留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响

杨晨 姜亚明 项赫 李佳楠

杨晨, 姜亚明, 项赫, 等. 热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 复合材料学报, 2023, 40(1): 96-108. doi: 10.13801/j.cnki.fhclxb.20220225.002
引用本文: 杨晨, 姜亚明, 项赫, 等. 热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 复合材料学报, 2023, 40(1): 96-108. doi: 10.13801/j.cnki.fhclxb.20220225.002
YANG Chen, JIANG Yaming, XIANG He, et al. Effect of thermo-oxidative aging on the mechanical properties of multi-layered biaxial weft knitted fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 96-108. doi: 10.13801/j.cnki.fhclxb.20220225.002
Citation: YANG Chen, JIANG Yaming, XIANG He, et al. Effect of thermo-oxidative aging on the mechanical properties of multi-layered biaxial weft knitted fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 96-108. doi: 10.13801/j.cnki.fhclxb.20220225.002

热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20220225.002
基金项目: 航空科学基金项目(201829Q2002);天津自然科学基金(18JCZDJC10020);中国国家留学基金项目(202008120134)
详细信息
    通讯作者:

    姜亚明,博士,教授,博士生导师,研究方向为先进纺织增强材料及其复合材料 E-mail: jiangyaming@tiangong.edu.cn

  • 中图分类号: TB332

Effect of thermo-oxidative aging on the mechanical properties of multi-layered biaxial weft knitted fabric reinforced composites

Funds: Aeronautical Science Foundation of China (201829Q2002); Natural Science Foundation of Tianjin (18JCZDJC10020); China Scholarship Council (202008120134)
  • 摘要: 通过改变预制体结构衬纱取向的方法制备了几种含不同剪切角的纬编双轴向多层衬纱(Multilayered biaxial weft knitted,MBWK)织物增强复合材料。基于Arrhenius模型和Ozawa法设计了热氧老化试验,采用力学性能测试、DSC、FTIR和DMA测试对老化前后的试样热-物理性能进行了表征。实验结果表明:预制体的纱线剪切角不同,其复合材料受热氧老化后力学性能的保留率也显著不同,由于乙烯基酯树脂在热氧老化环境中会发生后固化现象,因此复合材料的弯曲模量在老化过程中呈现先增加后下降的趋势,而拉伸性能则受到增强体结构的影响,纤维/基体界面的结合力退化使拉伸模量在老化过程中持续下降;随着老化时间的延长,树脂的固化度逐渐增加,玻璃化转变温度Tg逐渐升高,储能模量峰值在老化初期由于分子链交联上升,老化后期分子链断裂占据主导作用致使峰值逐渐下降。

     

  • 图  1  纬编双轴向多层衬纱(MBWK)织物

    Figure  1.  Multilayered biaxial weft knitted (MBWK) fabric

    图  2  复合成型工艺

    Figure  2.  Composite forming process

    图  3  预制体剪切角θ控制流程

    Figure  3.  Control flow of preform shear angle θ

    图  4  不同剪切角的MBWK复合材料试样

    Figure  4.  MBWK composite samples with different shear angles

    Z-0°, Z-10°, Z-20°, Z-30°, Z-40°—Specimens with shear angles of 0°, 10°, 20°, 30°, 40° liner warp orientation in the same direction as the length of specimen; N-0°, N-10°, N-20°, N-30°, N-40°—Sample with shear angles of 0°, 10°, 20°, 30°, 40° liner warp orientation perpendicular to the sample length direction

    图  5  VER温度-失重率曲线

    Figure  5.  Temperature-mass loss curves of VER

    图  6  100℃热氧环境下VER表面氧化层FTIR图谱

    Figure  6.  FTIR spectra of oxide layer on VER at 100℃

    图  7  不同老化时间VER的FTIR图谱局部图

    Figure  7.  Partial FTIR spectra of VER at different aging time

    图  8  VER浇铸体热氧老化后的玻璃化温度Tg和损耗因子tanδ峰值

    Figure  8.  Peak values of glass transition temperature Tg and loss factor tanδ before and after aging of the VER casting body

    图  9  VER浇铸体热氧老化后储存模量变化趋势

    Figure  9.  Changing trend of storage modulus of VER casting body after thermo-oxidative aging

    图  10  VER浇铸体老化前后的拉伸性能

    Figure  10.  Tensile properties before and after aging of the VER casting body

    图  11  Z组MBWK复合材料试样老化前后的拉伸性能

    Figure  11.  Tensile properties before and after aging of the Z series samples of MBWK composites

    图  12  N组MBWK复合材料试样老化前后的拉伸性能

    Figure  12.  Tensile properties before and after aging of the N series samples of MBWK composites

    图  13  VER浇铸体老化前后的弯曲性能

    Figure  13.  Flexural properties change before and after aging of the VER casting body

    图  14  Z组MBWK复合材料试样老化前后的弯曲性能

    Figure  14.  Flexural properties before and after aging of the Z series samples of MBWK composites

    图  15  N组MBWK复合材料试样老化前后的弯曲性能

    Figure  15.  Flexural properties before and after aging of the N series samples of MBWK composites

    表  1  MBWK织物参数

    Table  1.   MBWK fabric parameters

    TypeParameter
    Weft inserting yarnsKevlar-49(474 g·km−1 (158×3))
    Warp inserting yarnsKevlar-49(948 g·km−1 (158×6))
    Stitching yarnsPolyester(16.7 g·km−1 (8.33×2))
    Layer structure90°/0°/90°
    Warp density/(tows·cm−1)30
    Weft density(tows·cm−1)30
    Thickness/mm1.5
    下载: 导出CSV

    表  2  RIPOXY R-806 乙烯基酯树脂(VER)成品性能指标

    Table  2.   RIPOXY R-806 vinyl ester resin (VER) finished product performance indicators

    ParameterValue
    Tensile strength/MPa69-89
    Tensile modulus/GPa2.9-3.3
    Tensile elongation at break/%3.2-4.0
    Flexural strength/MPa120-150
    Flexural modulus/GPa2.9-3.3
    Distortion temperature/℃108-118
    Barcol hardness40
    Volume shrinkage/%7.5-8.5
    下载: 导出CSV

    表  3  VER浇铸体活化能计算数据

    Table  3.   Calculation data of activation energy of the VER casting body

    Mass loss ratioSlopeActivation energy/eVAverage value/eVDeviation/%
    0.90−4315.240.83150.80293.56
    0.85−4238.740.79410.80
    0.80−4227.990.78321.97
    下载: 导出CSV

    表  4  MBWK复合材料和VER浇铸体的热氧老化实验时间与自然老化时间对应关系

    Table  4.   Relationship between the thermo-oxidative aging experimental time and the natural aging time of the MBWK composite and VER casting body

    Temperature/
    Thermo-oxidative
    aging/h
    Natural aging
    time/Month
    100 0.5 1
    3.5 7
    6.5 13
    10 20
    13.5 27
    18 36
    下载: 导出CSV

    表  5  VER液态体系DSC测试结果

    Table  5.   DSC test results of VER liquid system

    Heating rate/(℃·min−1)Initial temperature/℃Peak temperature/℃Final temperature/℃Total enthalpy of reaction/(J·g−1)
    283.688.993.0266.1
    589.398.6113.6235.1
    10125.1138.4155.5279.5
    12149.9164.1173.9249.9
    15155.5172.8185.3256.6
    下载: 导出CSV

    表  6  VER浇铸体热氧老化后DSC测试结果

    Table  6.   DSC test results of the VER casting body after thermo-oxidative aging

    Aging time/hHeating rate/
    (℃·min−1)
    Initial
    temperature/℃
    Peak
    temperature/℃
    Final
    temperature/℃
    Heat enthalpy/
    (J·g−1)
    Degree of
    cure/%
    0561.480.5132.673.27071.54
    0.5576.593.9131.337.77085.33
    3.55128.9135.3148.711.46095.55
    6.55129.7137.1150.811.40095.57
    105111.4120.3134.911.31095.60
    13.55119.4137.6146.44.07898.42
    185123.1136.1150.33.63598.60
    下载: 导出CSV
  • [1] GUPTA K B N V, SEN B, HIREMATH M M, et al. Enhanced creep resistance of GFRP composites through interpenetrating polymer network[J]. International Journal of Mechanical Sciences,2021,212:106728. doi: 10.1016/j.ijmecsci.2021.106728
    [2] QIWEN Q, DENVID L. Defect detection of FRP-bonded civil structures under vehicle-induced airborne noise[J]. Mechanical Systems and Signal Processing,2021,146:106992. doi: 10.1016/j.ymssp.2020.106992
    [3] KARBHARI V M, XIAN G, HONG S. Effect of thermal exposure on carbon fiber reinforced composites used in civil infrastructure rehabilitation[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106570. doi: 10.1016/j.compositesa.2021.106570
    [4] MERSCHMAN E, SALMAN A M, BASTIDAS A E, et al. Assessment of the effectiveness of wood pole repair using FRP considering the impact of climate change on decay and hurricane risk[J]. Advances in Climate Change Research,2020,11(4):332-348. doi: 10.1016/j.accre.2020.10.001
    [5] PRASHANTH S, SUBBAYA K M, NITHIN K, et al. Fiber reinforced composites—A review[J]. Journal of Material Sciences & Engineering,2017,6(3):2-6.
    [6] LI Z, LEPECH M D. Development of a multiphysics model of synergistic effects between environmental exposure and damage in woven glass fiber reinforced polymeric composites[J]. Composite Structures,2020,258:113230.
    [7] FRANCESCO M, ANTONIO N. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-507. doi: 10.1016/j.conbuildmat.2004.04.012
    [8] 于洋, 樊威, 薛利利, 等. 热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(12):4060-4072.

    YU Yang, FAN Wei, XUE Lili, et al. Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4060-4072(in Chinese).
    [9] WEI F, JIA L L. Rapid evaluation of thermal aging of a carbon fiber laminated epoxy composite[J]. Polymer Composites,2014,35(5):975-984. doi: 10.1002/pc.22743
    [10] MLYNIEC A, KORTA J, UHL T. Structurally based constitutive model of epoxy adhesives incorporating the influence of post-curing and thermolysis[J]. Composites Part B: Engineering,2016,86:160-167. doi: 10.1016/j.compositesb.2015.09.062
    [11] LEVEQUE D, SCHIEFFER A, MAVEL A. Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites[J]. Composites Science and Technology,2005,65(3-4):395-401. doi: 10.1016/j.compscitech.2004.09.016
    [12] AUDOUIN L, LANGLOIS V, VERDU J, et al. Role of oxygen diffusion in polymer ageing: Kinetic and mechanical aspects[J]. Journal of Materials Science,1994,29(3):569-583. doi: 10.1007/BF00445968
    [13] BELLENGER V, VERDU J. Oxidative skeleton breaking in epoxy–amine networks[J]. Journal of Applied Polymer Science,1985,30(1):363-374. doi: 10.1002/app.1985.070300132
    [14] POCHIRAJU K V, TANDON G P, SCHOEPPNER G A. Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging[J]. Mechanics of Time-Dependent Materials,2008,12(1):45-68. doi: 10.1007/s11043-007-9042-5
    [15] SCHOEPPNER G A, TANDON G P, RIPBERGER E R. Anisotropic oxidation and weight loss in PMR-15 composites[J]. Composites Part A: Applied Science and Manufacturing,2007,38(3):890-904. doi: 10.1016/j.compositesa.2006.07.006
    [16] ROUQUIE S, LAFARIE-FRENOT M C, CINQUIN J, et al. Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments[J]. Composites Science and Technology,2005,65(3-4):403-409. doi: 10.1016/j.compscitech.2004.09.007
    [17] TANDON G P, POCHIRAJU K V. Heterogeneous thermo-oxidative behavior of multidirectional laminated composites[J]. Journal of Composite Materials,2011,45(4):415-435. doi: 10.1177/0021998310376109
    [18] TANDON G P, RAGLAND W R. Influence of laminate lay-up on oxidation and damage growth: Isothermal aging[J]. Composites Part A: Applied Science and Manufacturing,2011,42(9):1127-1137. doi: 10.1016/j.compositesa.2011.04.018
    [19] BOWLES K J, NOWAK G. Thermo-oxidative stability studies of Celion 6000/PMR-15 unidirectional composites, PMR-15, and Celion 6000 fiber[J]. Journal of Composite Materials,1988,22(10):966-985. doi: 10.1177/002199838802201005
    [20] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4):866-875.

    GU Jiefei, CHEN Puhui, KONG Bin, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica,2018,35(4):866-875(in Chinese).
    [21] 孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34(10):2121-2133.

    KONG Bin, GU Jiefei, CHEN Puhui, et al. Design, manufacture and analysis of variable-stiffness composite structures[J]. Acta Materiae Compositae Sinica,2017,34(10):2121-2133(in Chinese).
    [22] LI X, BAI S. Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement. Part I: On hemispherical surfaces[J]. Composites Part A: Applied Science and Manufacturing,2009,40(6-7):766-777. doi: 10.1016/j.compositesa.2009.03.007
    [23] 项赫, 姜亚明, 齐业雄, 等. 纺织复合材料预制体成型过程无损检测技术研究进展[J]. 复合材料学报, 2021, 38(4):1029-1042.

    XIANG He, JIANG Yaming, QI Yexiong, et al. Research progress in nondestructive testing technologies for textile composite preform forming process[J]. Acta Materiae Compositae Sinica,2021,38(4):1029-1042(in Chinese).
    [24] MISHRA V, PEETERS D M J, ABDALLA M M. Stiffness and buckling analysis of variable stiffness laminates including the effect of automated fibre placement defects[J]. Composite Structures,2019,226:111233. doi: 10.1016/j.compstruct.2019.111233
    [25] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test methods for propertis of resin cating boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [26] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced pastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [27] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastics composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [28] BIANCHI O, OLIVEIRA R V B, FIORIO R, et al. Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements[J]. Polymer Testing,2008,27(6):722-729. doi: 10.1016/j.polymertesting.2008.05.003
    [29] WANG S, DONG S, GAO Y, et al. Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite[J]. Materials & Design,2017,115:213-223. doi: 10.1016/j.matdes.2016.11.062
    [30] LI L, SUN X, LEE L J. Low temperature cure of vinyl ester resins[J]. Polymer Engineering & Science,1999,39(4):646-661.
    [31] PEREPELKIN K E, ANDREEVA I V, MESHCHERYAKOVA G P, et al. Change in the mechanical properties of para-aramid fibres in thermal aging[J]. Fibre Chemistry,2006,38(5):400-405. doi: 10.1007/s10692-006-0099-8
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  301
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-02-05
  • 录用日期:  2022-02-11
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回