留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥生物炭负载钴铁双金属活化过一硫酸盐降解双酚F的机制

郑密密 叶权运 贺德春 潘杰 李俊飞 杨建国 马晓蕊 柳王荣

郑密密, 叶权运, 贺德春, 等. 污泥生物炭负载钴铁双金属活化过一硫酸盐降解双酚F的机制[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 郑密密, 叶权运, 贺德春, 等. 污泥生物炭负载钴铁双金属活化过一硫酸盐降解双酚F的机制[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHENG Mimi, YE Quanyun, HE Dechun, et al. Degradation of bisphenol F by activated of peroxymonosulfate using sludge biochar loaded with cobalt iron bimetallic catalyst[J]. Acta Materiae Compositae Sinica.
Citation: ZHENG Mimi, YE Quanyun, HE Dechun, et al. Degradation of bisphenol F by activated of peroxymonosulfate using sludge biochar loaded with cobalt iron bimetallic catalyst[J]. Acta Materiae Compositae Sinica.

污泥生物炭负载钴铁双金属活化过一硫酸盐降解双酚F的机制

基金项目: 中央级公益性科研院所基本科研业务费专项资金资助项目(PM-zx703-202305-188);国家自然科学基金(42107437)
详细信息
    通讯作者:

    马晓蕊,硕士,工程师,研究方向为农业面源污染防治 E-mail: maxiaorui@scies.org

  • 中图分类号: TB331

Degradation of bisphenol F by activated of peroxymonosulfate using sludge biochar loaded with cobalt iron bimetallic catalyst

Funds: The Fundamental Research Funds for the Central Public Welfare Research Institutes (PM-zx703-202305-188); National Natural Science Foundation of China(42107437)
  • 摘要: 近年来,污水处理厂的大规模建设导致污泥产量逐年增加,污泥的处理面临严峻挑战,双酚F (BPF)被广泛应用于工业中化学添加剂,在地表水,土壤和污泥中被频繁检出。本文利用市政污泥负载钴铁双金属制备了钴铁双金属@生物炭复合材料(CoFeO@SBC),通过活化过一硫酸盐(PMS)降解BPF来探究其催化性能。采用扫描电子显微镜(SEM)、比表面积测定(BET)、红外光谱(IR)、X射线衍射(XRD)和X射线光电子能谱(XPS)等表征分析所制备材料的理化性质;并考察了材料投加量、PMS投加量、初始pH和无机阴离子对CoFeO@SBC/PMS体系降解BPF效果的影响。结果表明,CoFeO与SBC复合后孔隙结构显著优化,比表面积增加了6.0倍,且具备更丰富的氧空位和还原性—OH官能团,产生了更多的Fe(Ⅱ)和Co(Ⅱ)。因此,CoFeO@SBC具有优异的催化活性,投加量为0.04 g/L时可以在10 min内几乎完全降解BPF(5 mg/L),降解速率与CoFeO相比提高了62%;Cl和$\mathrm{NO}_3 ^{-} $对体系降解效果影响较小,而$\mathrm{HCO}_3 ^{-} $具有显著的抑制作用;通过EPR分析表明CoFeO@SBC/PMS体系存在羟基(·OH)和硫酸根($\mathrm{SO}_4 ^{\cdot-} $)自由基以及单线态氧(1O2)和超氧(${\mathrm{O}}_2^{ \cdot-} $)自由基,同时自由基淬灭实验证明,$\mathrm{SO}_4 ^{\cdot-} $是体系降解BPF的关键活性氧物种;最后通过液相色谱-质谱联用(LC-MS)对BPF的降解产物进行分析,揭示BPF在体系中的主要降解途径和机制。

     

  • 图  1  不同材料的XRD图谱

    Figure  1.  The XRD spectra of different material

    图  2  N2吸附-脱附等温线及孔径分布图: (a) CoFeO; (b) 钴铁双金属@生物炭复合材料(CoFeO@SBC); (c) SBC

    Figure  2.  N2 adsorption-desorption isotherm and pore size distribution of CoFeO (a), cobalt-iron bimetallic@biochar composites (CoFeO@SBC) (b) and (c) SBC

    图  3  SEM表征: (a) SBC; (b) CoFeO; (c) CoFeO@SBC

    Figure  3.  Characterization of SBC (a)、CoFeO (b) and CoFeO@SBC (c) by SEM

    图  4  (a) CoFeO和CoFeO@SBC的IR表征;(b) XPS全谱图; (c) C 1 s;(d) O 1 s;(e) Fe 2 p和(f) Co 2 p的XPS高分辨图

    Figure  4.  (a) Characterization of CoFeO and CoFeO@SBC by IR; (b) The XPS survey spectra of CoFeO and CoFeO@SBC; XPS high-resolution spectra of C ls spectra (c); 0 ls spectra(d); Fe 2 p spectra (e); Co 2 p spectra (f)

    图  5  (a) 不同体系及CoFeO@SBC投加量对双酚F (BPF)去除效果的影响; (b) 不同体系及材料投加量的速率常数图

    Figure  5.  (a) Effect of different systems and CoFeO@SBC dosage on the removal of bisphenol F (BPF); (b)Rate constant diagram for different systems and material dosages

    Ct/C0:The concentration of BPF after t min / The concentration of BPF before the reaction

    图  6  (a) 过一硫酸盐(PMS)投加量对BPF去除效果的影响; (b) PMS投加量的速率常数图

    Figure  6.  (a) Effect of peroxymonosulfate (PMS) dosage on the removal of BPF;(b) Rate constant diagram of PMS dosage

    图  7  (a) 不同初始pH对BPF去除效果的影响; (b) 不同初始pH的速率常数图

    Figure  7.  (a) Effect of different pH on the removal of BPF; (b) Rate constant plot for different initial pH

    图  8  (a) 常见阴离子(Cl、HCO3和NO3)对反应体系降解BPF的影响;(b) 常见阴离子的速率常数图

    Figure  8.  (a) Effect of anions (Cl,HCO3 and NO3)on BPF in reaction system; (b) Rate constant diagrams for common anions

    图  9  (a) CoFeO@SBC/PMS体系自由基淬灭实验; (b) 自由基淬灭实验的速率常数图 不同ROS的鉴定; (c) MeOH (d) TBA (e) L-his (f) p-BQ

    Figure  9.  (a) Radical quenching experiment in CoFeO@SBC/PMS system; (b) Rate constant plot for free radical quenching experiment The identification of different ROS; (c) MeOH (d) TBA (e) L-his (f) p-BQ

    图  10  CoFeO@SBC活化PMS降解BPF的机制示意图

    Figure  10.  Schematic diagram of the mechanism of CoFeO@SBC activation of PMS to degrade BPF

    图  11  CoFeO@SBC/PMS体系中BPF降解路径

    Figure  11.  Possible degradation pathways of BPF in the CoFeO@SBC/PMS system

    表  1  不同材料的表面结构特征

    Table  1.   The surface structure characterization of different material

    Sample Surface area/(m²·g−1) Average pore diameter/nm Pore volume/(cm³·g−1)
    SBC 22.0203 15.88640 0.088944
    CoFeO 5.2699 17.45430 0.023892
    CoFeO@SBC 37.1189 9.48554 0.093656
    下载: 导出CSV

    表  2  CoFeO和CoFeO@SBC的XPS分析数据

    Table  2.   XPS analysis results of CoFeO and CoFeO@SBC

    Sample Fe2+/Fe3+ Co2+/Co3+ C—O O2
    CoFeO 1.3 0.7 22.59 % 32.90%
    CoFeO@SBC 1.5 0.98 30.99 % 36.31%
    下载: 导出CSV
  • [1] 王倩倩, 王永花, 汪贝贝, 等. 双酚F和双酚S联合暴露下的斑马鱼富集及神经毒性[J]. 中国环境科学, 2020, 40(2): 865-873. doi: 10.3969/j.issn.1000-6923.2020.02.048

    WANG Qianqian, WANG Yonghua, WANG Beibei, et al. Accumulation and neurotoxicity of bisphenol F and bisphenol S in zebrafish under combined exposure[J]. China Environmental Science, 2020, 40(2): 865-873(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.02.048
    [2] GOMEZ-LASERNA O, LANZAFAME P, PAPANIKOLAOU G, et al. Analytical assessment to develop innovative nanostructured BPA-free epoxy-silica resins as multifunctional stone conservation materials[J]. Science of the Total Environment, 2018, 645: 817-826. doi: 10.1016/j.scitotenv.2018.07.188
    [3] MORALES M, DE La FUENTE M, MARTIN-FOLGAR R. BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera)[J]. Environmental Pollution, 2020, 265: 1148.
    [4] ZENG D, LI P R, HU J W, et al. Fulvic acid enhanced peroxymonosulfate activation over Co-Fe binary metals for efficient degradation of emerging bisphenols[J]. Environmental Research, 2023, 231: 116041. doi: 10.1016/j.envres.2023.116041
    [5] HUANG Z, ZHAO J L, YANG Y Y, et al. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers[J]. Environmental Pollution, 2020, 263: 114361. doi: 10.1016/j.envpol.2020.114361
    [6] ČESEN M, LENARCIC K, MISLEJ V, et al. The occurrence and source identification of bisphenol compounds in wastewaters[J]. Science of the Total Environment, 2018, 616-617: 744-752. doi: 10.1016/j.scitotenv.2017.10.252
    [7] STAOLES C, VAN DER Hoeven , CLARK K, et al. Distributions of concentrations of bisphenol A in North American and European surface waters and sediments determined from 19 years of monitoring data[J]. Chemosphere, 2018, 201: 448-458.
    [8] PANG L, YANG H Q, LV L N, et al. Occurrence and estrogenic potency of bisphenol analogs in sewage sludge from wastewater treatment plants in central China[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(3): 461-470. doi: 10.1007/s00244-019-00663-4
    [9] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism[J]. Water Research, 2020, 185: 116246. doi: 10.1016/j.watres.2020.116246
    [10] LUO X W, YOU Y J, ZHONG M J, et al. Green synthesis of manganese–cobalt–tungsten composite oxides for degradation of doxycycline via efficient activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2022, 426: 127803. doi: 10.1016/j.jhazmat.2021.127803
    [11] GIANNAKIS S, LIN K A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
    [12] 王俊辉, 陆彩妹, 李泽华, 等. 磁性氮掺杂杉木屑生物炭活化过一硫酸盐降解左氧氟沙星[J]. 复合材料学报, 2023, 40(11): 6383-6394. doi: 10.13801/j.cnki.fhclxb.20230222.011 Chemical Engineering Journal, 2015, 276: 193-204.

    WANG Junhui, LU Caimei, LI Zehua, et al. Preparation of magnetic nitrogen-doped fir sawdust biochar to activate peroxymonosulfate for Levofloxacin degradation[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6383-6394. doi: 10.13801/j.cnki.fhclxb.20230222.011.(in Chinese).
    [13] FERNANDES A, MAKOS P, KHAN J A et al. Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes[J]. Journal of Cleaner Production, 2019, 208: 54-64. doi: 10.1016/j.jclepro.2018.10.081
    [14] NFODZO P, CHOI H. Sulfate radicals destroy pharmaceuticals and personal care products[J]. Environmental Engineering Science, 2011, 28(8): 605-609. doi: 10.1089/ees.2011.0045
    [15] SHEN M X, HUANG Z J, LUO X W, et al. Activation of persulfate for tetracycline degradation using the catalyst regenerated from Fenton sludge containing heavy metal: Synergistic effect of Cu for catalysis[J]. Chemical Engineering Journal, 2020, 396: 125238. doi: 10.1016/j.cej.2020.125238
    [16] FANG Y, LIU Q W, SONG Y, et al. Highly efficient in-situ purification of Fe(II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption[J]. Chemical Engineering Journal, 2023, 453: 139915. doi: 10.1016/j.cej.2022.139915
    [17] SUN C H, JIA Z R, XU S, et al. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 113: 128-137.
    [18] YUAN C, DAI Y D, CHEN Y C. Analysis of electric field efficacy and remediation performance of triclosan contaminated soil by Co–Fe/al oxidation electrodes coupled with peroxymonosulfate (PMS) in an ECGO system with diversified electrode configurations[J]. Chemosphere, 2022, 307: 135841. doi: 10.1016/j.chemosphere.2022.135841
    [19] 张吉琛, 刘婷然, 董志强, 等. 污泥生物炭的催化机制及应用研究进展[J]. 环境化学, 2023, 42(6): 1-14.

    ZHANG Jichen, LIU Tingran, DONG Zhiqiang, et al. Mechanism and application for removal of contaminants by sludge derived biochar catalyst: A review[J]. Environmental Chemistry, 2023, 42(6): 1-14(in Chinese).
    [20] GAO Y, CONG S B, YU H Y, et al. Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process[J]. Separation and Purification Technology, 2021, 262: 118330. doi: 10.1016/j.seppur.2021.118330
    [21] 吕鹏飞, 陈悫, 王佳程, 等. 层状双氢氧化物-生物炭复合材料在废水处理中的应用[J]. 复合材料学报, 2023, 42: 1-12.

    LV Pengfei, CHEN Que, WANG Jiacheng, et al. Application of layered double hydroxide-biochar composite in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2023, 42: 1-12(in Chinese).
    [22] JI, J Q, YUAN X Z, ZHAO Y L, et al. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar[J]. Journal of Hazardous Materials, 2022, 430: 128375. doi: 10.1016/j.jhazmat.2022.128375
    [23] 贺德春, 胡嘉梧, 梁紫薇, 等. 同位素内标-高效液相色谱-串联质谱法测定畜禽粪便中6种雌激素[J]. 生态环境学报, 2021, 30(2): 383-390.

    HE Dechun, HU Jiawu, LIANG Ziwei, et al. Determination of six estrogens in livestock manures by isotope internal standard-high performance liquid chromatography coupled with tandem mass spectrometry[J]. Ecology and Environmental Science, 2021, 30(2): 383-390(in Chinese).
    [24] LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4[J]. Chemical Engineering Journal, 2020, 387: 12094.
    [25] WU J Y, XU Y J, WU P X, et al. Effects of different dissolved organic matter on peroxymonosulfate activation over Co-Fe binary metal: Experiments and density functional theory[J]. Chemical Engineering Journal, 2022, 450: 137770. doi: 10.1016/j.cej.2022.137770
    [26] GUAN Q, CHENG J, WANG B, et al. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors[J]. ACS Appl Mater Interfaces, 2014, 6(10): 7626-7632. doi: 10.1021/am5009369
    [27] WU J Y, WANG Y H, WU Z X, et al. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions[J]. Science of the Total Environment, 2020, 708: 134409. doi: 10.1016/j.scitotenv.2019.134409
    [28] JU L T, WU P X, YANG Q L, et al. Synthesis of ZnAlTi-LDO supported C60@AgCl nanoparticles and their photocatalytic activity for photo-degradation of Bisphenol A[J]. Applied Catalysis B:Environmental, 2018, 224: 159-174. doi: 10.1016/j.apcatb.2017.10.056
    [29] CHEN L Y, WU P X, CHEN M Q, et al. Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead[J]. Applied Clay Science, 2018, 159: 74-82. doi: 10.1016/j.clay.2017.12.050
    [30] LI Z, SUN Y Q, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater[J]. Journal of Hazardous Materials, 2020, 383: 121240. doi: 10.1016/j.jhazmat.2019.121240
    [31] HAN S, XIAO P F. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism[J]. Separation and Purification Technology, 2022, 287: 120533. doi: 10.1016/j.seppur.2022.120533
    [32] JIA Q Q, ZHANG X J, LI Y Q, et al. Reductive dehalogenation in groundwater by Si-Fe(II) co-precipitates enhanced by internal electric field and low vacancy concentrations[J]. Water Research, 2023, 228: 119386. doi: 10.1016/j.watres.2022.119386
    [33] BAO C S, WANG H, WANG C Y, et al. Cooperation of oxygen vacancy and FeIII/FeII sites in H2-reduced Fe-MIL-101 for enhanced Fenton-like degradation of organic pollutants[J]. Journal of Hazardous Materials, 2023, 441: 129922. doi: 10.1016/j.jhazmat.2022.129922
    [34] LIU J W, DU Y F, SUN W Y, et al. A granular adsorbent-supported Fe/Ni nanoparticles activating persulfate system for simultaneous adsorption and degradation of ciprofloxacin[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1077-1084. doi: 10.1016/j.cjche.2019.12.019
    [35] XIE H, XU W. Enhanced activation of persulfate by Meso-CoFe2O4/SiO2 with ultrasonic treatment for degradation of chlorpyrifos[J]. ACS Omega, 2019, 4(17): 17177-17185. doi: 10.1021/acsomega.9b01626
    [36] HUANG Y M, LI G, LI M Z, et al. Kelp-derived N-doped biochar activated peroxymonosulfate for ofloxacin degradation[J]. Science of the Total Environment, 2021, 754: 141999. doi: 10.1016/j.scitotenv.2020.141999
    [37] HE J, XIAO Y, TANG J C, et al. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect[J]. Science of the Total Environment, 2019, 690: 768-777. doi: 10.1016/j.scitotenv.2019.07.043
    [38] WANG X L, DING Y Z, DIONYSIOU D D, et al. Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism[J]. Science of the Total Environment, 2020, 749: 142387. doi: 10.1016/j.scitotenv.2020.142387
    [39] WANG S Z, LIU Y, WANG J L. Iron and sulfur co-doped graphite carbon nitride (FeOy/S-g-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2020, 382: 122836. doi: 10.1016/j.cej.2019.122836
    [40] HU Y, CHEN D Z, ZHANG R, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials, 2021, 419: 126495. doi: 10.1016/j.jhazmat.2021.126495
    [41] LOU X Y, WW L X, GUO Y G, et al. Peroxymonosulfate activation by phosphate anion for organics degradation in water[J]. Chemosphere, 2014, 117: 582-585. doi: 10.1016/j.chemosphere.2014.09.046
    [42] LI X N, WANG Z H, ZHANG B, et al. FexCo3−xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
    [43] WANG Z W, LI Q, SU R D, et al. Enhanced degradation of bisphenol F in a porphyrin-MOF based visible-light system under high salinity conditions[J]. Chemical Engineering Journal, 2022, 428: 132106. doi: 10.1016/j.cej.2021.132106
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-25
  • 录用日期:  2024-02-03
  • 网络出版日期:  2024-04-02

目录

    /

    返回文章
    返回