留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙脱土-纤维素纳米晶组装体对聚乙烯醇薄膜力学性能的提升

赵肖娟 李海文 权爽 李思仪

赵肖娟, 李海文, 权爽, 等. 蒙脱土-纤维素纳米晶组装体对聚乙烯醇薄膜力学性能的提升[J]. 复合材料学报, 2022, 39(7): 3242-3250. doi: 10.13801/j.cnki.fhclxb.20210905.001
引用本文: 赵肖娟, 李海文, 权爽, 等. 蒙脱土-纤维素纳米晶组装体对聚乙烯醇薄膜力学性能的提升[J]. 复合材料学报, 2022, 39(7): 3242-3250. doi: 10.13801/j.cnki.fhclxb.20210905.001
ZHAO Xiaojuan, LI Haiwen, QUAN Shuang, et al. Self-assembly of montmorillonite-cellulose nanocrystal for enhancing mechanical properties of poly(vinyl alcohol) films[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3242-3250. doi: 10.13801/j.cnki.fhclxb.20210905.001
Citation: ZHAO Xiaojuan, LI Haiwen, QUAN Shuang, et al. Self-assembly of montmorillonite-cellulose nanocrystal for enhancing mechanical properties of poly(vinyl alcohol) films[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3242-3250. doi: 10.13801/j.cnki.fhclxb.20210905.001

蒙脱土-纤维素纳米晶组装体对聚乙烯醇薄膜力学性能的提升

doi: 10.13801/j.cnki.fhclxb.20210905.001
基金项目: 大学生创新创业训练计划项目(S202011736014)
详细信息
    通讯作者:

    赵肖娟,博士,讲师,研究方向为多级结构复合材料的构筑  E-mail: xiaojuanzhao@xaau.edu.cn

  • 中图分类号: TB383.2

Self-assembly of montmorillonite-cellulose nanocrystal for enhancing mechanical properties of poly(vinyl alcohol) films

  • 摘要: 自然生物体由于多级有序的结构、复杂的有机/无机界面相互作用使其具有优异的力学性能,而合成材料仅通过组分和结构的模拟通常无法实现强度、韧性、断裂伸长率的同步提升。基于此,本文通过静电自组装结合溶剂蒸发获得了蒙脱土-纤维素纳米晶/聚乙烯醇(MMT-PCNC/PVA)层状结构复合膜,利用TEM跟踪组装体的形成过程,结合FTIR图谱结果显示复合膜中存在静电、氢键等多重弱相互作用。系统研究了组装体中MMT与聚乙烯亚胺(PEI)修饰的PCNC之间的质量比例对PVA膜力学性能的影响。结果表明,相较纯的PVA膜,不同MMT、PCNC质量比例的组装体对PVA膜的力学性能均有提升作用。其中二者质量比例为1∶1、1∶2时最为明显,1MMT-1PCNC/PVA复合膜的拉伸强度提升了196%;1MMT-2PCNC/PVA复合膜的断裂伸长率、韧性分别提升了175%和900%。这些均得益于复合膜内部的弱相互作用,给应力的传递提供了有效的途径,同时引起裂纹偏转,达到消耗能量的目的,使其在拉伸强度提高的同时韧性也得到提升。

     

  • 图  1  显示悬浮液稳定性的光学照片: (a) 晶态纳米纤维素(CNC);(b) PCNC;(c) MMT;(d) 相应悬浮液的Zeta电势值

    Figure  1.  Photographs showing the stability of suspensions: (a) Cellulose nanocrystals (CNC); (b) PCNC; (c) MMT; (d) Zeta potentials of corresponding suspensions

    图  2  CNC修饰前后的形貌表征: CNC (a)和PCNC (b)的TEM图像

    Figure  2.  Morphology before and after CNC modification: TEM images of pristine CNC (a) and PCNC (b)

    图  3  CNC (a)和PCNC (b)的长度分布图; CNC (c)和PCNC (d)的直径分布图

    Figure  3.  Diameter distributions of CNC (a) and PCNC (b); Length distributions of CNC (c) and PCNC (d)

    图  4  MMT-PCNC组装体的形成过程: MMT (a)、PCNC (b)和1MMT-2PCNC组装体 (c)的TEM图像

    Figure  4.  Tracking the formation of MMT-PCNC: TEM images of MMT (a), PCNC (b) and supramolecular ensemble of 1MMT-2PCNC (c)

    图  5  不同MMT-PCNC/PVA复合膜的SEM图像: (a) 纯PVA薄膜;(b) 1MMT-1PCNC/PVA;(c) 1MMT-2PCNC/PVA;(d) 1MMT-4PCNC/PVA

    Figure  5.  SEM images of MMT-PCNC/PVA: (a) Pure PVA film; (b) 1MMT-1PCNC/PVA; (c) 1MMT-2PCNC/PVA; (d) 1MMT-4PCNC/PVA

    图  6  不同MMT和PCNC质量比的组装体复合膜力学性能

    Figure  6.  Mechanical properties of hybrid films with varying weight ratio of MMT and PCNC

    图  7  通过纯PVA、CNC以及1MMT-2PCNC/PVA复合膜的FTIR图谱显示1MMT-2PCNC和PVA之间氢键的形成

    Figure  7.  FTIR spectra of CNC, PVA and hybrid films of 1MMT-2PCNC/PVA showing multiple hydrogen bonds between 1MMT-2PCNC and PVA

    图  8  1MMT-2PCNC/PVA复合膜断裂形态的SEM图像和断裂示意图:(a) 断裂过程中裂纹扩展的SEM图像(白色折线表示裂纹偏转);(b) 断裂模型示意图

    Figure  8.  SEM image of fracture morphologies of 1MMT-2PCNC/PVA hybrid films and the proposed fracture model: (a) SEM image of crack propagation occurred during fracture (White line indicate crack propagation); (b) Schematic illustration of the fracture model

    表  1  蒙脱土-纤维素纳米晶(MMT-PCNC)组装体的组成

    Table  1.   Compositions of the montmorillonite-cellulose nanocrystal (MMT-PCNC) assemblies

    Sample1MMT-1PCNC1MMT-2PCNC1MMT-4PCNC
    CompositionMass fractionMass ratioMass ratioMass ratio
    MMT0.2%111
    PCNC1.0%124
    下载: 导出CSV

    表  2  MMT-PCNC/PVA复合膜的力学性能

    Table  2.   Mechanical properties of the MMT-PCNC/PVA hybrid films

    Hybrid films of filler/PVAElongation-at-break
    /%
    Tensile strength
    /MPa
    Young’s modulus
    /MPa
    Toughness
    /(MJ·m−3)
    PVA28±326±3101±133±1
    1MMT-1PCNC/PVA50±477±797±627±6
    1MMT-2PCNC/PVA77±463±8100±330±9
    1MMT-4PCNC/PVA42±254±992±713±2
    下载: 导出CSV
  • [1] ZHANG G, YU L, HOSTER H E, et al. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance[J]. Nanoscale,2013,5(3):877-881. doi: 10.1039/C2NR33326K
    [2] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370.

    ZHANG Menghui, MA Zhonglei, MA Jianzhong, et. al. Research progress of structure design and performance of polymer-based electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese).
    [3] SAJI V S, CHOE H C, BRANTLEY W A. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications[J]. Acta Biomaterialia,2009,5(6):2303-2310. doi: 10.1016/j.actbio.2009.02.017
    [4] WEINTRAUB B, ZHOU Z, LI Y, et al. Solution synthesis of one-dimensional ZnO nanomaterials and their applications[J]. Nanoscale,2010,2(9):1573-1587. doi: 10.1039/c0nr00047g
    [5] ZENG M G, XIAO Y, LIU J X, et al. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control[J]. Chemical Reviews,2018,118(13):6236-6296. doi: 10.1021/acs.chemrev.7b00633
    [6] WU B, GUO Y, HOU C Y, et al. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat[J]. Advanced Functional Materials,2019,29(25):1900304.1-1900304.11.
    [7] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials,2011,10(11):817-822. doi: 10.1038/nmat3115
    [8] HING K A. Bone repair in the twenty–first century: Biology, chemistry or engineering?[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physi-cal and Engineering Sciences,2004,362(1825):2821-2850. doi: 10.1098/rsta.2004.1466
    [9] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [10] LI S, TUO P, XIE J F, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution[J]. Nano Energy,2018,47:512-518. doi: 10.1016/j.nanoen.2018.03.022
    [11] CHEN S M, GAO H L, SUNX H, et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy[J]. Matter,2019,1(2):1-16.
    [12] YAO H B, TAN Z H, FANG H Y, et al. Artificial nacre-like bio-nanocomposite films from the self-assembly of chitosan–montmorillonite hybrid building blocks[J]. Angew-andte Chemie International Edition,2011,122(52):10325-10329.
    [13] WU Q, YANG X, WAN Q, et al. Layer-by-layer assembled nacre-like polyether amine/GO hierarchical structure on carbon fiber surface toward composites with excellent interfacial strength and toughness[J]. Composites Science and Technology,2020,198:108296. doi: 10.1016/j.compscitech.2020.108296
    [14] SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications,2012,3:650. doi: 10.1038/ncomms1661
    [15] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [16] YOO S C, PARK Y K, Park C, et al. Biomimetic artificial nacre: Boron nitride nanosheets/ gelatin nanocomposites for biomedical applications[J]. Advanced Functional Materials,2018,28(51):1805948. doi: 10.1002/adfm.201805948
    [17] WOO Y J, OH J H, JO S H, et al. Nacre-Mimetic graphene oxide/cross-linking agent composite films with superior mechanical properties[J]. ACS nano,2019,13(4):4522-4529. doi: 10.1021/acsnano.9b00158
    [18] ZHU W K, CONG H P, YAO H B, et al. Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films[J]. Small,2015,11(34):4298-4302. doi: 10.1002/smll.201500486
    [19] CHEN K, ZHANG S, LI A, et al. A bioinspired interfacial chelating-like reinforcement strategy toward mechani-cally enhanced lamellar materials[J]. ACS Nano,2018,12(5):4269-4279. doi: 10.1021/acsnano.7b08671
    [20] MING P, SONG Z F, GONG S S, et al. Nacre-inspired inte-grated nanocomposites with fire retardant properties by graphene oxide and montmorillonite[J]. Journal of Mate-rials Chemistry A,2015,3(42):21194-21200. doi: 10.1039/C5TA05742F
    [21] CHU G, WANG X, YIN H, et al. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles[J]. ACS Applied Materials & Interfaces,2015,7(39):21797-21806.
    [22] XU S, LI J, YE Q, et al. Flame-retardant ethylene vinyl ace-tate composite materials by combining additions of alumi-num hydroxide and melamine cyanurate: Preparation and characteristic evaluations[J]. Journal of Colloid and Interface Science,2021,589:525-531. doi: 10.1016/j.jcis.2021.01.026
    [23] HUANG Z, LIU J, LIU Y, et al. Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process[J]. Journal of Membrane Science,2021,623:119080. doi: 10.1016/j.memsci.2021.119080
    [24] WU M, CHEN Y, LIN H, et al. Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights[J]. Water Research,2020,181:115932.
    [25] 司联蒙, 陆赵情, 赵永生, 等. 基于真空辅助层层自组装的透明柔性纳米芳纶薄膜的制备[J]. 复合材料学报, 2019, 36(08):1847-1853.

    SI Lianmeng, LU Zhaoqing, ZHAO Yongsheng, et al. preparation of transparent and flexible nano-aramid film based on vacuum-assisted layer-by-layer self-assembly[J]. Acta Materiae Compositae Sinica,2019,36(08):1847-1853(in Chinese).
    [26] ZENG H, WU J, PEI H, et al. Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach[J]. Chemical Engineering Journal,2021,405(3):126865.
    [27] ZHU B, WANG Y, LIU H, et al. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping[J]. Composites Science and Technology,2020,190:108048. doi: 10.1016/j.compscitech.2020.108048
    [28] XU D, WANG S, BERGLUND L A, et al. Surface charges control the structure and properties of layered nanocomposite of cellulose nanofibrils and clay platelets[J]. ACS Applied Materials & Interfaces,2021,13(3):4463-4472.
    [29] CHEN L, QIANG T, CHEN X, et al. Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatin[J]. Chemical Engineering Journal,2021,419(11):129639.
    [30] DONG L, XU C, LI Y, et al. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage[J]. Advanced Materials,2016,28(8):1675-1681. doi: 10.1002/adma.201504747
    [31] SUKHISHVILI S A, GRANICK S. Layered, eras able polymer multilayers formed by hydrogen-bonded sequential self-assembly[J]. Macromolecules,2002,35(1):301-310. doi: 10.1021/ma011346c
    [32] YUZ R, MAO M, LI S N, et al. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbion interconnected networks for fire safety and prevention[J]. Chemical Engineering Journal,2020,405(6454):126620.
    [33] 曾春芽, 单慧媚, 赵超然, 等. 纳米铁-氧化石墨烯/壳聚糖复合材料的制备及其力学性能[J]. 复合材料学报, 2022, 39(4):1739-1747.

    ZENG Chunya, SHAN Huimei, ZHAO Chaoran, et al. Preparation and mechanical properties of nano-iron-graphene oxide/chitosan composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1739-1747(in Chinese).
    [34] COSTA V C, COSTA H S, VASCONCELOS W L, et al. Prepa-ration of hybrid biomaterials for bone tissue engineering[J]. Materials Research,2007,10(1):21-26. doi: 10.1590/S1516-14392007000100006
    [35] HABIBA U, SIDDIQUE T A, TALEBIAN S, et al. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions[J]. Carbohydrate Polymers,2017,177:32-39. doi: 10.1016/j.carbpol.2017.08.115
    [36] JIA Y T, GONG J, GU X H, et al. Fabrication and characteri-zation of poly(vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method[J]. Carbohydrate Polymers,2007,67(3):403-409. doi: 10.1016/j.carbpol.2006.06.010
    [37] KHANNA P K, SINGH N, CHARAN S, et al. Syn thesis and characterization of Ag/PVA nanocomposite by chemical reduction method[J]. Materials Chemistry and Physics,2005,93(1):117-121. doi: 10.1016/j.matchemphys.2005.02.029
    [38] BAI L, BOSSA N, QU F, et al. Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes[J]. Environmental Science & Technology,2017,51(1):253-262.
    [39] YAN Y X, YAO H B, YU S H. Nacre-like ternary hybrid films with enhanced mechanical properties by interlocked nano-fiber design[J]. Advanced Materials Interfaces,2016,3(17):1600296. doi: 10.1002/admi.201600296
    [40] WANG J, JIN X, WU H, et al. Polyimide reinforced with hybrid graphene oxide@carbon nanotube: Toward high strength, toughness, electrical conductivity[J]. Carbon,2017,123:502-513. doi: 10.1016/j.carbon.2017.07.055
    [41] HOU H, GE J J, ZENG J, et al. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes[J]. Chemistry of Materials,2005,17(5):967-973. doi: 10.1021/cm0484955
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  386
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-31
  • 录用日期:  2021-08-14
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回