留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米Au-氮掺杂碳纳米管一体化复合正极的构筑及锂氧气电池性能

姜巧娟 李靖靖 李玉玲 陈菲 王焕锋

姜巧娟, 李靖靖, 李玉玲, 等. 纳米Au-氮掺杂碳纳米管一体化复合正极的构筑及锂氧气电池性能[J]. 复合材料学报, 2023, 40(11): 6241-6250. doi: 10.13801/j.cnki.fhclxb.20230113.002
引用本文: 姜巧娟, 李靖靖, 李玉玲, 等. 纳米Au-氮掺杂碳纳米管一体化复合正极的构筑及锂氧气电池性能[J]. 复合材料学报, 2023, 40(11): 6241-6250. doi: 10.13801/j.cnki.fhclxb.20230113.002
JIANG Qiaojuan, LI Jingjing, LI Yuling, et al. Construction of nano Au-nitrogen doped carbon nanotubes integrated composite cathode and performance study for lithium-oxygen batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6241-6250. doi: 10.13801/j.cnki.fhclxb.20230113.002
Citation: JIANG Qiaojuan, LI Jingjing, LI Yuling, et al. Construction of nano Au-nitrogen doped carbon nanotubes integrated composite cathode and performance study for lithium-oxygen batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6241-6250. doi: 10.13801/j.cnki.fhclxb.20230113.002

纳米Au-氮掺杂碳纳米管一体化复合正极的构筑及锂氧气电池性能

doi: 10.13801/j.cnki.fhclxb.20230113.002
基金项目: 河南省高校国家级大学生创新创业训练计划项目(202211068009);河南省高等学校重点科研项目(22B150021);郑州工程技术学院课程思政教育教学改革研究与实践项目(KCSZJG202102)
详细信息
    通讯作者:

    王焕锋,博士,副教授,研究方向为能源材料 E-mail: whfzzgc@163.com

  • 中图分类号: O643.36;TB333

Construction of nano Au-nitrogen doped carbon nanotubes integrated composite cathode and performance study for lithium-oxygen batteries

Funds: National Innovation and Entrepreneurship Training Program for College Students in Henan Province (202211068009); Key Scientific Research Project of Higher Education of Henan Province, China (22B150021); Course Ideology and Politics Education Teaching Reform Research and Practice Project of Zhengzhou University of Technology (KCSZJG202102)
  • 摘要: 高效稳定的正极对锂氧气电池至关重要。通过化学气相沉积、光还原两步合成工艺,将具有高催化活性的Au纳米粒子原位负载在具有三维贯穿结构的氮掺杂碳纳米管(N-CNT)/不锈钢(SS)网上,制备了具有互相渗透孔道的高性能一体化锂氧气电池正极Au-N-CNT/SS。通过SEM、TEM、XPS、XRD及Raman等表征手段对Au-N-CNT/SS的微观形貌、组成进行了考察。制备的Au-N-CNT/SS正极具有合适的孔道结构、高电导率、超强的力学性能、结构稳定性等,克服了传统电极机械稳定性差、碳电极易分解、副反应严重等问题。用作锂氧气电池正极,Au-N-CNT/SS一体化电极的设计避免了黏结剂的使用,极大地提高了电池的力学强度,有效降低了副反应,提升了电池的电化学/化学稳定性;正极的高导电率、充足的孔道结构提供了快速的电子输运和传质通道;Au纳米粒子高效催化剂有效提升了正极的氧还原/氧析出反应动力学,加快了放电产物的生成与分解,电池的倍率性能(1.0 mA·cm−2的高电流密度下放电电压保持在2.4 V)、放电容量(8.47 mA·h·cm−2)和循环性能(160圈)得到了较大提升。

     

  • 图  1  Au纳米粒子原位负载氮掺杂碳纳米管(N-CNT)/不锈钢(SS)网一体化电极(Au-N-CNT/SS)的合成示意图

    CVD—Chemical vapor deposition

    Figure  1.  Schematic illustration of the synthesis procedure for the Au nanoparticles in situ loaded with nitrogen-doped carbon nanotubes (N-CNT)/stainless steel (SS) mesh integrated electrodes (Au-N-CNT/SS)

    图  2  (a) SS的SEM图像;((b)~(d)) 不同放大倍数下Au-N-CNT/SS的SEM图像;(e) Au-N-CNT/SS、N-CNT/SS及SS的XRD图谱;(f) Au-N-CNT/SS及N-CNT/SS的Raman图谱

    Figure  2.  (a) SEM image of SS; ((b)-(d)) SEM images of Au-N-CNT/SS at different magnifications; (e) XRD patterns of Au-N-CNT/SS, N-CNT/SS and SS; (f) Raman spectra of Au-N-CNT/SS and N-CNT/SS

    图  3  ((a), (b))不同放大倍数下氮掺杂碳纳米管/不锈钢网电极(N-CNT-SS)的SEM图像;(c) Au-N-CNT/SS的TEM图像;(d) Au-N-CNT/SS的高分辨TEM图像;(e) Au-N-CNT/SS电极中Au4f的XPS图谱;(f) Au-N-CNT/SS和N-CNT/SS的紫外可见吸收图谱

    Figure  3.  ((a), (b)) SEM images of nitrogen-doped carbon nanotubes/stainless steel mesh electrode (N-CNT-SS) at different magnifications; (c) TEM image of the Au-N-CNT/SS; (d) High resolution TEM image of the Au-N-CNT/SS; (e) XPS spectra of Au4f in Au-N-CNT/SS; (f) UV-Vis absorption spectra of Au-N-CNT/SS and N-CNT/SS

    图  4  基于Au-N-CNT/SS、N-CNT/SS及N-CNT-SS电极的锂氧气电池的首圈充放电曲线 (a)、循环伏安曲线 (b)、不同电流密度下的放电电压变化 (c)、电化学交流阻抗谱 (d)、放电容量 (e)、循环性能 (f)

    Figure  4.  First discharge-charge curves (a), cyclic voltammetry curves (b), discharge voltage variation at different current densities (c), electrochemical impedance spectroscopy (d), discharge capacity (e), cycling performance (f) of the lithium-oxygen battery with Au-N-CNT/SS, N-CNT/SS and N-CNT-SS

    图  5  首次放电和充电后Au-N-CNT/SS正极((a), (b))、N-CNT/SS正极((c), (d))和N-CNT-SS ((e), (f))正极的SEM图像;(g) 首次放电和充电后Au-N-CNT/SS、N-CNT/SS和N-CNT-SS正极的红外图谱,其中Li2O2、Li2CO3、HCO2Li和CH3CO2Li的图谱供参考

    Figure  5.  SEM images of the recharged Au-N-CNT/SS cathode ((a), (b)), N-CNT/SS cathode ((c), (d)) and N-CNT-SS cathode ((e), (f)) after 1st discharged and charged process; (g) FTIR spectra of the Au-N-CNT/SS, N-CNT/SS and N-CNT-SS cathodes after 1st discharged and charged process, in which the spectra for Li2O2, Li2CO3, HCO2Li and CH3CO2Li are also shown for reference

    图  6  (a) 不同含量商业Li2O2的紫外可见光图谱;(b) 放电后不同电极的紫外可见光图谱

    Figure  6.  (a) UV-Vis spectra of the commercial Li2O2 with different contents; (b) UV-Vis spectra of the discharged Au-N-CNT/SS, N-CNT/SS and N-CNT-SS

    图  7  第20次充电后Au-N-CNT/SS (a)、N-CNT/SS (b) 和N-CNT-SS正极 (c) 的SEM图像(电流密度为0.2 mA·cm−2,充电容量为1.0 mA·h·cm−2);(d) 第20次充电后Au-N-CNT/SS、N-CNT/SS和N-CNT-SS正极的1H核磁共振图谱,其中四乙二醇二甲醚(TEGDME)、CH3COOD和HCOOD的图谱供参考

    Figure  7.  SEM images of the Au-N-CNT/SS (a), N-CNT/SS (b), and N-CNT-SS cathodes (c) at a current density of 0.2 mA·cm−2 with a charge capacity of 1.0 mA·h·cm−2 after the 20th recharge; (d) 1H NMR spectra of the Au-N-CNT/SS, N-CNT/SS and N-CNT-SS cathodes after the 20th recharge, in which the spectra for tetraethylene glycol dimethyl ether (TEGDME), CH3COOD and HCOOD are also shown for reference

  • [1] MA J M, LI Y T. Editorial for advanced energy storage and conversion materials and technologies[J]. Rare Metals, 2021, 40(2): 246-248.
    [2] PENG G S, HUANG J, GU Y C, et al. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery[J]. Rare Metals,2021,40(12):3501-3511. doi: 10.1007/s12598-020-01687-9
    [3] ZHU Q C, DU F H, XU S M, et al. Hydroquinone resin induced carbon nanotubes on Ni foam as binder-free cathode for Li-O2 batteries[J]. ACS Applied Materials & Interfaces,2016,8(6):3868-3873.
    [4] ZHAO G Y, ZHANG L, LYU J X, et al. A graphitic foam framework with hierarchical pore structure as self-supported electrodes of Li-O2 batteries and Li ion batteries[J]. Journal of Materials Chemistry A,2016,4(4):1399-1407. doi: 10.1039/C5TA09033D
    [5] YANG W C, QIAN Z Y, DU C Y, et al. Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries[J]. Carbon,2017,118:139-147. doi: 10.1016/j.carbon.2017.03.037
    [6] QIU Z M, BAI Y, GAO Y D, et al. MXenes nanocomposites for energy storage and conversion[J]. Rare Metals,2022,41(4):1101-1128. doi: 10.1007/s12598-021-01876-0
    [7] LENG L M, LI J, ZENG X Y, et al. Enhancing the cyclability of Li-O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst[J]. Journal of Power Sources,2017,337:173-179. doi: 10.1016/j.jpowsour.2016.10.089
    [8] XU J J, CHANG Z W, YIN Y B, et al. Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium-oxygen batteries[J]. ACS Central Science,2017,3(6):598-604. doi: 10.1021/acscentsci.7b00120
    [9] QIN Y C, WANG F Q, WANG X M, et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals,2021,40(9):2354-2368. doi: 10.1007/s12598-021-01727-y
    [10] LI Z, GANAPATHY S, XU Y, et al. Fe2O3 nanoparticle seed catalysts enhance cyclability on deep (dis)charge in aprotic Li-O2 batteries[J]. Advanced Energy Materials,2018,8(18):1703513. doi: 10.1002/aenm.201703513
    [11] LIU X M, ZHAO L L, XU H R, et al. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries[J]. Advanced Energy Materials,2020,10(40):2001415. doi: 10.1002/aenm.202001415
    [12] 李华, 李靖靖, 王焕锋. 多孔Co3O4纳米纤维用于锂-空气电池高性能正极催化剂[J]. 复合材料学报, 2021, 38(7): 2305–2312.

    LI Hua, LI Jingjing, WANG Huanfeng. Porous Co3O4 nanofibers applied as an efficient cathode catalyst for Li-air batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2305-2312(in Chinese).
    [13] SUN Z M, HE J L, YUAN M W, et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film[J]. Nano Energy,2019,65:103996. doi: 10.1016/j.nanoen.2019.103996
    [14] WANG P, ZHAO D Y, HUI X B, et al. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries[J]. Advanced Energy Materials,2021,11(32):2003069. doi: 10.1002/aenm.202003069
    [15] YANG Z D, YANG X Y, LIU T, et al. In situ CVD derived Co-N-C composite as highly efficient cathode for flexible Li-O2 batteries[J]. Small,2018,14(43):1800590. doi: 10.1002/smll.201800590
    [16] WANG Y, SONG L N, WANG Y F, et al. A TEMPO-grafted multi-functional cathode with strong anchoring ability towards redox mediators for high energy efficiency Li-O2 batteries[J]. Energy Storage Materials,2022,45:191-200. doi: 10.1016/j.ensm.2021.11.038
    [17] LI J J, DING S Q, ZHANG S M, et al. Catalytic redox mediators for non-aqueous Li-O2 battery[J]. Energy Storage Materials,2021,43:97-119. doi: 10.1016/j.ensm.2021.08.036
    [18] LIU X A, ZHANG P, LIU L L, et al. Inhibition of discharge side reactions by promoting solution-mediated oxygen reduction reaction with stable quinone in Li-O2 batteries[J]. ACS Applied Materials & Interfaces,2020,12(9):10607-10615.
    [19] KIM C H J, VARANASI C V, LIU J. Synergy of polypyrrole and carbon X-aerogel in lithium-oxygen batteries[J]. Nanoscale,2018,10(8):3753-3758. doi: 10.1039/C7NR08494C
    [20] WANG H Q, FAN X P, ZHANG X H, et al. In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li-O2 batteries[J]. RSC Advances,2017,7(38):23328-23333. doi: 10.1039/C7RA02932B
    [21] WANG P, LI C X, DONG S H, et al. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li-O2 batteries[J]. Small,2019,15(30):1900001. doi: 10.1002/smll.201900001
    [22] CHAI A H, JI C H, YUAN D, et al. Fluidic Ga-In liquid metal-modified cathode with improved cyclic performance and capacity of Li-O2 batteries[J]. Rare Metals,2022,41(7):2223-2229. doi: 10.1007/s12598-021-01903-0
    [23] YOON K R, SHIN K, PARK J, et al. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries[J]. ACS Nano,2018,12(1):128-139. doi: 10.1021/acsnano.7b03794
    [24] NAM J S, JUNG J W, YOUN D Y, et al. Free-standing carbon nanofibers protected by a thin metallic iridium layer for extended life-cycle Li-oxygen batteries[J]. ACS Applied Materials & Interfaces,2020,12(50):55756.
    [25] LIU Q C, XU J J, XU D, et al. Flexible lithium-oxygen battery based on a recoverable cathode[J]. Nature Communications,2015,6(1):7892. doi: 10.1038/ncomms8892
    [26] SONG L N, ZHANG W, WANG Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries[J]. Nature Communications,2020,11:2191. doi: 10.1038/s41467-020-15712-z
    [27] MENG Y, ZHANG J K, LU H Y, et al. High performance lithium oxygen batteries based on a phosphorous-doped holey graphene cathode[J]. Rare Metals,2022,41(12):4027-4033. doi: 10.1007/s12598-022-02089-9
    [28] GUO X J, ZHANG Q, LI Y N, et al. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction[J]. Rare Metals, 2022, 41(6): 2108-2117.
    [29] WANG H F, LI J F, SUN X X, et al. Stabilizing electrochemical Li-O2 batteries with a metal-based cathode of PdNi on Ni nonwoven fabric[J]. Nanoscale,2019,11(24):11513-11520. doi: 10.1039/C9NR02390A
    [30] WANG H F, LI J F, LI F, et al. Facile route to constructing ternary nanoalloy bifunctional oxygen cathode for metal-air batteries[J]. Chemical Research in Chinese Universities,2020,36(6):1153-1160. doi: 10.1007/s40242-020-0199-7
    [31] CHEN J J, HAO R, WANG Z Y, et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries[J]. Rare Metals,2022,41(6):2055-2062. doi: 10.1007/s12598-022-01974-7
    [32] MANG X B, YAO L Q. Grazing-incidence small-angle X-ray scattering property of double-layered gold nanoparticle arrays[J]. Rare Metals,2022,41(10):3585-3590. doi: 10.1007/s12598-016-0736-1
    [33] MANG X B, YAO L Q. Hexagonal packing lattice formed by functionalized gold nanoparticles[J]. Rare Metals,2022,41(11):3858-3864. doi: 10.1007/s12598-016-0744-1
    [34] LI Y R, LI M X, LI S N, et al. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals[J]. Rare Metals,2021,40(12):3406-3441. doi: 10.1007/s12598-021-01747-8
    [35] WANG H F, MIN Y T, LI P C, et al. In situ integration of ultrathin PtRuCu alloy overlayer on copper foam as an advanced free-standing bifunctional cathode for rechargeable Zn-air batteries[J]. Electrochimica Acta,2018,283:54−62. doi: 10.1016/j.electacta.2018.06.097
    [36] SONG L N, ZOU L C, WANG X X, et al. Realizing formation and decomposition of Li2O2 on its own surface with a highly dispersed catalyst for high round-trip efficiency Li-O2 batteries[J]. iScience,2019,14:36-46. doi: 10.1016/j.isci.2019.03.013
    [37] WU H T, SUN W, WANG Y, et al. Facile synthesis of hierarchical porous three-dimensional free-standing MnCo2O4 cathodes for long-life Li-O2 batteries[J]. ACS Applied Materials & Interfaces,2017,9(14):12355-12365.
  • 加载中
图(7)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  223
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-12
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回