留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料II型疲劳分层扩展预测:从G-N曲线到Paris’ law

祝曼 王阳 刘强 易敏

祝曼, 王阳, 刘强, 等. 复合材料II型疲劳分层扩展预测:从G-N曲线到Paris’ law[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 祝曼, 王阳, 刘强, 等. 复合材料II型疲劳分层扩展预测:从G-N曲线到Paris’ law[J]. 复合材料学报, 2022, 40(0): 1-14
Man ZHU, Yang WANG, Qiang LIU, Min YI. Prediction of mode II fatigue delamination propagation in fibre reinforced composites: From G-N curve to Paris’ law[J]. Acta Materiae Compositae Sinica.
Citation: Man ZHU, Yang WANG, Qiang LIU, Min YI. Prediction of mode II fatigue delamination propagation in fibre reinforced composites: From G-N curve to Paris’ law[J]. Acta Materiae Compositae Sinica.

复合材料II型疲劳分层扩展预测:从G-N曲线到Paris’ law

基金项目: 国家自然科学基金 (12102179;12272174);江苏省自然科学基金(BK20200409);中央高校基本科研业务费专项资金(3082021 NS2021001);江苏省“双创博士”计划(JSSCBS20210618)
详细信息
    通讯作者:

    刘强,博士,副研究员,硕士生导师,研究方向为复合材料极端环境性能评价及工艺力学 E-mail: liuqiang2015@nuaa.edu.cn

    易敏,博士,教授,博士生导师,研究方向为先进材料结构和先进制造的多尺度多场耦合力学 E-mail: yimin@nuaa.edu.cn

  • 中图分类号: TB332

Prediction of mode II fatigue delamination propagation in fibre reinforced composites: From G-N curve to Paris’ law

Funds: National Natural Science Foundation of China (12102179; 12272174); Natural Science Foundation of Jiangsu Province (BK20200409); the Fundamental Research Funds for the Central Universities (3082021 NS2021001); Jiangsu Provincial Double-Innovation Doctor Program (JSSCBS20210618)
  • 摘要: 复合材料由于其高比刚度、比强度和可设计性等优点,在航空航天、汽车制造和风力发电等领域得到了越来越多的应用。复合材料层合板由于层间缺少增强相,层间力学性能相比于其层内性能较弱,因此疲劳分层损伤是复合材料层合板在长期服役过程中最常发生的、最危险的失效模式之一。本文针对复合材料层合板加载过程中最常出现的层间界面剪切失效,建立了适用于预测II型加载条件下复合材料层间疲劳分层扩展行为的模拟方法。基于分层增量起始扩展假设,对疲劳分层扩展提出了新的物理解释,解释了疲劳分层起始扩展的G-N曲线与疲劳分层扩展Paris’ law之间的物理关系,并建立了内聚力单元模型。相较于I型加载,II型加载条件下复合材料层间界面变形区域显著增大,由此产生了更大的损伤区域、更早的疲劳损伤累积。基于此,本文提出了用以描述II型加载条件的层间界面疲劳损伤累积的衰减法则,确立了依据II型疲劳分层起始扩展实验G-N曲线的层间界面本构参数的标定方法,引入内聚力单元模型,成功地预测了纤维增强树脂基复合材料层间界面的II型疲劳扩展行为Paris’ law。相较于已有疲劳分层模拟方法,本文提出的新方法无需追踪裂纹扩展路径,极大地降低了模型的应用难度;内聚力本构关系中的材料参数标定仅需要实验G-N曲线,参数标定所需的疲劳实验数量及时间均大幅减少;为工程中复合材料结构疲劳行为及寿命的预测提供了有效工具。内聚力单元模型(a)利用疲劳分层起始扩展G-N曲线标定材料参数,(b)预测疲劳分层扩展Paris’ law。

     

  • 图  1  分层增量起始扩展假设示意图

    Figure  1.  Sketch of incremental-onset hypothesis

    图  2  内聚力本构关系:(a) 静力学双线性本构关系;(b) 疲劳本构关系

    Figure  2.  Cohesive constitutive law: (a) Static bi-linear constitutive law; (b) Fatigue constitutive law

    图  3  G-N曲线示意图

    Figure  3.  Sketch of G-N curve

    图  4  疲劳损伤算法的有限元分析流程图

    Figure  4.  Flow chart describing implementation of fatigue damage algorithm in FEM analysis

    图  5  三点弯ENF实验的有限元模型:(a)几何模型示意图;(b)网格尺寸

    Figure  5.  FEM model of 3-point bending ENF test: (a) Sketch of geometric model; (b) Mesh size

    图  6  疲劳模拟中的包络加载策略

    Figure  6.  Envelop loading strategy in fatigue delamination

    图  7  标定得到的IM7/8552碳纤维/环氧树脂复合材料II型本征G-N曲线

    Figure  7.  Intrinsic G-N curve calibrated from Mode II FDO test of IM7/8552 carbon/epoxy composites

    图  8  有限元复现的IM7/8552碳纤维/环氧树脂复合材料II型FDO实验

    Figure  8.  Representing mode II FDO test of IM7/8552 carbon/epoxy composites by FEM

    图  9  有限元预测的IM7/8552碳纤维/环氧树脂复合材料II型Paris法则

    Figure  9.  Prediction of mode II Paris’ law of IM7/8552 carbon/epoxy composites from FEM

    图  10  直接通过实验G-N曲线作为输入参数预测得到的IM7/8552碳纤维/环氧树脂复合材料II型Paris法则

    Figure  10.  Predicted mode II Paris’ law of IM7/8552 carbon/epoxy composites with input direct from experimental G-N curve

    图  11  直接通过实验G-N曲线作为输入参数模拟得到的IM7/8552碳纤维/环氧树脂复合材料 I型(a)和II型(b)实验G-N曲线

    Figure  11.  Represented experimental G-N curves of IM7/8552 carbon/epoxy composites for mode I (a) and mode II (b) by using input from experimental G-N curve

    图  12  I型(a)和II型(b)加载模式下IM7/8552碳纤维/环氧树脂复合材料层间裂纹尖端附近应变场

    Figure  12.  Strain field around inter-laminar crack tip under mode I (a) and mode II (b) load condition in IM7/8552 carbon/epoxy composites

    图  13  IM7/8552碳纤维/环氧树脂复合材料裂纹尖端附近界面材料点输入应变能分布

    Figure  13.  Distribution of supplied SERR on the material points around the crack tip in IM7/8552 carbon/epoxy composites

    表  1  IM7/8552碳纤维/环氧树脂单向纤维复合材料层合板的相关材料参数[8]

    Table  1.   Material properties of IM7/8552 carbon fiber/epoxy UD laminates[8]

    Intra-ply propertiesE11/GPaE22=E33/GPaν1213ν23G12=G13/GPaG23/GPa$G_{\text{c}}^{{\text{static}}}$/(N·mm−1)$\sigma _0^{{\text{static}}}$/MPaK0/(N·mm−3)
    16111.380.320.4365.173.980.73990106
    下载: 导出CSV

    表  2  ENF实验测试IM7/8552碳纤维/环氧树脂复合材料起始扩展(FDO)寿命Ntest及柔度增加百分比[8]

    Table  2.   List of experimental fatigue delamination onset (FDO) life Ntest and percentage of compliance increase in ENF test of IM7/8552 carbon/epoxy composites[8]

    $ {G_{\sup }}/G_{\text{c}}^{{\text{static}}} $50%40%30%20%
    FDO life Ntest156257159741642
    13344998711080
    170746127534114
    116545224641643
    199436242038271
    Average Ntest155487170533350
    Compliance
    Increase/%
    1.060.770.950.73
    下载: 导出CSV

    表  3  IM7/8552碳纤维/环氧树脂复合材料G-N曲线的拟合参数

    Table  3.   Fitting parameters of G-N curves for IM7/8552 carbon/epoxy composites

    α101520
    ξ1 0.739 0.739 0.739
    λ1 −0.146 −0.148 −0.149
    ξ2 1.048 1.042 1.040
    λ2 −0.219 −0.221 −0.222
    ξ3 0.371 0.361 0.355
    λ3 −0.103 −0.101 −0.100
    下载: 导出CSV
  • [1] TAKEDA N, OGIHARA S. Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates[J]. Composites Science and Technology,1994,52(3):309-318. doi: 10.1016/0266-3538(94)90166-X
    [2] OGIHARA S, TAKEDA N. Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates[J]. Composites Science and Technology,1995,54(4):395-404. doi: 10.1016/0266-3538(95)00084-4
    [3] KASHTALYAN M, SOUTIS C. The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates[J]. Composites Part A:Applied Science and Manufacturing,2000,31(2):107-119. doi: 10.1016/S1359-835X(99)00066-4
    [4] ASTM D7905/D7905 M-19 e1, Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites [S]. West Conshohocken, PA, United States: ASTM International, 2019.
    [5] ISO Standard 15114-2014, Fibre reinforced plastic composites—determination of the mode II fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an effective crack length approach [S]. Geneva, Switzerland: International Standards Organsiation, 2014.
    [6] ALLEGRI G, JONES M, WISNOM M, et al. A new semi-empirical model for stress ratio effect on mode II fatigue delamination growth[J]. Composites Part A:Applied Science and Manufacturing,2011,42(7):733-740. doi: 10.1016/j.compositesa.2011.02.013
    [7] BRUNNER A, STELZER S, PINTER G, et al. Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure[J]. International Journal of Fatigue,2013,50:57-62. doi: 10.1016/j.ijfatigue.2012.02.021
    [8] O'BRIEN T K, JOHNSTON W M, TOLAND G J. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy composite material: NASA/TM-2010-216838 [R]. Hampton, VA, United States: NASA Langley Research Center, 2010.
    [9] LIU C, GONG Y, GONG Y, et al. Mode II fatigue delamination behaviour of composite multidirectional laminates and the stress ratio effect[J]. Engineering Fracture Mechanics,2022,264:108321. doi: 10.1016/j.engfracmech.2022.108321
    [10] CHOWDHURY N M, HEALEY R, WANG J, et al. Using a residual strength model to predict mode II delamination failure of composite materials under block fatigue loading[J]. International Journal of Fatigue,2020,135:105563. doi: 10.1016/j.ijfatigue.2020.105563
    [11] HEALEY R, WANG J, WALLBRINK C, et al. Predicting mode II delamination growth of composite materials to assist simplification of fatigue spectra by truncating non-damaging cycles validated with experiment[J]. International Journal of Fatigue,2021,145:106117. doi: 10.1016/j.ijfatigue.2020.106117
    [12] BORG R, NILSSON L, SIMONSSON K. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model[J]. Composites Science and Technology,2004,64(2):269-278. doi: 10.1016/S0266-3538(03)00255-0
    [13] TURON A, CAMANHO P P, COSTA J, et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading[J]. Mechanics of Materials,2006,38(11):1072-1089. doi: 10.1016/j.mechmat.2005.10.003
    [14] SØRENSEN B F, JACOBSEN T K. Characterizing delamination of fibre composites by mixed mode cohesive laws[J]. Composites Science and Technology,2009,69(3):445-456.
    [15] TURON A, COSTA J, CAMANHO P, et al. Simulation of delamination in composites under high-cycle fatigue[J]. Composites Part A:Applied Science and Manufacturing,2007,38(11):2270-2282. doi: 10.1016/j.compositesa.2006.11.009
    [16] HARPER P W, HALLETT S R. A fatigue degradation law for cohesive interface elements–development and application to composite materials[J]. International Journal of Fatigue,2010,32(11):1774-1787. doi: 10.1016/j.ijfatigue.2010.04.006
    [17] BAK B L, TURON A, LINDGAARD E, et al. A simulation method for high-cycle fatigue-driven delamination using a cohesive zone model[J]. International Journal for Numerical Methods in Engineering,2016,106:163-191. doi: 10.1002/nme.5117
    [18] KAWASHITA L F, HALLETT S R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials[J]. International Journal of Solids and Structures,2012,49(21):2898-2913. doi: 10.1016/j.ijsolstr.2012.03.034
    [19] TAO C, QIU J, YAO W, et al. A novel method for fatigue delamination simulation in composite laminates[J]. Composites Science and Technology,2016,128:104-115. doi: 10.1016/j.compscitech.2016.03.016
    [20] PIRONDI A, MORONI F. A progressive damage model for the prediction of fatigue crack growth in bonded joints[J]. The Journal of Adhesion,2010,86(5-6):501-521. doi: 10.1080/00218464.2010.484305
    [21] MORONI F, PIRONDI A. A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria[J]. Engineering Fracture Mechanics,2011,78(8):1808-1816. doi: 10.1016/j.engfracmech.2011.02.004
    [22] NOJAVAN S, SCHESSER D, YANG Q. A two-dimensional in situ fatigue cohesive zone model for crack propagation in composites under cyclic loading[J]. International Journal of Fatigue,2016,82:449-461. doi: 10.1016/j.ijfatigue.2015.08.029
    [23] NOJAVAN S, SCHESSER D, YANG Q. An in situ fatigue-CZM for unified crack initiation and propagation in composites under cyclic loading[J]. Composite Structures,2016,146:34-49. doi: 10.1016/j.compstruct.2016.02.060
    [24] DAVILA C G. From SN to the Paris law with a new mixed-mode cohesive fatigue model: NASA/TP-2018-219838 [R]. Hampton, VA, United States: NASA Langley Research Center, 2018.
    [25] ZHU M, GORBATIKH L, LOMOV S V. An incremental-onset model for fatigue delamination propagation in composite laminates[J]. Composites Science and Technology,2020,200:108394. doi: 10.1016/j.compscitech.2020.108394
    [26] ASTM D6115-97(2019), Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites [S]. West Conshohocken, PA, United States: ASTM International, 2019.
    [27] BAK B L, SARRADO C, TURON A, et al. Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews,2014,66(6):060803. doi: 10.1115/1.4027647
    [28] ZHU M, GORBATIKH L, LOMOV S V. An Incremental Cohesive Law for Delamination Under a Mixed Mode Loading[J]. Frontiers in Materials,2020,7:112746.
    [29] MURRI GB. Evaluation of delamination onset and growth characterization methods under mode I fatigue loading: NASA/TM-2013-217966 [R]. Hampton, VA, United States: NASA Langley Research Center, 2013.
  • 加载中
计量
  • 文章访问数:  194
  • HTML全文浏览量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 修回日期:  2022-11-12
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-12-19

目录

    /

    返回文章
    返回