Preparation of cellulose nanocrystals-agarose-titanium carbide hydrogel interfacial evaporator for desalination and pulping waste liquid treatment
-
摘要: 淡水资源短缺和能源危机已经严重影响到人类社会的可持续发展。因此,探寻人类及工业用水清洁脱盐技术成为研究热点。近年来利用太阳能进行水资源脱盐技术发展成为低成本生产清洁淡水的有效途径。本研究以纤维素纳米晶体(Cellulose nanocrystals)为原料,琼脂糖(Agarose)作为水凝胶自交联网络,制备纤维素纳米晶体-琼脂糖-碳化钛(MXene)(Ce-CAM)复合水凝胶界面蒸发器。采用扫描电子显微镜、傅里叶变换红外光谱仪、流变仪对Ce-CAM复合水凝胶的物理化学性能进行分析表征,并对其在海水脱盐淡化和制浆废液净化处理方面的应用进行探究。结果表明,Ce-CAM复合水凝胶在250-
2500 nm范围内的光吸收率为90%以上,在1 kW·m−2的光照强度下,其对3.5%氯化钠溶液和制浆废液的蒸发速率分别为1.44 kg·m−2·h−1、1.42 kg·m−2·h−1,且对Na+、Mg2+、K+、Ca2+四种离子去除率大于99.9%。其BOD、COD去除率分别可达到99.48%、99.53%。本研究可为基于水凝胶界面蒸发用于海水淡化和制浆废液净化处理提供了潜在的应用前景。Abstract: The shortage of fresh water resources and energy crisis have seriously affected the sustainable development of human society. Therefore, exploring sustainable water desalination technology for human and industrial use has become a research hotspot. In recent years, utilization of solar energy to achieve water desalination has become an effective way to produce clean fresh water at a low cost. Biopolymer-based hydrogels are candidates for efficient solar evaporation due to their internal porosity, structural diversity, biocompatibility and other properties. In this study, cellulose nanocrystal (CNC) was used as raw material and agarose (Agar) as hydrogel self-crosslinking network to prepare cellulose nanocrystals-agarose- titanium carbide (Ce-CAM) composite hydrogel interfacial evaporator. Scanning electron microscopy, Fourier transform infrared spectroscopy, and rheometer were used to analyze and characterize the physicochemical properties of Ce-CAM composite hydrogels, and to explore their applications in seawater desalination and desalination, and pulping waste liquid purification and treatment. The results showed that the light absorption of Ce-CAM composite hydrogel in the range of 250-2500 nm was more than 90%, and the light absorption of Ce-CAM composite hydrogel in the range of 1 kW·m−2. Under the light intensity of 1 kW·m−2, its evaporation rate of 3.5% NaCl solution and pulping waste liquid was 1.44 kg·m−2·h−1 and 1.42 kg·m−2·h−1, respectively, and the removal rate of four ions, namely, Na+, Mg2+, K+ and Ca2+, was greater than 99.9%. Its BOD and COD removal could reach 99.48% and 99.53%, respectively. This study can provide a potential technical solution for the use of hydrogel-based interfacial evaporation for seawater desalination and pulping waste liquid purification and treatment. -
图 2 扫描电镜图 (a1),(b1),(c1),(d1)和(a2),(b2),(c2),(d2)分别为Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4复合水凝胶样品的孔道和孔壁截面扫描电镜图
Figure 2. Scanning electron micrographs (a1), (b1), (c1), (d1) and (a2), (b2), (c2), (d2) are scanning electron micrographs of pore channel and pore wall cross sections of Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4 composite hydrogel samples, respectively
图 7 (a). Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4复合水凝胶的氮气吸附-解吸曲线, (b). Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4复合水凝胶孔隙大小分布曲线
Figure 7. (a). Nitrogen adsorption-desorption curves of Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4 composite hydrogels, (b). Pore size distribution curves of Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4 composite hydrogels
图 8 升温曲线:(a). 纯水, 3.5%氯化钠溶液, 制浆废液, Ce-CAM2复合水凝胶在一个太阳照射下升温曲线, (b). 漂浮在纯水中的Ce-CAM2复合水凝胶在一个太阳照射下的红外热成像图
Figure 8. Warming curves: (a). Warming curves of Ce-CAM2 composite hydrogel in pure water, 3.5% NaCl solution, pulping waste, under one sun irradiation, (b). Infrared thermography of Ce-CAM2 composite hydrogel floating in pure water under one sun irradiation
图 11 海水淡化:(a). Ce-CAM2复合水凝胶在不同浓度氯化钠溶液中的蒸发速率, (b). 3.5%氯化钠溶液经过Ce-CAM2复合水凝胶蒸发前后溶液中Na+, Mg2+, K+, Ca2+四种主要离子的浓度变化
Figure 11. Desalination: (a). Evaporation rate of Ce-CAM2 composite hydrogel in different concentrations of NaCl solution, (b). Changes in the concentration of four major ions, Na+, Mg2+, K+ and Ca2+, in 3.5% NaCl solution before and after evaporation of Ce-CAM2 composite hydrogel
图 12 废液蒸发: (a). C, 2 C, 3 C, 4 C分别为原制浆废液浓度, 原制浆废液浓度的两倍, 三倍, 四倍, (b). Ce-CAM2复合水凝胶在不同浓度制浆废液中的蒸发速率
Figure 12. Pulping waste liquid evaporation: (a). C, 2 C, 3 C, 4 C are the original concentration of pulping waste liquid, double, triple and quadruple of the original concentration of pulping waste liquid, respectively, (b). Evaporation rate of Ce-CAM2 composite hydrogel in different concentrations of pulping waste liquid.
图 13 抗酸碱、抗盐性能:(a). Ce-CAM2复合水凝胶在1 mol·L−1 HCl和1 mol·L−1 NaOH溶液中的蒸发速率, (b). 1 mol·L−1盐酸和1 mol·L−1氢氧化钠蒸发前以及蒸发后收集蒸发液体的pH对比, (c). Ce-CAM2复合水凝胶的排盐能力
Figure 13. Acid, alkali and salt resistance: (a). Evaporation rate of Ce-CAM2 composite hydrogel in 1 mol·L−1 HCl and 1 mol·L−1 NaOH solutions, (b). Comparison of pH of the evaporated liquid collected before evaporation of 1 mol L−1 hydrochloric acid and 1 mol L−1 sodium hydroxide as well as after evaporation, (c). Salt exclusion capacity of Ce-CAM2 composite hydrogel
表 1 Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4复合水凝胶平均孔径和比表面积
Table 1. Average pore size and specific surface area of Ce-CAM1, Ce-CAM2, Ce-CAM3, Ce-CAM4 composite hydrogels
Sample Pore Diameter/nm Specific Surface Area /(m2·g−1) Ce-CAM1 2.99 0.27 Ce-CAM2 3.13 5.68 Ce-CAM3 2.92 17.02 Ce-CAM4 3.02 53.50 表 2 制浆废液以及制浆废液净化后的冷凝收集液的各项理化性质
Table 2. Physical and chemical properties of pulping waste liquid and condensate collection liquid after purification of pulping waste liquid
Sample pH Viscosity/
(mPa·s)Conductivity/
(mS·cm−1)Solid/
(g·g−1)Suspension/
(g·L−1)Ash/
(g·g−1)BOD/
(mg·L−1)COD/
(mg·L−1)C 5.13 3 16.80 0.04 0.004 0.011 1726.67 40021.33 C′ 4.82 1 0.17 0 0 0 8.93 187.33 Notes: C is the concentration of the original pulping waste liquid, C′ is the condensate collected after the evaporation of the pulping waste liquid, BOD: biochemical oxygen demand, COD: chemical oxygen demand. -
[1] VöRöSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561. doi: 10.1038/nature09440 [2] OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. doi: 10.1126/science.1128845 [3] ZHU L, GAO M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518. doi: 10.1016/j.nanoen.2018.12.046 [4] ZOU M, ZHANG Y, CAI Z, et al. 3D Printing a Biomimetic Bridge-Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications[J]. Adv Mater, 2021, 33(34): e2102443. doi: 10.1002/adma.202102443 [5] WEINSTEIN L A, MCENANEY K, STROBACH E, et al. A Hybrid Electric and Thermal Solar Receiver[J]. Joule, 2018, 2(5): 962-975. doi: 10.1016/j.joule.2018.02.009 [6] AKKALA S R, KAVITI A K, ARUNKUMAR T, et al. Progress on suspended nanostructured engineering materials powered solar distillation- a review[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110848. doi: 10.1016/j.rser.2021.110848 [7] LUO X, SHI J, ZHAO C, et al. The energy efficiency of interfacial solar desalination[J]. Applied Energy, 2021, 302: 117581. doi: 10.1016/j.apenergy.2021.117581 [8] ZHAO L, TIAN J, LIU Y, et al. A novel floatable composite hydrogel for solar evaporation enhancement[J]. Environmental Science: Water Research & Technology, 2020, 6(1): 221-230. [9] SUN Z, LI Z, LI W, et al. Mesoporous cellulose/TiO2/SiO2/TiN-based nanocomposite hydrogels for efficient solar steam evaporation: low thermal conductivity and high light-heat conversion[J]. Cellulose, 2019, 27(1): 481-491. [10] DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels. A review[J]. Chemical Engineering Journal, 2014, 243: 572-590. doi: 10.1016/j.cej.2014.01.065 [11] LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation[J]. Nano Research, 2020, 14(4): 1135-1140. [12] ZHAO L, WANG P, TIAN J, et al. A novel composite hydrogel for solar evaporation enhancement at air-water interface[J]. Sci Total Environ, 2019, 668: 153-160. doi: 10.1016/j.scitotenv.2019.02.407 [13] GUO Y, DUNDAS C M, ZHOU X, et al. Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation[J]. Adv Mater, 2021, 33(35): e2102994. doi: 10.1002/adma.202102994 [14] WANG J, HU N, LIU M, et al. A novel core–shell structured biosorbent derived from chemi-mechanical pulp for heavy metal ion removal[J]. Cellulose, 2019, 26(16): 8789-8799. doi: 10.1007/s10570-019-02693-6 [15] 崔烨璇, 仝雅娜, 刘伟东等. 纤维素基水凝胶的构建及其应用[J/OL][J]. 材料工程, 2023, 51(9): 37-51. doi: 10.11868/j.issn.1001-4381.2022.000263CUI Y, TONG Y, LIU W, et al. Construction of cellulose-based hydrogels and their applications [J/OL][J]. Joural of Materials Engineering, 2023, 51(9): 37-51(in Chinese). doi: 10.11868/j.issn.1001-4381.2022.000263 [16] CHEN T, WU Z, LIU Z, et al. Hierarchical Porous Aluminophosphate-Treated Wood for High-Efficiency Solar Steam Generation[J]. ACS Appl Mater Interfaces, 2020, 12(17): 19511-19518. doi: 10.1021/acsami.0c01815 [17] GENG Y, SUN W, YING P, et al. Bioinspired Fractal Design of Waste Biomass-Derived Solar–Thermal Materials for Highly Efficient Solar Evaporation[J]. Advanced Functional Materials, 2020, 31(3): 2007648. [18] XU N, HU X, XU W, et al. Mushrooms as Efficient Solar Steam-Generation Devices[J]. Adv Mater, 2017, 29(28): 1606762. doi: 10.1002/adma.201606762 [19] WU S-L, CHEN H, WANG H-L, et al. Solar-driven evaporators for water treatment: challenges and opportunities[J]. Environmental Science: Water Research & Technology, 2021, 7(1): 24-39. [20] WANG S, TU Y, WAN R, et al. Evaporation of tiny water aggregation on solid surfaces with different wetting properties[J]. J Phys Chem B, 2012, 116(47): 13863-13867. doi: 10.1021/jp302142s [21] WANG H, ZHANG R, YUAN D, et al. Gas Foaming Guided Fabrication of 3D Porous Plasmonic Nanoplatform with Broadband Absorption, Tunable Shape, Excellent Stability, and High Photothermal Efficiency for Solar Water Purification[J]. Advanced Functional Materials, 2020, 30(46): 2003995. doi: 10.1002/adfm.202003995 [22] ZHOU L, TAN Y, WANG J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. doi: 10.1038/nphoton.2016.75 [23] CHEN C, ZHOU L, YU J, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 2018, 51: 451-465. doi: 10.1016/j.nanoen.2018.06.077 [24] MA Q, YIN P, ZHAO M, et al. MOF-Based Hierarchical Structures for Solar-Thermal Clean Water Production[J]. Advanced Materials, 2019, 31(17): 1808249. doi: 10.1002/adma.201808249 [25] GUO Y, ZHOU X, ZHAO F, et al. Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination[J]. ACS Nano, 2019, 13(7): 7913-7919. doi: 10.1021/acsnano.9b02301 [26] YE M, JIA J, WU Z, et al. Synthesis of Black TiOxNanoparticles by Mg Reduction of TiO2Nanocrystals and their Application for Solar Water Evaporation[J]. Advanced Energy Materials, 2017, 7(4): 1601811. doi: 10.1002/aenm.201601811 [27] LI C, FAN L, ZHU R, et al. Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation[J]. ACS Applied Energy Materials, 2020, 3(9): 9216-9225. doi: 10.1021/acsaem.0c01584 [28] WANG C, WANG Y, SONG X, et al. A Facile and General Strategy to Deposit Polypyrrole on Various Substrates for Efficient Solar-Driven Evaporation[J]. Advanced Sustainable Systems, 2019, 3(1): 1800108. doi: 10.1002/adsu.201800108 [29] JIANG Q, GHOLAMI DERAMI H, GHIM D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35): 18397-18402. doi: 10.1039/C7TA04834C [30] WU X, JIANG Q, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process[J]. Journal of Materials Chemistry A, 2018, 6(39): 18799-18807. doi: 10.1039/C8TA05738A [31] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484. doi: 10.1126/sciadv.aaw5484 [32] Tako M , Higa M , Medoruma K , et al. A Highly Methylated Agar from Red Seaweed, Gracilaria arcuata[J]. Botanica Marina, 1999, 42(6): 513-517. [33] SUN Z , WANG J , WU Q , et al. Plasmon Based Double-layer Hydrogel Device for a Highly Efficient Solar Vapor Generation[J]. Advanced Functional Materials, 2019, 29(29): 1901312. [34] NI A, LIN P, WANG X, et al. Facile preparation of high strength aerogel evaporator for efficient solar-driven water purification[J]. Sustainable Materials and Technologies, 2022, 32: e00443. doi: 10.1016/j.susmat.2022.e00443
计量
- 文章访问数: 29
- HTML全文浏览量: 24
- 被引次数: 0