Loading [MathJax]/jax/output/SVG/jax.js

二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展

段家顺, 彭丽萍, 于华阳, 徐凌

段家顺, 彭丽萍, 于华阳, 等. 二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展[J]. 复合材料学报, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001
引用本文: 段家顺, 彭丽萍, 于华阳, 等. 二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展[J]. 复合材料学报, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001
DUAN Jiashun, PENG Liping, YU Huayang, et al. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001
Citation: DUAN Jiashun, PENG Liping, YU Huayang, et al. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001

二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展

基金项目: 科技部重点研发计划(2019YFE0108400);国家自然科学基金(62074068);湖北省中央引导地方专项(ZYYD2020000045)
详细信息
    作者简介:

    徐凌,男,博士,华中科技大学武汉光电国家研究中心副教授,博士生导师。2010年7月获得华中科技大学材料物理与化学专业博士学位,2010年9月~2013年10月从事博士后研究工作,2013年11月加盟武汉光电国家实验室能源光电子功能实验室,2015年12月晋升为副教授,2020年聘为博士生导师。 主要研究方向为新型半导体材料光电、热电性能研究,高能射线探测研究,以及材料电子结构计算等。现主持科技部重点研发计划1项,国家自然科学项目2项,湖北自然科学基金1项,华中科技大学自主创新基金3项;参与自然科学基金重大(国际合作)项目1项、973课题2项等。以第一作者在Adv. Energy Mater., Adv. Sci., Adv. Funct. Mater., Adv. Electron. Mater., J. Phys. Chem. A, J. Phys. Chem. C等SCI核心论文几十篇,文章引用超过2000次,获得国家发明专利2项。现为国际光学学会、光学工程学会以及中国光学学会会员。获得华中科技大学“维稳定先进个人”,武汉光电国家研究中心“优秀共产党员”、“三育人奖”、“优秀公益奖”等多项奖励

    通讯作者:

    徐凌,副教授,博士生导师,研究方向为光伏太阳能电池、热电材料与器件以及钙钛矿射线探测等 E-mail: xuling@mail.hust.edu.cn

    段家顺和彭丽萍为共同第一作者,对本文具有同等贡献。

  • 中图分类号: TM914.4

Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells

  • 摘要: 为了实现绿色可持续发展,降低CO2的排放量,大力发展和利用光伏等清洁能源技术已成为未来能源发展的新趋势。最近,以有机-无机卤化物钙钛矿太阳能电池为代表的新一代光伏电池具有成本低、轻薄、制造简单等特点,符合未来发展的需求而备受关注。有机-无机卤化物钙钛矿材料是带隙可调的直接带隙半导体,具有较低的激子结合能、较长的载流子寿命和扩散长度以及较高的缺陷容忍度等优点,目前该类电池器件最高效率已经超过25%。但材料自身的不稳定性以及对水、热、氧、紫外光等环境因素的敏感已经成为限制其进一步发展的首要问题。而二维卤化物钙钛矿以其超高的湿度稳定性引起了各国研究者的注意,然而二维卤化物钙矿电池的效率与传统三维卤化物钙钛矿电池相比,还存在较大的差距。因此,在保持其良好稳定性的前提下提升电池的效率,是二维钙钛矿电池研究面临的关键问题。本文主要围绕二维钙钛矿的结构和制备方法讨论,针对稳定性和效率问题展开了讨论,致力于为发展制备出高效、稳定的二维卤化物钙钛矿太阳能电池提供指导。
    Abstract: To achieve green and sustainable development, reducing CO2 emissions, it is deemed necessary to continue to promote and develop clean energy technologies, such as photovoltaics solar cell technology. Among of photovoltaic technologies, the organic-inorganic hybrid perovskite solar cells have the characteristics of low-cost, light weight, and simple manufacturing, which are more suitable for the requirements of future development. Perovskite materials are direct bandgap semiconductors with adjustable bandgap, which have lower exciton binding energy, longer carrier lifetime and diffusion length, and higher defect tolerance. The current maximum efficiency has exceeded 25%. However, the inherent instability of the material and sensitivity to environmental factors, such as water, heat, oxygen, and ultraviolet light, have become the primary problems limiting its further development. Recently, two-dimensional (2D) halide perovskite has attracted the attention of researchers around the world due to its ultra-high humidity stability. However, the efficiency of two-dimensional halide perovskite cells is still far behind that of traditional three-dimensional halide perovskite cells. Therefore, improving the efficiency of solar cells while maintaining excellent stability is a key problem in the research of 2D perovskite solar cells. In this paper, we mainly focus on the 2D halide perovskite film preparation and device structure, as well as efficiency and stability, and other issues to provide guidance for the development of efficient and stable 2D halide perovskite solar cells.
  • 能源是人类赖以生存的必要条件,支撑着人类社会的生存和发展。然而人口持续增长和改善生活条件的愿望使人们对能源需求不断地增加,这可能将远远超出煤炭、石油、天然气等常规能源供应水平。根据国家统计局数据,我国能源消费总量逐年上升,在2020年已达到498000万吨标准煤。其中,煤炭等化石能源在能源消费总量中依然占有很高的比例[1]。为了实现绿色、可持续发展,降低CO2气体排放量,我国已经提出了实现“碳达峰”和“碳中和”的具体目标[2]。显然,进一步降低化石能源在我国能源消费中的占比是实现这一目标的必经之路。在众多可再生能源中,储量巨大且分布广泛的太阳能必然会在未来的能源体系中占据举足轻重的地位。

    近二十年来,太阳能光伏技术,如:染料敏化太阳能电池、有机薄膜太阳能电池、钙钛矿太阳能电池、量子点太阳能电池等,由于质量轻、工艺简单、具有低成本商业化潜力大等优势被认为有望取代硅基太阳能电池[3-6]。特别是在2009年,Kojima等[7]报道了基于碘铅甲胺钙钛矿纳米晶体(CH3NH3PbI3, MAPbI3)附着在二氧化钛(TiO2)表面的液体染料敏化太阳能电池后,MAPbI3钙钛矿在太阳能电池领域展现出来巨大的发展潜力。分水岭发生在2012年,当时Chung等[8]将固体层CsSnI3钙钛矿作为空穴传输层和光吸收层制备了全固态染料敏化太阳能电池的效率为10%,随后Lee等[9]基于固体层MAPbI3太阳电池也被报道,卤化物钙钛矿在光伏领域快速发展起来了。目前钙钛矿太阳能电池(PSCs)的效率超过了25%[10],与其他基于无机半导体材料的太阳能电池相比,发展非常迅速。

    由此可见,目前的钙钛矿太阳能电池领域更像是溶液法处理染料敏化太阳能电池的智力产物,而不是更传统的Si、CdTe和CuInSe2等电池的逻辑演化,该领域也借鉴了大量的有机光伏领域的技术。更重要的是,PSCs的巨大成功为卤化物钙钛矿作为下一代高性能半导体器件的出现奠定了坚实的基础。事实上,卤化物钙钛矿在光电子方面已经展现出它优异的性能,广泛的应用于发光二极管(LED) [11-13] ,场效应晶体管(FETs) [14-15],激光器 [16-18],硬辐射探测器 [19-22]等,并体现出巨大的商业潜力。此外在机械性能上,卤化物钙钛矿具有独特的容忍特性,来自于其软晶格和动态无序的晶体结构,利于增长其电荷-载流子复合寿命,并使其具有非经典半导体的特性。卤化物钙钛矿是一种ABX3结构,A位阳离子能够维持它的三维共享无机框架结构,如图1所示,其中A 位原子位于立方体的八个顶角上,而 B 位原子位于立方体体心,X位原子位于立方体六个面的中心,B位原子和 X位原子配位形成了BX6八面体结构,这些八面体结构堆积起来以后就形成了三维共享无机框架结构,它在某些情况下只形成亚稳态化合物。虽然人们已经以钙钛矿纳米晶体的形式找到了稳定某些亚稳相的解决方案,但是整体三维卤化物钙钛矿(Three dimensional perovskite, 3D perovskite)的稳定性还是不好的。相比3D结构的钙钛矿,在二维卤化物钙钛矿(Two dimensional perovskite, 2D perovskite)的组成中发现了组成成份的多样性,可以缓解3D结构带来的不稳定性。2D钙钛矿(结构式:(A′)m(A)n−1BnX3n+1)采用了新的结构和组成尺寸,其中一价(m = 2)或二价(m = 1) 的A’阳离子可以插入到2D钙钛矿层中;除其表面的简单性外,降维的概念不仅提供了大量具有可定制功能的有机-无机混合材料,还带来了结构的可调性,使光电特性的微调也成为可能。在2D卤化物钙钛矿中,有机阳离子充当绝缘屏障层,在二维空间中限制载流子传输;同时它们也充当介质缓蚀剂,决定光生电子空穴对所受的静电力。有机-无机交替层的特殊排列结构产生晶体有序的二维多层量子阱(Multiquantum quantum well, MQW)式的电子结构,通过自组装以自下而上的方式自然形成;这种卤化物钙钛矿MQW的结构相干性与人工合成的III-V薄膜半导体异质结构相似。量子阱结构的多种可能性已经在III-V族半导体中得到了证明,这使得2D卤化物钙钛矿量子阱结构在发现新的基础物理学和有效的室温光电应用方面会产生更多有趣的现象。此外,2D卤化物钙钛矿这种量子阱结构可以较好的稳定激子,由于它的激子结合能低,即使在室温环境下也可以很容易地观察到激子分离,使得该类化合物具有新的基础物理性能和高效的光电应用效果。

    图  1  钙钛矿结构示意图
    Figure  1.  Schematic diagram of perovskite structure

    在这个角度上,对2D卤化物钙钛矿在太阳能电池上通过降低维度实现较好的稳定性,并对其效率问题进行探讨,在稳定性和效率之间寻找一个平衡点,使2D维卤化物钙钛矿太阳能电池极有可能在未来成为晶硅太阳能电池的有力竞争者。

    钙钛矿(Perovskite)一词最初是指钛酸钙(CaTiO3)等金属氧化物,最早于1839年由Gustav Rose在俄罗斯Ural山脉发现,后以矿物学家Lev Perovski的姓命名[23]。本文中所涉及的钙钛矿又可称为金属卤化物钙钛矿,最早在1893年被Wells[24]首次报导。金属卤化物钙钛矿结构如图1所示,其组成通常被描述为ABX3。其中A位为一价有机或无机阳离子,如甲胺(MA+)、甲醚(FA+)、铯(Cs+)等阳离子,B位为二价金属阳离子,通常为铅(Pb2+)或锡(Sn2+)离子,X为卤素离子,比如碘(I)、溴(Br)、氯(Cl)离子[25]。根据具体组成又可以分为全无机(A为Cs+)、铅基(B为Pb2+)或非铅(B为Sn2+)钙钛矿等。

    对于已知直径的离子是否能够形成八面体和钙钛矿结构,可以根据容忍因子(t)和八面体因子(μ)进行初步判断。具体关系如公式(1)和(2)所示:

    t=RA+RX2(RB+RX) (1)
    μ=RBRX (2)

    其中:RARBRX分别为A、B和X位离子的半径。一般认为t在0.81~1.11之间,同时μ在0.44~0.90之间时具有形成钙钛矿结构的可能。更进一步地,若要形成稳定的立方相结构,则t应在0.9~1.0之间[26-28]。由于有机阳离子通常并非规则的球形且会在晶体中发生旋转,因此仅能估计其有效直径和t的范围[29]。例如,MAPbI3t在0.8~1内,其相结构会随温度发生变化:在165 K以下、165~327 K和327 K以上时会分别表现为正交、四方、立方相[30-31]。与MA+相比,FA+的离子半径偏大而Cs+离子半径偏小,这导致FAPbI3(t>1)和CsPbI3(t<0.8)在室温下的容易由高效的α相(高温黑相)转变为低效的δ相(低温黄相)[29]

    金属卤化物钙钛矿作为一种新型的半导体材料,具有很多优异的性质。首先,钙钛矿属于直接带隙半导体,光吸收系数高,具有可调节的带隙Eg。对于3D钙钛矿材料,改变ABX3中的组分将影响晶体中的键长、键角等结构参数,进而可以实现对Eg的调节[32-34]。例如,MAPbI3、MAPbBr3和MAPbCl3Eg分别为1.51、2.21和2.88 eV [35-36]。若将MA+替换为FA+或Cs+得到的FAPbI3和CsPbI3Eg分别为1.41和1.63 eV[37-38]。将Pb2+替换为Sn2+得到MASnI3Eg则低至1.15 eV[39]。同时,3D钙钛矿具有较小的激子结合能(Eb)。最为常见的3D钙钛矿太阳能电池光吸收层MAPbI3和FAPbI3Eb均在20 meV以下,这意味着在室温下激子便能有效解离为自由电子和空穴[40-41] 。其次,3D钙钛矿材料还具有较长的载流子寿命和扩散长度以及较高的缺陷容忍度[37, 42-43]

    除了以上独特的性质外,钙钛矿材料制备方法也较为简单,通常使用溶液法在相对不高的温度下便可获得高质量的薄膜或单晶[44-46]。因此,近十余年来,金属卤化物钙钛矿在光伏、发光二极管、探测等研究领域得到了广泛的关注[47-56]

    如果在3D钙钛矿A位引入体积远大于MA+的间隔阳离子,则3D钙钛矿的结构将被破坏。引入的间隔阳离子若将3D钙钛矿沿着(100)晶面切断,则可以得到常见的层状2D钙钛矿[57]。如图2所示,当引入不同类型的间隔阳离子时可能会得到不同结构的2D钙钛矿,如Ruddlesden-Popper (R-P)相、Dion-Jacobson (D-J)相 和Alternating cation in the interlayer space (ACI)相[58-59]。具体而言,当引入带有苯环或烷基链的一价有机间隔阳离子,比如苯乙胺离子(PEA+)或正丁胺离子(BA+)时,会得到通式为 (S)2An-1BnX3n+1(S为间隔阳离子,n为自然数)的R-P相钙钛矿[60-61]。其中n为金属卤素和卤素离子形成的八面体(BX64−)的层数,n=1时形成的单层2D钙钛矿最薄,n=∞时则可以认为是3D钙钛矿。当引入的间隔阳离子为二价有机阳离子时,比如丁二胺离子(BDA2+)或氨甲基哌啶(AMP2+),则会形成D-J 相的2D钙钛矿,其通式为(S)An-1BnX3n+1。ACI相2D钙钛矿较为特殊,仅当间隔阳离子为胍离子(GA+)时才能形成,其通式为(GA)AnBnX3n+1[62]。从晶体结构上看,R-P相2D钙钛矿中相邻的薄片内无机层的位置出现了(1/2,1/2)的相对位移,而D-J相通常不存在相对位移,ACI相则介于两者之间,存在(1/2,0)的相对位移[63-64]。以上三种2D钙钛矿中,关于R-P相研究最为广泛,D-J相次之,ACI相最少[28]。本文中主要涉及R-P和D-J相两种钙钛矿。另外,n值较大或者内部存在不同n值的2D钙钛矿有时被称为准二维(Quasi-two dimensional,Q-2D)钙钛矿[55, 59, 65]。本文中不论n值大小均称为2D钙钛矿,在必要时会对n值加以说明。

    图  2  n=1, 2, 3的2D钙钛矿结构示意图:((a), (e), (i)) R-P相的 (PEA)2(MA)2Pb3I10;((b), (f), (j)) D-J相的(BA)2(MA)2Pb3I10;((d), (h), (l)) ACI相的 (GA)2(MA)3Pb3I10[57]
    Figure  2.  Schematic diagram of n=1, 2, 3 perovskite structure: ((a), (e), (i)) (BA)2(MA)2Pb3I10 is the R-P phases; ((b), (f), (j)) (AMP)2MA2Pb3I8 is the D-J phase; ((d), (h), (l)) (GA)2(MA)3Pb3I10 is the ACI phase[57]
    R-P—Ruddlesden-Popper; D-J—Dion-Jacobson; ACI—Alternating cation in the interlayer space

    2D钙钛矿的性质与3D钙钛矿具有一定相似性,但也存在着明显的差异。2D钙钛矿中由于大体积有机间隔阳离子引入而出现了较强的量子与介电束缚效应(图3),导致材料的能级结构、Eb等发生了较大改变[66-67]。以研究较为广泛的R-P相2D钙钛矿(BA)2MAn-1PbnI3n+1为例,当n=1、3和∞时的Eg分别为2.43、2.03和1.50 eV,即Egn值增大而缩小,最终缩小至与3D(n=∞)钙钛矿相同[68]。Blancon等[69]对该类2D钙钛矿中的Eb进行了的定量分析,结果表明:与Eg的变化规律相似,当n从1增大到5时,2D钙钛矿中的Eb由4700 meV减小至125 meV。可见2D钙钛矿中激子Eb大于3D钙钛矿,因此在2D钙钛矿的吸收光谱中通常可以发现激子吸收峰[70]。由于有机间隔阳离子的绝缘性,2D钙钛矿的电导率明显低于3D钙钛矿,但随n值的增大可逐渐逼近3D钙钛矿的水平[55]。间隔阳离子的存在使得2D钙钛矿中的层间距较大,电荷通常难以在层间传递。黄劲松团队[71]的研究表明在(BA)2MA2Pb3I10单晶中沿着层状结构方向的迁移率比垂直方向高出4个数量级。这些特性导致2D钙钛矿应用于光电器件时不得不考虑n值的大小(量子阱宽度)以及晶体生长取向等问题[72-73]

    图  3  (a) 2D钙钛矿中的量子阱;(b) 2D钙钛矿不同位置的介电常数[66]
    Figure  3.  (a) Quantum well in 2D perovskite; (b) Dielectric constant of 2D perovskite at different positions[66]
    VB, CB—Valence and conduction bands; L, m, ε, V —Thickness, effective mass, dielectric constant, and confinement potential; Subscripts and superscripts b, w, e, h—Barrier, well, electron, hole; Real composite material W/B is decomposed into two parts: the perovskite well section W, and organic barrier section B; ε(z)—Dielectric constant

    目前,已有采用各种技术合成了不同尺寸和化学组成的2D卤化物钙钛矿材料[74-75],对2D卤化物钙钛矿主流的制备方法有:机械剥离法、液相合成法、化学气相沉积法(Chemical vapor deposition,CVD)等[76-79]

    机械剥离法技术仅适用于含大尺寸有机阳离子的卤化物钙钛矿制备 。因为三维钙钛矿单晶纯度高,并且具有较好的稳定性,因此基于该类大尺寸的单晶采取机械剥离法制备二维钙钛矿材料具有不少的优点,也被广泛采用 [80]。具体步骤为:首先,将所要剥离的三维材料块体层状薄片置于透明胶带上;其次,进行反复黏贴剥离该块体材料,使其变为较薄的层状薄片;再次,将胶带上层状薄片转移到目标基底(SiO2/Si等)上,静置一段时间后将胶带缓慢剥离,使材料置留在目标基底上;最后,在光学显微镜下寻找单层或者多层的二维层状材料。该方法所制备的二维钙钛矿材料具有缺陷少,表面平整,迁移率高等诸多优势。但该方法生产效率低,无法工业化量产。虽然这种方法可以制备微米大小的2D钙钛矿,但是其可控性较低,难以实现大规模合成。

    现有的机械剥离技术有更多的限制,如晶体尺寸、层数和化学成份等无法控制。为了克服机械剥离的局限性。大多数学者转向研究了通过简单的液相合成来生长单层和几层2D卤化物钙钛矿。如图4(a)所示,2D卤化物钙钛矿的层数很容易通过简单的液相生长法来控制[81]。根据Stoumpos等[82]的报道,可以采用溶液法原位生长2D卤化物钙钛矿(C4H9NH3)2PbX4和(C4H9NH3)2(MA)2X7 (X=I, Br, Cl)的薄膜。对于2D卤化物钙钛矿等纳米片的合成,采用溶剂蒸发诱导的重结晶方法,将稀释后的卤化物钙钛矿溶液滴入有机溶剂乙腈、氯苯和二甲基甲酰胺的共溶剂中。如图4(b)~4(d)所示,均匀的四方相2D卤化物钙钛矿具有较高的产率。(C4H9NH3)2PbX4和(C4H9NH3)2(MA)2X7在2-甲基甲酰胺(DMF)中的溶解度通过使用氯苯和乙腈作为溶剂快速蒸发快而降低,这导致溶剂的蒸发和结晶,有助于形成超薄的2D卤化物钙钛矿纳米晶片;为了控制层数和化学成份,还测量了光致发光(PL)谱,如图4(e)~4(f) 所示,由于平面晶格的结构驰豫性,光学带隙增加,也导致PL谱移动。另一种制备2D卤化物纳米晶钙钛矿的方法是广泛的应用于半导体纳米结构的合成配体的溶液相(Ligand-mediated solution-phase,LS)中生长。纳米材料中由配体和表面活性剂污染的表面所造成的缺陷可以延迟电荷传输特性,但是纳米材料的形状被抑制,并提供高收率和高重现性。大量研究表明,通过LS法生长合成的纳米薄片和纳米晶片等多种纳米结构材料,可以大规模控制2D卤化物钙钛矿的形状和厚度。Xing等[53]报道,室温下采用配体辅助以CsPbX3纳米晶为原料,以辛胺和油酸为试剂合成了2D CsPbBr3纳米片。2D CsPbBr3纳米片的光学表明,吸收峰从508 nm开始,PL峰出现在510 nm。图4(g)显示2D CsPbBr3纳米片在使用时间分辨PL衰减时寿命提高到1440 ns。通过增加2D CsPbBr3纳米片单晶的几何平面和表面态,寿命得到了进一步的提高。Chen等[84]报道了用氯苯-二甲基甲酰胺-乙腈三元溶剂法控制2D (C4H9NH3)2PbBr4钙钛矿的生长。系统研究了溶剂体积比、结晶温度、溶剂极性等因素对生长动力学的影响。在最佳反应条件下,制备出了2D (C4H9NH3)2PbBr4钙钛矿,其最大横向尺寸可达40 μm,最小厚度可达几纳米。此外,对不同的碘掺杂2D (C4H9NH3)2PbBrxI4−x钙钛矿进行了研究,利用液相生长发合理调整了该钙钛矿的光学性质。

    图  4  (a)分子式为(RNH3)2An-1MnX3n+1的(100)取向卤化物钙钛矿系列;单层(C4H9NH3)2PbBr4的结构示意图(b)、AFM图像(c) 和TEM图像(d);(e)不同卤化物2 D钙钛矿的光致发光结果图: (C4H9NH3)2PbCl4 (i)、(C4H9NH3)2PbBr4 (ii)、(C4H9NH3)2PbI4 (iii)、(C4H9NH3)2PbCl2Br2 (iv)、(C4H9NH3)2PbBr2I2 (v)和(C4H9NH3)2(MA)Pb2Br7 (vi);图形化描述的伪色彩PL强度谱线(f)和CsPbBr3 纳米片随时间衰变的PL图谱(g)[83]
    Figure  4.  (a) (100)-oriented halide perovskite series with the general formula of (RNH3)2An-1MnX3n+1, Structural illustration (b), AFM (c), and TEM images (d) of single-layer (C4H9NH3)2PbBr4; (e) Photoluminescence of different 2D halide perovskites: (C4H9NH3)2PbCl4 (i), (C4H9NH3)2PbBr4 (ii), (C4H9NH3)2PbI4 (iii), (C4H9NH3)2PbCl2Br2 (iv), (C4H9NH3)2PbBr2I2 (v) and (C4H9NH3)2(MA)Pb2Br7 (vi); Graphical depiction of the pseudo-colored PL intensity (f) and Time-resolved PL decay of CsPbBr3 nanoplatelets (g)[83]

    对于卤化物钙钛矿,可以用CVD技术生长范德华型的2D卤化物钙钛矿样品。Ha等[85]报道了通过设计的CVD方法生长不同组成的卤化物钙钛矿纳米片。图5展示了用合成设计两步法制备2D卤化物钙钛矿纳米片的晶体形成过程。简单地说,PbBr2和C4H9NH3Br在二甲基甲酰胺(DMF)中溶解,经过两步溶液过程处理生成钙钛矿前驱体,该前驱体蒸发后立即结晶为2D (C4H9NH3)2PbBr4钙钛矿晶体。通常,C4H9NH3Br中的Br原子作为终端基团附着在扩展的Pb—Br网络上(步骤I),从而在NH3基团和它周围的Br原子之间形成氢键(步骤II)。这种相互作用诱导使得边共享的PbBr2分子层转化扩展为角共享的PbBr42−网络结构,从而形成2 D结构的(C4H9NH3)2PbBr4钙钛矿晶体。从图6(a)可以看出,采用范德华外延生长法在白云母衬底上生长卤化铅(PbX2, X =混合卤化物,I, Br和Cl)纳米片。将生长的PbX2纳米片通过气相转化的方法转化为MAPbX3纳米片,如图6(b)所示。如图6(c)所示,MAPbX3纳米片的厚度为100 nm,横向尺寸为5~30 μm。PbX2片的平面取向被用来推断范德华外延生长,因为云母基底呈现三重对称的表面晶格,在转化为MAPbX3后,相当程度上保持了纳米片的形态。如图6(d)~6(g)所示。此外,MAPbX3纳米片与PbX2纳米片的厚度比为1.81,这与MAPbX3和PbX2沿c轴的晶格常数比一致。这些发现表明,2D MAPbX3纳米片的厚度可以很容易地通过抑制PbX2纳米片的厚度来控制。同样,PbX2的对位物也可以通过气相转化反应合成。Ha等[85]采用的CVD法制备了比MAPbI3块体大得多的二维MAPbI3纳米片,电子扩散长度约为210 nm。较高的电子扩散长度可能是由于CVD法制得的卤化物钙钛矿片具有较好的晶体质量。在另一篇报道中,Smith等[86]通过两步CVD生长法合成了2D MAPbI3纳米片。这两步工作的不同之处在于第一步是额外的解决方案阶段的增长。通过控制前驱体溶液及其浓度、冷却速率等参数,可以合成各种低维PbX2纳米结构,并将其作为模板生长低维卤化物钙钛矿纳米的备样。使用2D PbX2纳米片模板合成超薄2D MAPbI3纳米片。图6(h)~6(i)显示2D MAPbI3纳米片具有较高的内量子效率。随着层数的减少,PL谱出现蓝移,2D MAPbI3纳米片的禁带宽度也发生很大的变化。这些发现表明,2D MAPbI3可以获得广泛的光电性能,为其他卤化物钙钛矿材料,特别是含有大型有机阳离子的钙钛矿具有很好的光学性能提供了实验基础;CVD方法也可以广泛的用于其他2D类卤化物钙钛矿材料的制备。

    图  5  二维卤化物钙钛矿纳米片的两步合成方法[84]
    Figure  5.  Two-step synthesis method for 2D halide perovskite nanopatelets [84]
    DMF—N,N-Dimethylformamide; CB—Chlorobenzene; ACN—Acetonitrile
    图  6  (a)气体输送系统示意图;(b)转化为CH3NH3PbI3前后的PbI2纳米片的厚度(数据线以上的图像)[86];(c)二维PbI2纳米片合成示意图[87];((d)~(g)) 不同厚度的二维MAPbI3纳米片的AFM形貌图;(h)二维钙钛矿纳米片的归一化PL谱;(i)钙钛矿单个电池的PL峰和能隙图[83]
    Figure  6.  (a) Schematic of vapor-transport system; (b) Thickness of PbI2 platelets before (images above data line) and after converted to CH3NH3PbI3 (images below data line)[86]; (c) Schematic for the synthesis of 2D PbI2 nanosheets[87]; ((d)-(g)) AFM topography images of 2D MAPbI3 nanosheets with different thicknesses; (h) Normalized PL spectra of 2D perovskite nanosheets; (i) Plots of PL peak and energy gap as a function of the number of unit cells in perovskites [83]

    早期关于2D钙钛矿研究多关注于材料中量子阱和激子态等物理问题,在薄膜晶体管和发光二极管中的应用方面有一些尝试[47, 70, 88-90]。在3D钙钛矿表现出较高的效率潜力后,解决器件的稳定性问题就显得更为重要。2014年,Smith等[90]首次使用2D钙钛矿(PEA)2MA2Pb3I10薄膜作为光吸收层制备了效率为4.73%的器件。效率虽与同一时期3D钙钛矿效率(15%以上)相差较大,但是稳定性得到了显著提升。从那时起,试图利用2D钙钛矿大大地提高该类钙钛矿太阳能电池器件稳定性的研究便层出不穷[91]。后来的研究发现,有机间隔阳离子的作用并不仅限于提高器件的湿度稳定性。当引入丙二胺阳离子(PDA2+)时,形成的D-J相2D钙钛矿由于层间作用力的增强表现出了出众的热稳定性[92]。Kim等[93]证明在FAPbI3中加入少量PEA2PbI4可以得到稳定的α相。并且对比了不同链长的烷基胺阳离子对钙钛矿表面的钝化作用,发现辛胺阳离子(OA+)的增加对效率和稳定性上都有促进。Wang等[94]发现有机间隔阳离子可以有效释放钙钛矿薄膜中残余应力,有助于提高器件长期稳定性。黄劲松团队[95-97]则证明,由于有机间隔阳离子的存在,使2D钙钛矿中沿层状结构面内方向和面外方向的离子迁移都受到了有效的抑制。还发现,2D钙钛矿在光伏器件中似乎表现出“多功能”的特点。但是,由于2D钙钛矿材料存在较强的量子和介电束缚效应,其在太阳能电池中的应用通常会面临效率与稳定性存在矛盾的问题[72-73]。如图7所示,在过去几年间,为了应对这一矛盾使用2D钙钛矿提升器件性能的具体策略大致可以归纳为以下3种:

    图  7  2D钙钛矿应用于钙钛矿太阳能电池中的三种形式:(a) 2D钙钛矿薄膜;(b) 2D-3D混合薄膜;(c) 2D/3D异质结薄膜[105]
    Figure  7.  2D Perovskite is used in three forms in perovskite solar cells: (a) 2D Perovskite thin film; (b) 2D-3D Mined thin film; (c) 2D/3D Heterojunction thin film[105]

    (1) 直接使用合适n值(一般n≤10,其中3~5居多)的2D钙钛矿薄膜作为光吸收层[98-99]

    (2) 将少量2D钙钛矿掺入3D钙钛矿薄膜,形成2D-3D混合结构[100-101]

    (3) 在3D外表面形成2D钙钛矿层,获得2D/3D异质结薄膜[102-104]

    第一种方法中n值的选择便是综合考虑效率与稳定性的结果—n值过小则难以实现高效率,过大则稳定性优势减弱。这类研究主要致力于通过基底预热、溶剂调控、添加剂或溶剂氛围辅助结晶以及优化间隔阳离子种类等方法获得垂直基底生长的高质量2D钙钛矿薄膜,从而实现尽可能高的效率[60, 97, 106-107]。按照这一思路制备的2D钙钛矿太阳能电池尽管在稳定性上令人期待,但由于2D钙钛矿带隙、激子结合能和迁移率的先天限制,这类器件最高效率目前还未能突破20%[108-112]。目前基于R-P、D-J和ACI三种类型2D钙钛矿的太阳能电池都达到了18%以上的效率而且各具优势[97, 107-108]。但由于所使用的有机间隔阳离子及三种2D钙钛矿自身的性质存在较大差异,孰优孰劣尚存在争议。其中R-P相2D钙钛矿因其有机阳离子中具有苯环或烷基胺等疏水基团而具有较好的湿度稳定性。但是基于R-P相2D钙钛矿的太阳能电池效率受到以下因素的限制:薄膜中容易形成小n值的量子阱(EgEb较大)、不利于电荷传输的面内取向(平行于基底)[113-114]。在D-J相2D钙钛矿中,二价间隔阳离子的存在增强了层间相互作用,因此其天然地具有更好的热稳定性[92]。此外,与R-P相相比,由于层间距离更短,D-J相2D钙钛矿具有分布更为集中的量子阱以及更小的EgEb,这意味着其有潜力获得更高的效率[115]。然而,与一价间隔阳离子(如PEA+)相比,二价间隔阳离子(如BDA2+)具有湿度稳定性不足的风险[116]

    在后两种方法的研究中,光吸收层的主体仍为3D钙钛矿。在3D钙钛矿晶界或表面引入适量2D钙钛矿时,不仅提高了器件稳定性,还起到了缺陷钝化、能级调整等作用,因此通常能够获得较高的效率[117]。尤其是第三种方法,使用PEAI(聚醚酯乙酰胺)和OAI (辛基碘化胺)等材料进行界面修饰已经成为制备高效钙钛矿太阳能电池的常见手段[118-120]。但不可否认的是,这一过程中效率与稳定性的矛盾依然存在。因此引入2D钙钛矿后得到的高效率器件是否足够稳定等问题还有待进一步研究。

    近年来,对2D卤化物钙钛矿效率的研究也是逐年不断,其效率值也不断的攀升;下面分别对R-P相结构的钙钛矿太阳能电池,D-J相结构的钙钛矿太阳能电池,以及ACI相结构的钙钛矿太阳能电池的效率研究进展分别阐述。

    目前,研究热度最高的R-P相2D卤化物钙钛矿太阳能电池通过多样的新策略优化了器件的性能,效率不断提升。 如:更换有机间隔阳离子(OSC)、位点掺杂、以及添加剂工程等方式取得了不错的效率[121-126]。优化OSC是平衡2D卤化物钙钛矿太阳能电池稳定性和效率的常用手段[127],不同的OSCs对器件性能的影响不同,见表1。2014年,PEA2MA2Pb3I10钙钛矿首次被应用到太阳能电池中,获得了4.73%的转换效率[90]。之后,Zhang 等[124]通过对 PEA 做出修改合成出 4-FPEA(4-氟苯乙胺)作为 OSC材料,相比PEA基钙钛矿形成更短的层间距,更好的钙钛矿层排列会影响到无机层间轨道的相互作用,从而增强电荷传输、降低缺陷态和提高载流子寿命。2017年,Chen等[122]通过使用短支链iso-BA取代BA,获得了更优异的光学吸收和高面外取向度,以及更高的电荷迁移率和更好的效率。2018年,Lai等[123]应用2-噻吩甲基胺到2D钙钛矿太阳能电池中,获得15.6%的光电转换效率。此外,THMA (2-噻吩甲胺氢碘酸盐,2-Thiophenemethylammonium )作为间隔阳离子加入到2D-3D混合卤化物钙钛矿中,不仅增大了钙钛矿的晶粒尺寸,延长了载流子寿命,抑制了载流子的复合,显著地提高了PSCs的效率和稳定性,效率高达21.49% [125]。2019年,Li等[121]通过将4-(2-氨乙基)吡啶作为OSC,获得11.68%的光电转换效率。值得注意的是,2020年,Ren等[127]通过将BA中用S替换C合成2-(硫代甲基)乙胺盐酸盐作为OSC,制备2D卤化物钙钛矿太阳能电池获得认证效率17.8%,其最高的光电转换效率为18.06%。2020年,Wu等[126]提出基于一系列不同烷基链长的OSC(乙胺到己胺);随着烷基链长的变化改变分子间作用力进而影响2D钙钛矿薄膜结晶、相分布及量子限域效应等方面,戊胺作为OSC材料最为理想,最终AA2MA3Pb4I13器件(Amylamine,AA)获得18.42%的光电转换效率。

    表  1  基于不同有机空位间隔阳离子(OSC)的R-P相结构的2D卤化物钙钛矿太阳能电池器件的性能
    Table  1.  Summary of device performance of RP-2D-PSCs by different organic spacer cations (OSC)
    A’ siteStructureDevice configurationPCE/%Ref.
    5-Aminovaleric acid
    (AVA)
    PEA2SnI4/FASnI3 (AVA)2PbI4/MAPbI3FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au14.6[77]
    Phenylethylamine
    (PEA)
    (PEA)2(MA)2Pb3I10FTO/c-TiO2/PVK/Spiro-OMeTAD/Au4.73[90]
    (PEA)2(FA)8Sn9I28ITO/NiOx/PVK/PCBM/Ag5.94[96]
    Butylamine
    (BA)
    (BA)2(MA)3Pb4I13ITO/PEDOT:PSS/PVK/PCBM/Al12.51[60]
    (BA)2(MA)2Pb3I10FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au4.02[109]
    (BA)2(MA)Pb2I7FTO/c-TiO2/PVK/Spiro-OMeTAD/Au0.39[109]
    (BA)2PbI4FTO/c-TiO2/PVK/Spiro-OMeTAD/Au0.01[109]
    (BA)2[Cs0.05(MA)0.95]3Pb4I13FTO/c-TiO2/PVK/Spiro-OMeTAD/Au13.68[110]
    (BA)2CsPb2I7FTO/c-TiO2/PVK/Spiro-OMeTAD/Au4.84[111]
    (BA)2(MA0.8FA0.2)3Pb4I13ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag12.81[112]
    Butylamine
    (BA*)
    (BA*)2PbI4/Cs0.15FA0.85Pb(I0.73Br0.27)3FTO/c-TiO2/PVK/Spiro-OMeTAD/Au18.13[112]
    Branched butylamine
    (Iso-BA)
    (iso-BA)2(MA)3Pb4I13 (RT)ITO/C60/PVK/Spiro-OMeTAD/Au8.82[120]
    (iso-BA)2MA3Pb4I13 (n =4)FTO/C60/2D PER/Spiro-OMeTAD/Au10.6[122]
    Amylamine
    (AA)
    AA2MA3Pb4I13 (n =4)ITO/PTAA/2D PER/C60/BCP/Ag18.4[126]
    4-(Aminoethyl) pyridine
    (4AEP)
    (4AEP)2MA4Pb5I16 (n =5)FTO/C60/2D PER/Spiro-OMeTAD/Au11.6[121]
    2-Thiophenemethylamine
    (THMA)
    THMA2MA2Pb3I10 (n =3)ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag15.4[123]
    (THMA)2PbI4ITO/SnO2/PVK/Spiro-OMeTAD/MoO3/Ag21.49[125]
    4-Fluorophenethylamine
    (F-PEA)
    (F-PEA)2MA4Pb5I16 (n =5)FTO/c-TiO2/2D PER/Spiro-OMeTAD/Au13.6[125]
    2-(Methylthio) ethylamine
    (MTEA)
    (MTEA)2MA3Pb5I16 (n=5)ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag18.0[127]
    Notes: ITO—Indium tin oxides; FTO—Fluorine doped tin oxides; PVK—Perovskite; 2D PER—2 Dimensional perovskite; PCBM—6,6-Phenyl C61 butyric acid methyl ester; Spiro-OMeTAD—2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene; PEDOT:PSS—Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate); PTAA—Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine].
    下载: 导出CSV 
    | 显示表格

    D-J相的2D卤化物钙钛矿主要分为烷基链二胺、哌啶衍生物及其芳香类似物、苯基二胺等3类。 不同OSC对D-J结构的2D卤化物钙钛矿器件性能影响如表2所示,在D-J相钙钛矿中,烷基链二胺最常被作为OSC制备2D卤化物钙钛矿太阳能电池。OSC和无机层是通过两端胺基和碘离子相互作用的静电势连接,烷基链的长短都会影响堆叠方式、晶体层间距离和钙钛矿框架的畸变程度。如通过调节链长来调控薄膜面外取向度和量子阱宽度,短链的丙二胺(1,3-Propanediamine, PDA)和丁二胺(1,4-Butanediamine, BDA)比长链的戊二胺(1,5-Pentamethylenediamine, PEDA)和己二胺(1,6-Hexamethylenediamine, HAD)有更好的结晶取向和更为均匀的量子阱分布,尤其是BDA基2D卤化物钙钛矿太阳能电池获得了16.38%的转换效率,未封装器件在湿度45%的空气存放20天保持初始效率的80%[128]。Yu等[129]将丁二胺离子(BDA2+)和苯乙胺离子(PEA+)以一定比例混合,获得量子阱集中分布、垂直取向、低缺陷态密度的2D钙钛矿薄膜。基于该薄膜的Dion-Jacobson型2D钙钛矿太阳能电池实现了17.21%的效率(其中开路电压为0.99 V,短路电流密度为21.64 mA·cm−2,填充因子为80.19%)。未封装的器件在(40±5)%相对湿度的环境空气中存储500 h或在60℃的氮气中存储100 h后,分别能够保持初始效率的95%或75%以上。到目前为止,(BDA)MA4Pb5I16的2D卤化物钙钛矿太阳能电池展现了D-J结构器件的最高转换效率(17.91%),其未封装的器件存放在湿度为60%的空气中1182 h能够保持初始效率的84%[130]

    表  2  基于不同OSC的D-J相结构的2D 卤化物钙钛矿太阳能电池器件的性能
    Table  2.  Summary of device performance of DJ- 2D-PSCs by different OSC
    A’ siteStructureDevice configurationPCE/%Ref.
    1,3-Propanediamine
    (PDA)
    (PDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/Al14.1[128]
    1,4-Butanediamine
    (BDA)
    (BDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al16.3[128]
    BDA/PEAITO/PEDOT:PSS/2D PER /PC60BM/BCP/Ag17.21[129]
    (BDA)MA4Pb5I16ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al17.9[130]
    1,5-Pentamethylenediamine
    (PEDA)
    (PEDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al12.9[128]
    1,6-Hexamethylenediamine
    (HDA)
    (HDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al10.5[128]
    3-(Aminomethyl) piperidinium
    (3AMP)
    (3AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag7.32[131]
    4-(Aminomethyl) piperidinium
    (4AMP)
    (4AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag4.24[131]
    3-(Aminomethyl) piperidinium
    (3AMPY)
    (3AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag9.20[133]
    4-(Aminomethyl) piperidinium
    (4AMPY)
    (4AMP)2MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag5.69[133]
    1,4-Benzenedimethanamonium
    (PDMA)
    (PDMA)A9Pb10(I0.93Br0.07)31FTO/c-TiO2/mp-TiO2/2D PER/
    Spiro-MeOTAD/Au
    15.6[136]
    Meta-(aminomethyl) piperidinium
    (MAMP)
    (MAMP)MA3Pb4I13FTO/TiO2 /2D PER/Spiro-MeOTAD/Au16.5[134]
    下载: 导出CSV 
    | 显示表格

    其次,哌啶衍生物及其芳香类似物被用作OSC制备2D卤化物钙钛矿太阳能,如3-氨甲基哌啶[3-(Aminomethyl)piperidinium, 3AMP]、4-胺基甲基哌啶[4-(Aminomethyl)piperidinium, 4AMP]、3-氨甲基吡啶[3-(Aminomethyl)pyridinium, 3AMPY]、4-氨甲基吡啶[4-(Aminomethyl)pyridinium,4AMPY]及间氨甲基吡啶(MAMP)等。第一次将4AMP和3AMP引入作为OSC,制备的2D卤化物钙钛矿太阳能电池(n=4)分别获得了7.05%和10.17%的光电转换效率 [131-132]。在3AMPY制备的2D钙钛矿中,由于其八面体只有略微的偏移,越低的偏移会有更低更合适的带隙,从而获得了相比4AMPY更优异的性能,制备的2D卤化物钙钛矿太阳能电池光电转换效率分别为9.20%和5.69%[133]。同时3AMPY具有更大的介电常数,从而减少了无机层和有机层介电失配引起的介电限域效应,从而降低了激子结合能,有利于激子分离与电荷输运。2020年,He等[134]通过均匀能量分布策略应用MAMP2+作为 OSC,并且使用2-氨基苯酚-4-磺酸作为添加剂,制备的2D卤化物钙钛矿太阳能电池器件获得了16.53%的光电转换效率。未封装2D卤化物钙钛矿太阳能电池在湿度为40%~50%的空气中存放1000 h后保持初始效率的92%,在模拟一个太阳光下持续光照505 h或在80℃热稳定性测试存储217 h都保持初始效率的90%。最后,苯基二胺离子作为OSC应用在2D卤化物钙钛矿太阳能电池中[135-136],如将1-4苯二甲铵(PDMA)作为OSC,通过对卤素元素和有机阳离子的掺杂混合,制备2D卤化物钙钛矿太阳能电池中(n=10),获得了15.6%的光电转换效率,未封装器件在空气湿度为50%左右条件下储存160 h,3D卤化物钙钛矿太阳能电池器件损坏,2D卤化物钙钛矿太阳能电池保持初始效率的60%以上,相比3D卤化物钙钛矿太阳能电池,其稳定性有明显提升[136]

    目前,ACI结构的2D钙钛矿研究的还不是很多,以GA和BDA作为OSC,其特点是通过层间交错的方式在无机层间穿插。2017年,Soec等[137]首次制备ACI结构的2D-PSCs,获得7.26%的转换效率。添加剂工程可提高2D钙钛矿薄膜的面外取向度,从而提高器件性能;使用MACl作为添加剂,制备2D钙钛矿薄膜[GA(MA)2Pb3I10],获得光滑的薄膜和更大的晶粒尺寸,更有序的量子阱梯度分布,获得18.48%的光电转换效率。在空气中,湿度约为55%,温度为60℃且在最大功率点连续工作200 h,保持初始效率的57%[138]。2019年,Li等[139]制备(BDA0.5Cs0.15(FA0.83MA0.17)2.85 -Pb3(I0.83Br0.17)10的2D-PSCs获得了17.39%的光电转换效率。减少了OSC在前驱体溶液中的比例,制备出类似于ACI构型的层间交错结构。总而言之,通过优化烷基链的OSC可明显影响2D卤化物钙钛矿的光电性能。

    综上所述,2D钙钛矿在光伏能源领域是一种非常有潜力的太阳能电池材料。它具有广泛的可调性,并可以解决与光照稳定性、水氧稳定性以及与钙钛矿太阳能电池(PSCs)中含铅毒性相关的系列问题;而且这类材料比3D卤化物钙钛矿更易于合成。但是2D卤化物钙钛矿还需要解决以下几个问题:

    (1) 如何制备纯相的2D卤化物钙钛矿材料,进而改进和提高2D钙钛矿太阳能电池的效率,对该领域的商业应用至关重要。通过对电荷传输层材料的深入优化,如何增强和提高2D材料在PSCs上的开路电压Voc值和整体性能;

    (2) 对各种2D钙钛矿相结构关系的深入了解有助于实现PSC材料的稳定性和较高的光电转换效率。但是到目前为止,如何理解载流子的性质促进载流子的传输,进而提高该类电池的效率,对于激子行为和激子向自由载流子的转换过程,2D钙钛矿还没有提出令人信服的解释方案。此外,在提高2D卤化物钙钛矿的长期稳定性方面,还没有一个强有力的理论框架。

    如果要在这些研究领域取得进一步的进展,就需要更多的研究者来深入了解对2D钙钛矿材料及其对太阳能电池影响的机制探究;为了实现高性能、稳定的2D卤化物钙钛矿探索新的机理和新的途径。

    基于此,本文总结了2D钙钛矿材料在提高PSCs稳定性和效率方面的最新研究进展,结合2D钙钛矿材料的独特特性,总结了制备2D钙钛矿材料的方法,并对稳定性和效率的进展进行了小结。期望2D钙钛矿研究可以成为有前景的光活性材料,能携手3D钙钛矿成为太阳能电池应用半导体材料的创新前沿。

  • 图  1   钙钛矿结构示意图

    Figure  1.   Schematic diagram of perovskite structure

    图  2   n=1, 2, 3的2D钙钛矿结构示意图:((a), (e), (i)) R-P相的 (PEA)2(MA)2Pb3I10;((b), (f), (j)) D-J相的(BA)2(MA)2Pb3I10;((d), (h), (l)) ACI相的 (GA)2(MA)3Pb3I10[57]

    Figure  2.   Schematic diagram of n=1, 2, 3 perovskite structure: ((a), (e), (i)) (BA)2(MA)2Pb3I10 is the R-P phases; ((b), (f), (j)) (AMP)2MA2Pb3I8 is the D-J phase; ((d), (h), (l)) (GA)2(MA)3Pb3I10 is the ACI phase[57]

    R-P—Ruddlesden-Popper; D-J—Dion-Jacobson; ACI—Alternating cation in the interlayer space

    图  3   (a) 2D钙钛矿中的量子阱;(b) 2D钙钛矿不同位置的介电常数[66]

    Figure  3.   (a) Quantum well in 2D perovskite; (b) Dielectric constant of 2D perovskite at different positions[66]

    VB, CB—Valence and conduction bands; L, m, ε, V —Thickness, effective mass, dielectric constant, and confinement potential; Subscripts and superscripts b, w, e, h—Barrier, well, electron, hole; Real composite material W/B is decomposed into two parts: the perovskite well section W, and organic barrier section B; ε(z)—Dielectric constant

    图  4   (a)分子式为(RNH3)2An-1MnX3n+1的(100)取向卤化物钙钛矿系列;单层(C4H9NH3)2PbBr4的结构示意图(b)、AFM图像(c) 和TEM图像(d);(e)不同卤化物2 D钙钛矿的光致发光结果图: (C4H9NH3)2PbCl4 (i)、(C4H9NH3)2PbBr4 (ii)、(C4H9NH3)2PbI4 (iii)、(C4H9NH3)2PbCl2Br2 (iv)、(C4H9NH3)2PbBr2I2 (v)和(C4H9NH3)2(MA)Pb2Br7 (vi);图形化描述的伪色彩PL强度谱线(f)和CsPbBr3 纳米片随时间衰变的PL图谱(g)[83]

    Figure  4.   (a) (100)-oriented halide perovskite series with the general formula of (RNH3)2An-1MnX3n+1, Structural illustration (b), AFM (c), and TEM images (d) of single-layer (C4H9NH3)2PbBr4; (e) Photoluminescence of different 2D halide perovskites: (C4H9NH3)2PbCl4 (i), (C4H9NH3)2PbBr4 (ii), (C4H9NH3)2PbI4 (iii), (C4H9NH3)2PbCl2Br2 (iv), (C4H9NH3)2PbBr2I2 (v) and (C4H9NH3)2(MA)Pb2Br7 (vi); Graphical depiction of the pseudo-colored PL intensity (f) and Time-resolved PL decay of CsPbBr3 nanoplatelets (g)[83]

    图  5   二维卤化物钙钛矿纳米片的两步合成方法[84]

    Figure  5.   Two-step synthesis method for 2D halide perovskite nanopatelets [84]

    DMF—N,N-Dimethylformamide; CB—Chlorobenzene; ACN—Acetonitrile

    图  6   (a)气体输送系统示意图;(b)转化为CH3NH3PbI3前后的PbI2纳米片的厚度(数据线以上的图像)[86];(c)二维PbI2纳米片合成示意图[87];((d)~(g)) 不同厚度的二维MAPbI3纳米片的AFM形貌图;(h)二维钙钛矿纳米片的归一化PL谱;(i)钙钛矿单个电池的PL峰和能隙图[83]

    Figure  6.   (a) Schematic of vapor-transport system; (b) Thickness of PbI2 platelets before (images above data line) and after converted to CH3NH3PbI3 (images below data line)[86]; (c) Schematic for the synthesis of 2D PbI2 nanosheets[87]; ((d)-(g)) AFM topography images of 2D MAPbI3 nanosheets with different thicknesses; (h) Normalized PL spectra of 2D perovskite nanosheets; (i) Plots of PL peak and energy gap as a function of the number of unit cells in perovskites [83]

    图  7   2D钙钛矿应用于钙钛矿太阳能电池中的三种形式:(a) 2D钙钛矿薄膜;(b) 2D-3D混合薄膜;(c) 2D/3D异质结薄膜[105]

    Figure  7.   2D Perovskite is used in three forms in perovskite solar cells: (a) 2D Perovskite thin film; (b) 2D-3D Mined thin film; (c) 2D/3D Heterojunction thin film[105]

    表  1   基于不同有机空位间隔阳离子(OSC)的R-P相结构的2D卤化物钙钛矿太阳能电池器件的性能

    Table  1   Summary of device performance of RP-2D-PSCs by different organic spacer cations (OSC)

    A’ siteStructureDevice configurationPCE/%Ref.
    5-Aminovaleric acid
    (AVA)
    PEA2SnI4/FASnI3 (AVA)2PbI4/MAPbI3FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au14.6[77]
    Phenylethylamine
    (PEA)
    (PEA)2(MA)2Pb3I10FTO/c-TiO2/PVK/Spiro-OMeTAD/Au4.73[90]
    (PEA)2(FA)8Sn9I28ITO/NiOx/PVK/PCBM/Ag5.94[96]
    Butylamine
    (BA)
    (BA)2(MA)3Pb4I13ITO/PEDOT:PSS/PVK/PCBM/Al12.51[60]
    (BA)2(MA)2Pb3I10FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au4.02[109]
    (BA)2(MA)Pb2I7FTO/c-TiO2/PVK/Spiro-OMeTAD/Au0.39[109]
    (BA)2PbI4FTO/c-TiO2/PVK/Spiro-OMeTAD/Au0.01[109]
    (BA)2[Cs0.05(MA)0.95]3Pb4I13FTO/c-TiO2/PVK/Spiro-OMeTAD/Au13.68[110]
    (BA)2CsPb2I7FTO/c-TiO2/PVK/Spiro-OMeTAD/Au4.84[111]
    (BA)2(MA0.8FA0.2)3Pb4I13ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag12.81[112]
    Butylamine
    (BA*)
    (BA*)2PbI4/Cs0.15FA0.85Pb(I0.73Br0.27)3FTO/c-TiO2/PVK/Spiro-OMeTAD/Au18.13[112]
    Branched butylamine
    (Iso-BA)
    (iso-BA)2(MA)3Pb4I13 (RT)ITO/C60/PVK/Spiro-OMeTAD/Au8.82[120]
    (iso-BA)2MA3Pb4I13 (n =4)FTO/C60/2D PER/Spiro-OMeTAD/Au10.6[122]
    Amylamine
    (AA)
    AA2MA3Pb4I13 (n =4)ITO/PTAA/2D PER/C60/BCP/Ag18.4[126]
    4-(Aminoethyl) pyridine
    (4AEP)
    (4AEP)2MA4Pb5I16 (n =5)FTO/C60/2D PER/Spiro-OMeTAD/Au11.6[121]
    2-Thiophenemethylamine
    (THMA)
    THMA2MA2Pb3I10 (n =3)ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag15.4[123]
    (THMA)2PbI4ITO/SnO2/PVK/Spiro-OMeTAD/MoO3/Ag21.49[125]
    4-Fluorophenethylamine
    (F-PEA)
    (F-PEA)2MA4Pb5I16 (n =5)FTO/c-TiO2/2D PER/Spiro-OMeTAD/Au13.6[125]
    2-(Methylthio) ethylamine
    (MTEA)
    (MTEA)2MA3Pb5I16 (n=5)ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag18.0[127]
    Notes: ITO—Indium tin oxides; FTO—Fluorine doped tin oxides; PVK—Perovskite; 2D PER—2 Dimensional perovskite; PCBM—6,6-Phenyl C61 butyric acid methyl ester; Spiro-OMeTAD—2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene; PEDOT:PSS—Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate); PTAA—Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine].
    下载: 导出CSV

    表  2   基于不同OSC的D-J相结构的2D 卤化物钙钛矿太阳能电池器件的性能

    Table  2   Summary of device performance of DJ- 2D-PSCs by different OSC

    A’ siteStructureDevice configurationPCE/%Ref.
    1,3-Propanediamine
    (PDA)
    (PDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/Al14.1[128]
    1,4-Butanediamine
    (BDA)
    (BDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al16.3[128]
    BDA/PEAITO/PEDOT:PSS/2D PER /PC60BM/BCP/Ag17.21[129]
    (BDA)MA4Pb5I16ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al17.9[130]
    1,5-Pentamethylenediamine
    (PEDA)
    (PEDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al12.9[128]
    1,6-Hexamethylenediamine
    (HDA)
    (HDA)MA4Pb5I16 (n =5)ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al10.5[128]
    3-(Aminomethyl) piperidinium
    (3AMP)
    (3AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag7.32[131]
    4-(Aminomethyl) piperidinium
    (4AMP)
    (4AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag4.24[131]
    3-(Aminomethyl) piperidinium
    (3AMPY)
    (3AMP)MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag9.20[133]
    4-(Aminomethyl) piperidinium
    (4AMPY)
    (4AMP)2MA3Pb4I13FTO/PEDOT:PSS/2D PER/BCP/Ag5.69[133]
    1,4-Benzenedimethanamonium
    (PDMA)
    (PDMA)A9Pb10(I0.93Br0.07)31FTO/c-TiO2/mp-TiO2/2D PER/
    Spiro-MeOTAD/Au
    15.6[136]
    Meta-(aminomethyl) piperidinium
    (MAMP)
    (MAMP)MA3Pb4I13FTO/TiO2 /2D PER/Spiro-MeOTAD/Au16.5[134]
    下载: 导出CSV
  • [1] 中国国家统计局. 中国统计年鉴-2020. (2021-01-01)[2021-04-01].

    National Bureau of Statistics of China. China statistical yearbook-2020. (2021-01-01)[2021-04-01]. Website: data.stats.gov.cn/easyquery.htm?cn=C01(in Chinese).

    [2] 中华人民共和国中央人民政府. 政府工作报告. (2021-03-05)[2021-04-01].

    Central People's Government of the People's Republic of China. Report on the work of the Government. (2021-03-05)[2021-04-01]. Website: www.gov.cn/zhuanti/2021qglh/ 2021zfgzbgdzs/2021zfgzbgdzs.html(in Chinese).

    [3]

    BABAR F, MEHMOOD U, ASGHAR H, et al. Nanostructured photoanode materials and their deposition me-thods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews,2020,129(10):1-22.

    [4]

    FUKUDA K, YU K, SOMEYA T, et al. The future of flexible organic solar cells[J]. Advanced Energy Materials,2020,10(25):1-10.

    [5]

    RONG Y, HU Y, MEI A, et al. Challenges for commerciali-zing perovskite solar cells[J]. Science,2018,361(6408):1-7.

    [6]

    SELOPAL G S, ZHAO H, WANG Z M, et al. Core/shell quantum dots solar cells[J]. Advanced Functional Materials,2020,30(13):1-21.

    [7]

    KOJIMA A, TESHIMA K, SHIRIAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051. DOI: 10.1021/ja809598r

    [8]

    CHUNG I, LEE B, HE J, et al. All solid-state dye-sensitized solar cells with high efficiency[J]. Nature,2012,485:486. DOI: 10.1038/nature11067

    [9]

    LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science,2012,338:643-647. DOI: 10.1126/science.1228604

    [10]

    KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012,2:591.

    [11]

    KOVALENKO M V, PROTESESCY L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science,2017,358:745-750. DOI: 10.1126/science.aam7093

    [12]

    GARÍA DE ARQUER F P, ARMIN A, MEREDITH P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials,2017,2:16100. DOI: 10.1038/natrevmats.2016.100

    [13]

    SUTHERLAND B R, SARGENT E H. Perovskite photonic sources[J]. Nature Photonics,2016,10:295. DOI: 10.1038/nphoton.2016.62

    [14]

    KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D. Orga-nic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science,1999,286:945-947. DOI: 10.1126/science.286.5441.945

    [15]

    CHOI J, HAN J S, HONG K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses[J]. Advanced Materials,2018,30:1704002. DOI: 10.1002/adma.201704002

    [16]

    JIA Y, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor[J]. Nature Photonics,2017,11:784-788. DOI: 10.1038/s41566-017-0047-6

    [17]

    EATON S W, LAI M, GIBSON N A, et al. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113:1993. DOI: 10.1073/pnas.1600789113

    [18]

    ZHU H, FU Y, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high qua-lity factors[J]. Nature Materials,2015,14:636. DOI: 10.1038/nmat4271

    [19]

    KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature,2017,550:87. DOI: 10.1038/nature24032

    [20]

    HE Y, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications,2018,9:1609. DOI: 10.1038/s41467-018-04073-3

    [21]

    YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics,2015,9:444. DOI: 10.1038/nphoton.2015.82

    [22]

    WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics,2017,11:315. DOI: 10.1038/nphoton.2017.43

    [23]

    CONTRIBUTORS W. Perovskite[EB/OL]. (2021-01-24) [2021-04-02].

    [24]

    WELLS H L. Über die cäsi-umund kalium-bleihalogenide[J]. Zeitschrift Fur Anorganische Chemie, 1893, 3(1): 195-210

    [25]

    GRATZEL M. The rise of highly efficient and stable perovskite solar cells[J]. Accounts of Chemical Research,2017,50(3):487-491. DOI: 10.1021/acs.accounts.6b00492

    [26]

    LI C, LU X, DING W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B: Structural Science,2008,64(6):702-707. DOI: 10.1107/S0108768108032734

    [27]

    CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications[J]. Nano Today,2015,10(3):355-396. DOI: 10.1016/j.nantod.2015.04.009

    [28]

    QIU Z W, LI N X, HUANG Z J, et al. Recent advances in improving phase stability of perovskite solar cells[J]. Small Methods,2020,4(5):1-31.

    [29]

    LI Z, YANG M, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials,2016,28(1):284-292. DOI: 10.1021/acs.chemmater.5b04107

    [30]

    MASI S, GUALDRÓN-REYES A F, MORA-SERÓ I. Stabilization of black perovskite phase in FAPbI3 and CsPbI3[J]. ACS Energy Letters,2020,5(6):1974-1985. DOI: 10.1021/acsenergylett.0c00801

    [31]

    PARK N G, MIYASAKA T, GRÄTZEL M. Organic-inorganic halide perovskite photovoltaics. 1 ed [M]. Switzerland: Springer, 2016.

    [32]

    HAO F, STOUMPOS C C, CHANG R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society,2014,136(22):8094-8099. DOI: 10.1021/ja5033259

    [33]

    FILIP M R, EPERON G E, SNAITH H J, et al. Steric engi-neering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications,2014,5(1):5757. DOI: 10.1038/ncomms6757

    [34]

    LI C, WEI J, SATO M, et al. Halide-substituted electronic properties of organometal halide perovskite films: Direct and inverse photoemission studies[J]. ACS Applied Materials & Interfaces,2016,8(18):11526-11531.

    [35]

    SHI D, ADINOLFI V, COMIN R, et al. Low trap-state den-sity and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science,2015,347(6221):519-523. DOI: 10.1126/science.aaa2725

    [36]

    MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible blind UV-photodetector[J]. Journal of Physical Chemistry Letters,2015,6(19):3781-3786. DOI: 10.1021/acs.jpclett.5b01666

    [37]

    ZHUMEKENOV A A, SAIDAMINOV M I, HAQUE M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Letters,2016,1(1):32-37. DOI: 10.1021/acsenergylett.6b00002

    [38]

    STRAUS D B, GUO S, CAVA R J. Kinetically stable single crystals of perovskite-phase CsPbI3[J]. Journal of the American Chemical Society,2019,141(29):11435-11439. DOI: 10.1021/jacs.9b06055

    [39]

    DANG Y, ZHOU Y, LIU X, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie-International Edition,2016,55(10):3447-3450. DOI: 10.1002/anie.201511792

    [40]

    GALKOWSKI K, MITIOGLU A, MIYATA A, et al. Determi-nation of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-ha-lide perovskite semiconductors[J]. Energy & Environmental Science,2016,9(3):962-970.

    [41]

    MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites[J]. Nature Physics,2015,11(7):582-587. DOI: 10.1038/nphys3357

    [42]

    DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225):967-970. DOI: 10.1126/science.aaa5760

    [43]

    STEIRER K X, SCHULZ P, TEETER G, et al. Defect tole-rance in methylammonium lead triiodide perovskite[J]. ACS Energy Letters,2016,1(2):360-366. DOI: 10.1021/acsenergylett.6b00196

    [44]

    CHU W, ZHENG Q, PREZHDO O V, et al. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination[J]. Science Advances,2020,6(7):1-8.

    [45]

    SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Che-mistry of Materials,2018,30(13):4193-4201. DOI: 10.1021/acs.chemmater.8b00136

    [46]

    LI J, HAN Z, GU Y, et al. Perovskite single crystals: Synthe-sis, optoelectronic properties, and application[J]. Advanced Functional Materials,2021,31(11):1-35.

    [47]

    GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics,2014,8(7):506-514. DOI: 10.1038/nphoton.2014.134

    [48]

    YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science,2015,348(6240):1234-1237. DOI: 10.1126/science.aaa9272

    [49]

    JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photo-nics,2019,13(7):460-466. DOI: 10.1038/s41566-019-0398-2

    [50]

    NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science,2015,347(6221):522-525. DOI: 10.1126/science.aaa0472

    [51]

    XIAO J, SHI J, LIU H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Advanced Energy Materials,2015,5(8):1-7.

    [52]

    LENG M , YANG Y , ZENG K , et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability[J]. Advanced Functional Materials,2018,28(1):1704446.

    [53]

    XING G, MATHEWS N, SUN S, et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science,2013,342(6156):344-347. DOI: 10.1126/science.1243167

    [54]

    WANG W B, ZHAO D W, ZHANG F J, et al. Highly sensi-tive low-bandgap perovskite photodetectors with response from ultraviolet to the near infrared region[J]. Advanced Functional Materials,2017,27(42):1-7.

    [55]

    WANG K, WU C, YANG D, et al. Quasi-two-dimensional halide perovskite single crystal photodetector[J]. ACS Nano,2018,12(5):4919-4929. DOI: 10.1021/acsnano.8b01999

    [56]

    SHEN Y, LIU Y, YE H, et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection[J]. Angewandte Chemie-International Edition,2020,132(35):15006-15012.

    [57]

    SAPAROV B, MITZI D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews,2016,116(7):4558-4596. DOI: 10.1021/acs.chemrev.5b00715

    [58]

    MAO L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190.

    [59]

    ZHANG J, QIN J, WANG M, et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells[J]. Joule,2019,3(12):3061-3071. DOI: 10.1016/j.joule.2019.09.020

    [60]

    TSAI H, NIE W, BLANCON J C, et al. High efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature,2016,536(7616):312-316. DOI: 10.1038/nature18306

    [61]

    KRISHNA A, GOTTIS S, NAZEERUDDIN M K, et al. Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells?[J]. Advanced Functional Materials,2019,29(8):1806482.

    [62]

    JIANG X Q, ZHANG J F, AHMAD S, et al. Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability[J]. Nano Energy,2020,75:104892.

    [63]

    VASILEIADOU E S, WANG B, SPANOPOULOS I, et al. Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites[J]. Journal of the American Chemical Society,2021,143(6):2523-2536. DOI: 10.1021/jacs.0c11328

    [64]

    STOUMPOS C C, SOE C M M, TSAI H H, et al. High members of the 2D Ruddlesden-Popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16[J]. Chem,2017,2(3):427-440.

    [65]

    YANG R, LI R, CAO Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices[J]. Advanced Materials,2018,30(51):1-8.

    [66]

    TRAORE B, PEDESSEAU L, ASSAM L, et al. Composite nature of layered hybrid perovskites: Assessment on quantum and dielectric confinements and band alignment[J]. ACS Nano,2018,12(4):3321-3332. DOI: 10.1021/acsnano.7b08202

    [67]

    MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics[J]. IBM Journal of Research and Deve-lopment,2001,45(1):29-45. DOI: 10.1147/rd.451.0029

    [68]

    PENG W, YIN J, HO K T, et al. Ultralow self doping in two-dimensional hybrid perovskite single crystals[J]. Nano Letters,2017,17(8):4759-4767. DOI: 10.1021/acs.nanolett.7b01475

    [69]

    BLANCON J C, STIER A V, TSAI H, et al. Scaling law for excitons in 2D perovskite quantum wells[J]. Nature Communications,2018,9:2254. DOI: 10.1038/s41467-017-02088-w

    [70]

    MIAO R, SHENG C, ZHAO J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes[J]. Nano-Micro Letters,2021,13:163-199.

    [71]

    LIN Y, FANG Y, ZHAO J, et al. Unveiling the operation mechanism of layered perovskite solar cells[J]. Nature Communications,2019,10(1):1-11. DOI: 10.1038/s41467-018-07882-8

    [72]

    QUAN L N, YUAN M, COMIN R, et al. Ligand stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society,2016,138(8):2649-2655. DOI: 10.1021/jacs.5b11740

    [73]

    LIU P Y, HAN N, WANG W, et al. High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells[J]. Advanced Materials,2021,33(10):1-40.

    [74]

    WU M, SHI J J, ZHANG M, et al. Promising photovoltaic and solid-state-lighting materials: Two-dimensional Ruddlesden-Popper type lead free halide double perovskites Csn+1Inn/2Sbn/2I3n+1 (n=3) and Csn+1Inn/2Sbn/2Cl3n+1/Csm+1Cum/2Bim/2Cl3m+1 (n=3, m=1) [J]. Journal of Materials Chemistry C, 2018, 6: 11575-11586.

    [75]

    GE C, ZHAI W, TIAN C, et al. Centimeter-scale 2D perovskite (PEA)2PbBr4 single crystal plates grown by a seeded solution method for photodetectors[J]. RSC Advances,2019,9:16779-16783. DOI: 10.1039/C9RA01415B

    [76]

    ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and sto-rage devices[J]. Nature Materials,2005,4:366-377. DOI: 10.1038/nmat1368

    [77]

    MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics,2016,10:216-226. DOI: 10.1038/nphoton.2015.282

    [78]

    LIN Z, LIU Y, HALIM U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics[J]. Nature,2018,562:254-258. DOI: 10.1038/s41586-018-0574-4

    [79]

    CHEN S, SHI G. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials,2017,29:1605448. DOI: 10.1002/adma.201605448

    [80]

    CHEN S S, LIU Y, XIAO X, et al. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach[J]. Joule,2020,4:2661-2674. DOI: 10.1016/j.joule.2020.10.014

    [81]

    CAI X, LUO Y, LIU B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews,2018,47:6224-6266. DOI: 10.1039/C8CS00254A

    [82]

    STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials,2016,28:2852-2867. DOI: 10.1021/acs.chemmater.6b00847

    [83]

    HONG K, LE Q V, KIM S Y, et al. Low-dimensional halide perovskites: Review and issues[J]. Journal of Materials Chemistry C,2018,6:2189-2209. DOI: 10.1039/C7TC05658C

    [84]

    CHEN J, GAN L, ZHUGE F, et al. A ternary solvent method for large-sized two-dimensional perovskites[J]. Angew-andte Chemie-International Edition,2017,56:2390-2394. DOI: 10.1002/anie.201611794

    [85]

    HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: Synthesis and applications[J]. Chemical Science,2017,8:2522-2536. DOI: 10.1039/C6SC04474C

    [86]

    SMITH I C, HOKE E T, IBARRA S D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie-International Edition,2014,53:11232-11235. DOI: 10.1002/anie.201406466

    [87]

    YAN J, QIU W, WU G, et al. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells[J]. Journal of Materials Chemistry,2018,6:11063-11077. DOI: 10.1039/C8TA02288G

    [88]

    MULJAROV E A, TIKHODEEV S G, GIPPIUS N A, et al. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds[J]. Physical Review B,1995,51(20):14370-14378. DOI: 10.1103/PhysRevB.51.14370

    [89]

    KATAOKA T, KONDO T, ITO R, et al. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4[J]. Physi-cal Review B,1993,47(4):2010-2018. DOI: 10.1103/PhysRevB.47.2010

    [90]

    SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie-International Edition,2014,53(42):1-5.

    [91]

    ZHENG K, PULLERITS T. Two dimensions are better for perovskites[J]. Journal of Physical Chemistry Letters,2019,10(19):5881-5885. DOI: 10.1021/acs.jpclett.9b01568

    [92]

    AHMAD S, FU P, YU S, et al. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability[J]. Joule,2019,3(3):794-806. DOI: 10.1016/j.joule.2018.11.026

    [93]

    KIM H, LEE S U, LEE D Y, et al. Optimal interfacial engi-neering with different length of alkylammonium halide for efficient and stable perovskite solar cells[J]. Advanced Energy Materials,2019,9(47):1-8.

    [94]

    WANG H, ZHU C, LIU L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stabi-lity[J]. Advanced Materials,2019,31(48):1-10.

    [95]

    LIN Y, BAI Y, FANG Y, et al. Suppressed ion migration in low dimensional perovskites[J]. ACS Energy Letters,2017,2(7):1571-1572. DOI: 10.1021/acsenergylett.7b00442

    [96]

    QIU J, XIA Y D, CHEN Y H, et al. Management of crystallization kinetics for efficient and stable low-dimensional Ruddlesden-Popper (LDRP) lead-free perovskite solar cells[J]. Advanced Science,2019,6:1800793. DOI: 10.1002/advs.201800793

    [97]

    XIAO X, DAI J, FANG Y, et al. Suppressed ion migration along the in-plane direction in layered perovskites[J]. ACS Energy Letters,2018,3(3):684-688. DOI: 10.1021/acsenergylett.8b00047

    [98]

    LUO T, ZHANG Y, XU Z, et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J]. Advanced Materials,2019,31(44):1-8.

    [99]

    DONG Y, LU D, XU Z, et al. 2-Thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis[J]. Advanced Energy Materials,2020,10(28):1-9.

    [100]

    ZHU T, ZHENG D, LIU J, et al. PEAI-based interfacial layer for high Efficiency and stable solar cells based on a MACl-mediated grown FA0.94MA0.06PbI3 perovskite[J]. ACS Applied Materials & Interfaces,2020,12(33):37197-37207.

    [101]

    LEE J W, DAI Z, HAN T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J]. Nature Communications,2018,9(1):3021-3031. DOI: 10.1038/s41467-018-05454-4

    [102]

    MATTEO D, AN Q Z, ALBALADEJO-SIGUAN M, et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification[J]. Science Advances,2021,7(49):7930.

    [103]

    WANG F, JIANG X, CHEN H, et al. 2D-Quasi-2D-3D hie-rarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J]. Joule,2018,2(12):2732-2743. DOI: 10.1016/j.joule.2018.09.012

    [104]

    CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells[J]. Advanced Functional Materials,2018,28(17):1-10.

    [105]

    CHEN Y, YU S, SUN Y, et al. Phase engineering in quasi-2D Ruddlesden-Popper perovskites[J]. Journal of Physical Chemistry Letters,2018,9(10):2627-2631. DOI: 10.1021/acs.jpclett.8b00840

    [106]

    ZHANG Y, CHEN J, LIAN X, et al. Highly efficient guanidinium-based quasi 2D perovskite solar cells via a two-step post-treatment process[J]. Small Methods,2019,3(11):1-9.

    [107]

    ZHAO X, LIU T, KAPLAN A B, et al. Accessing highly oriented two dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells[J]. Nano Letters,2020,20(12):8880-8889. DOI: 10.1021/acs.nanolett.0c03914

    [108]

    LAI H, LU D, XU Z, et al. Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%[J]. Advanced Materials,2020,32(33):1-10.

    [109]

    HUANG Y, LI Y, LIM E L, et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering[J]. Journal of the American Chemical Society,2021,143(10):3911-3917. DOI: 10.1021/jacs.0c13087

    [110]

    LIU Y, HONG Z, CHEN Q, et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells[J]. Nano Letters,2015,1:662-668.

    [111]

    LIAO J F, RAO H S, CHEN B X, et al. Dimension engi-neering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A,2017,5:2066-2072. DOI: 10.1039/C6TA09582H

    [112]

    KOH T M, SHANMUGAM V, GUO X, et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics[J]. Journal of Materials Chemistry A,2018,6:2122-2128. DOI: 10.1039/C7TA09657G

    [113]

    CAO D H, STOUMPOS C C, FARHA O K, et al. 2D Homolo-gous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society,2015,137(24):7843-7850. DOI: 10.1021/jacs.5b03796

    [114]

    CHEN A Z, SHIU M, MA J H, et al. Origin of vertical orienta-tion in two-dimensional metal halide perovskites and its effect on photovoltaic performance[J]. Nature Communications,2018,9:1336. DOI: 10.1038/s41467-018-03757-0

    [115]

    WANG H, CHAN C C S, CHU M, et al. Interlayer cross linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling[J]. Solar RRL,2020,4(4):1-9.

    [116]

    ZHENG H, LIU G, ZHU L, et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition[J]. Advanced Energy Materials,2018,8(21):1-8.

    [117]

    MAHMUD M A, DUONG T, PENG J, et al. Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: A review[J]. Advanced Functional Materials,2021:2009164. DOI: 10.1002/adfm.202009164

    [118]

    KIM G, MIN H, LEE K S, et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells[J]. Science,2020,370(6512):108-112. DOI: 10.1126/science.abc4417

    [119]

    JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engi-neering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592(7854): 381-385.

    [120]

    YANGI L K, LI Y W, PEI Y X, et al. A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells[J]. Journal of Chemistry Materials A,2020,8(16):7808-7818.

    [121]

    LI Y, CHENG H, ZHAO K, et al. 4-(Aminoethyl) pyridine as a bifunctional spacer cation for efficient and stable 2D Ruddlesden-Popper perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2019, 11: 37804-37811.

    [122]

    CHEN Y, SUN Y, PENG J, et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells[J]. Advanced Energy Materials,2017,7:1700162. DOI: 10.1002/aenm.201700162

    [123]

    LAI H, KAN B, LIU T, et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. Journal of the American Chemical Society,2018,140:11639-11646. DOI: 10.1021/jacs.8b04604

    [124]

    ZHANG F, KIM D H, LU H, et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation[J]. Journal of the American Chemical Society,2019,141:5972-5979. DOI: 10.1021/jacs.9b00972

    [125]

    ZHOU T, LAI H, LIU T, et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite[J]. Advanced Materials,2019,31:1901242-1901251.

    [126]

    WU G, YANG T, LI X, et al. Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%[J]. Matter,2020,4:582-599.

    [127]

    REN H, YU S, CHAO L, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics,2020,14:154-163. DOI: 10.1038/s41566-019-0572-6

    [128]

    ZHENG Y T, NIU T T, QIU J, et al. Oriented and uniform distribution of Dion-Jacobson phase perovskites controlled by quantum well barrier thickness[J]. Solar RRL,2019,3:1900090. DOI: 10.1002/solr.201900090

    [129]

    YU Y Y, XIE Y L, ZHANG J, et al. Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells[J]. Advanced Science,2021,8:2004510. DOI: 10.1002/advs.202004510

    [130]

    NIU T, REN H, WU B, et al. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics[J]. Chemistry Letters,2019,10:2349-2356.

    [131]

    MAO L, KE W, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites[J]. Journal of the Ameri-can Chemical Society,2018,140:3775-3783. DOI: 10.1021/jacs.8b00542

    [132]

    KE W, MAO L, STOUMPOS C C, et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability[J]. Advanced Energy Materials,2019,9:1803384. DOI: 10.1002/aenm.201803384

    [133]

    LI X T, KE W J, TRAORE B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J]. Journal of the American Che-mical Society,2019,141:12880-12890. DOI: 10.1021/jacs.9b06398

    [134]

    HE T, LI S, JIANG Y, et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape[J]. Nature Communications,2020,11:1672. DOI: 10.1038/s41467-020-15451-1

    [135]

    LI Y, MILIĆ J V, UMMADISINGU A, et al. Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells[J]. Nano Letters,2018,19:150-157.

    [136]

    COHEN B E, LI Y M, MENG Q B, et al. Dion-Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation[J]. Nano Letters,2019,19:2588-2597. DOI: 10.1021/acs.nanolett.9b00387

    [137]

    SOEC M M, STOUMPOS C C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance[J]. Journal of the American Chemical Society,2017,139:16297-16309. DOI: 10.1021/jacs.7b09096

    [138]

    LUO T, ZHANG Y, XU Z, et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J]. Advanced Materials,2019,31:1903848. DOI: 10.1002/adma.201903848

    [139]

    LI P, LIANG C, LIU X L, et al. Low-dimensional perovskites with diammonium and monoammonium alter-nant cations for high-performance potovoltaics[J]. Advanced Materials,2019,31:1901966. DOI: 10.1002/adma.201901966

  • 期刊类型引用(6)

    1. 马彤彤,马建中,范倩倩,张文博,刘蜜. 基于高分子配体修饰改善卤系钙钛矿稳定性的研究进展. 复合材料学报. 2025(01): 162-172 . 本站查看
    2. 巩志鑫,杨海霞,崔立志,崔建鹏,贾佳林,张永康. 钙钛矿太阳能电池的制备方法研究. 光源与照明. 2023(04): 68-70 . 百度学术
    3. 李英,杨元林,陈丽佳,牛连斌. 倒置钙钛矿太阳能电池电子传输层的研究进展. 激光与光电子学进展. 2023(15): 78-95 . 百度学术
    4. 曹邵文,周国庆,蔡琦琳,叶庆,庞昊强,吴玺. 太阳能电池综述:材料、政策驱动机制及应用前景. 复合材料学报. 2022(05): 1847-1858 . 本站查看
    5. 张新,王傲冰. 钙钛矿太阳能电池稳定性研究进展. 邢台职业技术学院学报. 2022(05): 86-89 . 百度学术
    6. 吕涛,王钰,杨旭彪. 太阳能电池生产中多晶硅材料特性的影响. 能源与节能. 2022(12): 58-60+88 . 百度学术

    其他类型引用(8)

图(7)  /  表(2)
计量
  • 文章访问数:  2753
  • HTML全文浏览量:  1142
  • PDF下载量:  315
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-09-17
  • 修回日期:  2021-10-16
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2022-03-22

目录

/

返回文章
返回