留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于直写成型的环氧复合材料网格结构制备及其增强增韧机制

张行乐 仰钧毅 程昌利 刘禹 王震宇

张行乐, 仰钧毅, 程昌利, 等. 基于直写成型的环氧复合材料网格结构制备及其增强增韧机制[J]. 复合材料学报, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002
引用本文: 张行乐, 仰钧毅, 程昌利, 等. 基于直写成型的环氧复合材料网格结构制备及其增强增韧机制[J]. 复合材料学报, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002
ZHANG Xingle, YANG Junyi, CHENG Changli, et al. Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002
Citation: ZHANG Xingle, YANG Junyi, CHENG Changli, et al. Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002

基于直写成型的环氧复合材料网格结构制备及其增强增韧机制

doi: 10.13801/j.cnki.fhclxb.20230104.002
基金项目: 国家自然科学基金(51905216);“太湖之光”科技攻关计划项目(G20212034);江苏省食品先进制造装备技术重点实验室自主研究课题(FMZ202201)
详细信息
    通讯作者:

    王震宇,博士,副教授,硕士生导师,研究方向为纳米复合材料的增材制造工艺 E-mail: zywang@jiangnan.edu.cn

  • 中图分类号: TB332

Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms

Funds: National Natural Science Foundation of China (51905216); The Wuxi "Taihu light" Science and Technology Research Project (G20212034); Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology (FMZ202201)
  • 摘要: 环氧复合材料因其轻质、高强度等特性在航空航天、汽车等领域有极高的应用价值,但环氧树脂的脆性特征严重限制了其实际工程应用,如何协同提高环氧复合材料的强度和韧性仍是一个巨大的挑战。鉴于此,本文设计了一种由实心增强层与多孔增韧层逐层组装而成的环氧复合材料网格结构,并通过直写式3D打印工艺制备。采用旋转流变仪和光学显微镜对直写浆料和打印线条的物化性能进行了表征测试,通过电子万能力学试验机对不同结构参数的环氧复合材料网格结构进行了力学性能测试。测试结果表明:层状网格结构的引入使复合材料的比弯曲强度相较于实心环氧复合材料最高提升了95%,韧性最高提升了630%,断裂韧性最高提升了19.1%。从断面形貌分析和有限元模拟的分析结果可以得出结论,网格结构中的增强层保证了结构强度,而增韧层则有效耗散外部变形并阻止裂纹扩展。本文为纳米复合材料的细观结构设计提供了新思路,为高强高韧复合材料的制备和工程应用提供了理论依据。

     

  • 图  1  (a) 环氧复合材料网格结构(ECL)示意图;3D打印样品照片:(b) 三角形;(c) 圆形;(d) 五角星;((e)~(g)) 不同尺寸的正方形

    Figure  1.  (a) Schematic of the epoxy-based composite lattice (ECL) structure; Digital photos of the 3D-printed samples: (b) Triangle; (c) Circular; (d) Pentagonal; ((e)-(g)) Square shapes with different sizes

    d—Distance of the adjacent printed filaments

    图  2  不同SiO2含量的环氧复合材料的黏度(a)和模量曲线(b);(c) 打印线宽随挤出气压和打印速度的变化

    Figure  2.  Viscosity (a) and moduli (b) of the epoxy-based composite inks containing different SiO2 content; (c) Filament diameter as functions of the extrusion pressure and the printing speed

    图  3  环氧复合材料网格的光学图像:(a) SZ结构;(e) TZ-0.5;截面形貌:(b) TZ-0.4;(c) TZ-0.5;(d) TZ-0.6;(f) ECL-0.4;(g) ECL-0.5;(h) ECL-0.6

    Figure  3.  Optical images of the epoxy-based composite lattice: (a) SZ structure; (e) TZ-0.5; Cross-sectional view: (b) TZ-0.4; (c) TZ-0.5; (d) TZ-0.6; (f) ECL-0.4; (g) ECL-0.5; (h) ECL-0.6

    图  4  不同结构环氧复合材料网格结构的力学特性:(a) 弯曲应力-应变曲线;(b) 比强度对比图;(c) 韧性对比图;(d) I型断裂韧性KIC

    Figure  4.  Mechanical properties of epoxy-based composite with different structures: (a) Flexural stress-strain curves; (b) Comparison of specific strength; (b) Comparison of toughness; (d) Mode I fracture toughness KIC

    图  5  ECL结构制样断裂面SEM图像

    Figure  5.  SEM images of the fracture surfaces of ECL structure

    图  6  ECL结构弯曲特性的理论分析:(a) 应力-应变曲线;(b) 应变为1%~5%时线条的旋转角度;弯曲外载荷下ECL-0.4 (c)、ECL-0.5 (d)和ECL-0.6 (e)的最大主应力分布情况

    Figure  6.  Theoretical analysis of the flexural properties of ECL structure: (a) Stress-strain curves; (b) Rotation angle of the filaments at the strain range of 1%-5%; Maximum principal stress distribution on ECL-0.4 (c), ECL-0.5 (d), and ECL-0.6 (e) under bending

    表  1  样品命名

    Table  1.   Sample naming

    Sample Distance of the adjacent printed filaments/mm
    ECL-0.4 0.4
    ECL-0.5 0.5
    ECL-0.6 0.6
    TZ-0.4 0.4
    TZ-0.5 0.5
    TZ-0.6 0.6
    SZ
    Notes: TZ—Toughening zones; SZ—Strenghening zones.
    下载: 导出CSV

    表  2  有限元仿真中使用的环氧复合材料材料属性

    Table  2.   Material properties of the epoxy composites used in the finite element modeling

    Density/
    (kg·m−3)
    Elasticity
    modulus/
    MPa
    Poisson's
    ratio
    Brittle crackingBrittle shearDirect cracking
    failure strain
    Direct stress after cracking/
    MPa
    Direct
    cracking strain
    Shear retention factorCrack
    opening strain
    1.2×10323330.35500101.8×10−5
    01.8×10−501.8×10−5
    下载: 导出CSV
  • [1] MI X Q, LIANG N, XU H F, et al. Toughness and its mechanisms in epoxy resins[J]. Progress in Materials Science,2022,130:100977. doi: 10.1016/j.pmatsci.2022.100977
    [2] SRINIVASAN D V, RAVICHANDRAN V, IDAPALAPATI S. Failure analysis of GFRP single lap joints tailored with a combination of tough epoxy and hyperelastic adhesives[J]. Composites Part B: Engineering,2020,200:108255. doi: 10.1016/j.compositesb.2020.108255
    [3] HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures,2022,284:115120. doi: 10.1016/j.compstruct.2021.115120
    [4] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [5] KADHIM N, ZAMAN A, JIANG M, et al. A cast-in-place fabrication of high performance epoxy composites cured in an in-situ synthesized 3D foam of nanofibers[J]. Composites Part B: Engineering,2021,205:108495. doi: 10.1016/j.compositesb.2020.108495
    [6] JIA J, SUN X, LIN X, et al. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J]. ACS Nano,2014,8(6):5774-5783. doi: 10.1021/nn500590g
    [7] CHIANG Y, TUNG C C, LIN X D, et al. Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana[J]. Composite Structures,2021,262:113349. doi: 10.1016/j.compstruct.2020.113349
    [8] SONG W, KONSTANTELLOS G, LI D, et al. Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Composites Science and Technology,2019,184:107871. doi: 10.1016/j.compscitech.2019.107871
    [9] GARCIA C D, SHAHAPURKAR K, DODDAMANI M, et al. Effect of arctic environment on flexural behavior of fly ash cenosphere reinforced epoxy syntactic foams[J]. Composites Part B: Engineering,2018,151:265-273. doi: 10.1016/j.compositesb.2018.06.035
    [10] HANKS B, BERTHEL J, FRECKER M, et al. Mechanical properties of additively manufactured metal lattice structures: Data review and design interface[J]. Additive Manufacturing,2020,35:101301. doi: 10.1016/j.addma.2020.101301
    [11] ALBERTINI F, DIRRENBERGER J, SOLLOGOUB C, et al. Experimental and computational analysis of the mechanical properties of composite auxetic lattice structures[J]. Additive Manufacturing,2021,47:102351. doi: 10.1016/j.addma.2021.102351
    [12] MUELLER J, LEWIS J A, BERTOLDI K. Architected multimaterial lattices with thermally programmable mechanical response[J]. Advanced Functional Materials,2022,32(1):2105128. doi: 10.1002/adfm.202105128
    [13] ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials,2020,32(17):1907142. doi: 10.1002/adma.201907142
    [14] HUANG T, LIU W, SU C, et al. Dierct ink writing of conductive materials for emerging energy storage systems[J]. Nano Research,2022,15(7):6091-6111. doi: 10.1007/s12274-022-4200-2
    [15] SAADI M A S R, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022,34(28):2108855. doi: 10.1002/adma.202108855
    [16] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):5930-5935. doi: 10.1002/adma.201401804
    [17] MUELLER J, RANEY J R, SHEA K, et al. Architected lattices with high stiffness and toughness via multicore-shell 3D printing[J]. Advanced Materials,2018,30(12):1705001. doi: 10.1002/adma.201705001
    [18] CHEN K, ZHANG L, KUANG X, et al. Dynamic photomask-assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator[J]. Advanced Functional Materials,2019,29(33):1903568. doi: 10.1002/adfm.201903568
    [19] American Society of Testing Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—10[S]. West Conshohocken: ASTM International, 2010.
    [20] American Society of Testing Materials. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials: ASTM D5045—99[S]. West Conshohocken: ASTM International, 1999.
    [21] 李西敏, 杨韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7):3510-3517.

    LI Ximin, YANG Tao, PENG Biyou, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica,2022,39(7):3510-3517(in Chinese).
    [22] 范晓龙, 张广成, 李建通, 等. 环氧树脂微孔材料的制备与性能[J]. 复合材料学报, 2016, 33(9):1915-1921. doi: 10.13801/j.cnki.fhclxb.20151123.003

    FAN Xiaolong, ZHANG Guangcheng, LI Jiantong, et al. Preparation and properties of microcellular epoxy resin[J]. Acta Materiae Compositae Sinica,2016,33(9):1915-1921(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151123.003
    [23] ULLAS A V, JAISWAL B. Halloysite nanotubes reinforced epoxy-glass microballoons syntactic foams[J]. Composites Communications,2020,21:100407. doi: 10.1016/j.coco.2020.100407
    [24] GU H, ZHANG H, MA C, et al. Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy[J]. Carbon,2019,142:131-140. doi: 10.1016/j.carbon.2018.10.029
    [25] ZHANG L, MA J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam[J]. Composites Science and Technology,2010,70:1265-1271. doi: 10.1016/j.compscitech.2010.03.016
    [26] XU K, LI D, SHANG E, et al. A heating-assisted direct ink writing method for preparation of PDMS cellular structure with high manufacturing fidelity[J]. Polymers,2022,14(7):1323. doi: 10.3390/polym14071323
    [27] 徐菁, 李岩, 付昆昆. 仿羊角管状复合材料结构抗冲击性能[J]. 复合材料学报, 2023, 40(4):2365-2376. doi: 10.13801/j.cnki.fhclxb.20220530.006

    XU Jing, LI Yan, FU Kunkun. Impact resistance of horn-inspired tubular composite structure[J]. Acta Materiae Compositae Sinica,2023,40(4):2365-2376(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220530.006
    [28] GAO G, LI Z, CHANG C. Numerical simulation of diametrical core deformation and fracture induced by core drilling[J]. Arabian Journal of Geosciences,2022,293:15. doi: 10.1007/s12517-022-09555-9
    [29] 薛建勋, 孙全平. 氧化锆陶瓷切削加工有限元仿真分析[J]. 中国陶瓷, 2012, 48(10):28-29. doi: 10.16521/j.cnki.issn.1001-9642.2012.10.016

    XUE Jianxun, SUN Quanping. Finite element simulation analysis of zirconia ceramic cutting[J]. China Ceramics,2012,48(10):28-29(in Chinese). doi: 10.16521/j.cnki.issn.1001-9642.2012.10.016
    [30] American Society of Testing Materials. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  312
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-12
  • 录用日期:  2022-12-17
  • 网络出版日期:  2023-01-05
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回