参数

    Table  2.   Strengthening parameters of damaged steel beam strengthened with the CFRP plate specimens

    SpecimenSectional area of CFRP plate/mm×mmStrengthening methodDesigned prestress/MPa
    B-0-Unstrengthening -
    B-BR50×2Bonded strengthening 0
    B-UR50×2Unbonded strengthening 0
    B-PBR50×2Bonded strengthening850
    B-PUR50×2Unbonded strengthening850
    Notes: In the specimen, the first letter B represents the beam; The number 0 represents the unstrengthening, the letters BR, UR, PBR and PUR represent bonded CFRP plate strengthening, unbonded CFRP plate strengthening, prestressed bonded CFRP plate strengthening, and prestressed unbonded CFRP plate strengthening, respectively.
    下载: 导出CSV

    表  3  CFRP板加固损伤钢梁特征荷载比较

    Table  3.   Comparisons of characteristic loads of damaged steel beams strengthened with CFRP plates

    SpecimenP7.5/kNα7.5/%Py/kNαy/%
    B-0102.5-105.8-
    B-BR104.6 2.0124.617.8
    B-UR103.4 0.9126.519.6
    B-PBR131.928.7157.949.2
    B-PUR133.530.2158.549.8
    Notes: P7.5—Load when the mid-span deflection is 7.5 mm; Py—Yielding load; α7.5 and αy—Ratios between the P7.5 and Py of the strengthened beams and those of the unstrengthened beam, respectively.
    下载: 导出CSV

    表  4  CFRP板应变及强度利用率比较

    Table  4.   Comparisons of CFRP plate strain and strength utilization

    Specimenε0/10−6εp7.5/10−6εp7.5/εu/%εpy/10−6εpy/εu/%
    B-BR 0 855 5.6 1287 8.4
    B-UR 0 581 3.8 723 4.7
    B-PBR 5605 6877 44.7 7276 47.2
    B-PUR 5542 6300 40.9 6485 42.1
    Notes: ε0—Initial tensioning strain of the CFRP plate; εp7.5—Strain of the CFRP plate at P7.5; εpy—Strain of the CFRP plate at Py; εu—Ultimate strain of the CFRP plate.
    下载: 导出CSV

    表  5  CFRP板加固损伤钢梁有限元与试验结果的对比

    Table  5.   Comparisons of finite element and test results of damaged steel beams strengthened with CFRP plates

    SpecimenP7.5Py
    Test/kNFinite element/kNRatioTest/kNFinite element/kNRatio
    B-0102.5104.41.02105.8106.11.00
    B-BR104.6107.41.03124.6131.11.05
    B-UR103.4104.21.01126.5127.81.01
    B-PBR131.9138.31.05157.9164.51.04
    B-PUR133.5137.61.03158.5163.41.03
    下载: 导出CSV
  • [1] 王海涛, 吴刚, 张磊. FRP修复开裂钢板的应力强度因子影响因素分析[J]. 河海大学学报(自然科学版), 2020, 48(5):440-445.

    WANG Haitao, WU Gang, ZHANG Lei. Influencing factor analysis of stress intensity factor for FRP-strengthened cracked steel plates[J]. Journal of Hohai University (Natural Sciences),2020,48(5):440-445(in Chinese).
    [2] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9):3076-3085.

    BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3076-3085(in Chinese).
    [3] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2):449-460.

    CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460(in Chinese).
    [4] WANG H T, LIU S S, LIU Q L, et al. Influences of the joint and epoxy adhesive type on the CFRP-steel interfacial behavior[J]. Journal of Building Engineering,2021,43:103167. doi: 10.1016/j.jobe.2021.103167
    [5] 王海涛, 吴刚, 吴智深. FRP布置方式对含裂纹钢板加固后的疲劳性能影响分析[J]. 土木工程学报, 2015, 48(1):56-63.

    WANG Haitao, WU Gang, WU Zhishen. Study on the effect of FRP configurations on the fatigue behavior of strengthened steel plate with an initial crack[J]. China Civil Engineering Journal,2015,48(1):56-63(in Chinese).
    [6] YOUSEFI O, NARMASHIRI K, GHAEMDOUST M R. Structural behaviors of notched steel beams strengthened using CFRP strips[J]. Steel and Composite Structures,2017,2(1):35-43.
    [7] SWEEDAN A M I, ALHADID M M A, EL-SAWY K M. Experimental study of the flexural response of steel beams strengthened with anchored hybrid composites[J]. Thin-Walled Structures,2016,99:1-11. doi: 10.1016/j.tws.2015.10.026
    [8] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research,2012,78:131-143. doi: 10.1016/j.jcsr.2012.06.011
    [9] GALAL K, SEIF ELDIN H M, TIRCA L. Flexural perfor-mance of steel girders retrofitted using CFRP materials[J]. Journal of Composites for Construction,2011,16(3):265-276.
    [10] LI J, WANG Y, DENG J, et al. Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system[J]. Engineering Structures,2018,171:29-39. doi: 10.1016/j.engstruct.2018.05.042
    [11] SIWOWSKI T W, SIWOWSKA P. Experimental study on CFRP-strengthened steel beams[J]. Composites Part B: Engineering,2018,149:12-21. doi: 10.1016/j.compositesb.2018.04.060
    [12] 卢亦焱, 张学朋, 吴涛, 等. 预应力碳纤维布加固钢梁的试验研究[J]. 应用基础与工程科学学报, 2009, 17(5):707-715.

    LU Yiyan, ZHANG Xuepeng, WU Tao, et al. Experimental research on steel beams strengthened by prestressed CFRP[J]. Journal of Basic Science and Engineering,2009,17(5):707-715(in Chinese).
    [13] GHAFOORI E, MOTAVALLI M. Flexural and interfacial behavior of metallic beams strengthened by prestressed bonded plates[J]. Composite Structures,2013,101:22-34. doi: 10.1016/j.compstruct.2013.01.021
    [14] 万世成, 黄侨, 关健. 预应力CFRP板加固钢-混凝土组合梁受弯性能试验[J]. 哈尔滨工业大学学报, 2019, 51(3):86-93.

    WAN Shicheng, HUANG Qiao, GUAN Jian. Test on flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber reinforced polymer plates[J]. Journal of Harbin Institute of Technology,2019,51(3):86-93(in Chinese).
    [15] GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures[J]. Jour-nal of Composites for Construction,2015,19(6):1-14.
    [16] HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Flat prestressed unbonded retrofit system for strengthening of existing metallic I—Girders[J]. Composites Part B: Engi-neering,2018,155:156-172. doi: 10.1016/j.compositesb.2018.08.026
    [17] 叶华文, 李新舜, 帅淳, 等. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1):129-136.

    YE Huawen, LI Xinshun, SHUAI Chun, et al. Fatigue experimental analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates[J]. Journal of South-west Jiaotong University,2019,54(1):129-136(in Chinese).
    [18] 中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Tensile test of metallic materials: Part 1: Test method at room tempera-ture: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [19] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of China. Test method for tensile properties of directional fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [20] 中华人民共和国工业和信息化部. 纤维增强复合材料加固修复钢结构技术规程: YB/T 4558—2016[S]. 北京: 冶金工业出版社, 2017.

    Ministry of Industry and Information Technology of the People’s Republic of China. Technical specificaition for strengthening steel structures with fiber reinforced polymer: YB/T 4558—2016[S]. Beijing: Metallurgical Industry Press, 2017(in Chinese).
    [21] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures,2018,184:1204-1214. doi: 10.1016/j.compstruct.2017.10.033
    [22] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB/T 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017(in Chinese).
    [23] 庞育阳. 极端服役环境下CFRP-钢界面粘结性能研究[D]. 南京: 东南大学, 2019.

    PANG Yuyang. Study on the bond behavior of CFRP-steel interfaces under extreme service environment[D]. Nanjing: Southeast University, 2019(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  468
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-31
  • 录用日期:  2022-04-01
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回