留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2基环境稳定性光催化自清洁涂层的设计及制备

王鹏刚 陈睿馨 逄博 张敏 孙晓光 凌梓峻 张海洋

王鹏刚, 陈睿馨, 逄博, 等. TiO2基环境稳定性光催化自清洁涂层的设计及制备[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 王鹏刚, 陈睿馨, 逄博, 等. TiO2基环境稳定性光催化自清洁涂层的设计及制备[J]. 复合材料学报, 2024, 42(0): 1-15.
WANG Penggang, CHEN Ruixin, PANG Bo, et al. Design and preparation of TiO2-based environmentally stable photocatalytic self-cleaning coatings[J]. Acta Materiae Compositae Sinica.
Citation: WANG Penggang, CHEN Ruixin, PANG Bo, et al. Design and preparation of TiO2-based environmentally stable photocatalytic self-cleaning coatings[J]. Acta Materiae Compositae Sinica.

TiO2基环境稳定性光催化自清洁涂层的设计及制备

基金项目: 山东省自然科学基金(ZR2021ME0081);国家自然科学基金(U22A20230622);山东省泰山学者计划(项目编号:tsqn202306031)
详细信息
    通讯作者:

    逄博,博士,硕士生导师,研究方向为有机无机复合材料,修补材料,机敏材料,界面粘结 E-mail:pangbo@qut.edu.cn

  • 中图分类号: TB332

Design and preparation of TiO2-based environmentally stable photocatalytic self-cleaning coatings

Funds: Natural Science Foundation of Shandong Province (ZR2021ME0081); National Natural Science Foundation of China (U22;A20230622); Taishan Scholar Program of Shandong Province (Project No. tsqn202306031)
  • 摘要: 将光催化活性与超疏水性相结合,一方面,涂层利用表面超疏水作用能够将污染物通过水珠带走;另一方面,光催化作用能够对有机污染物进行降解,同时维持材料的超疏水特性。通过洞渣制石英砂(Quartz Sand)协同TiO2构筑微纳米粗糙结构,以聚甲基氢硅氧烷(PMHS)和钛酸四丁酯(TBT)作为低表面能物质,制备了坚固耐磨的PMHS/TBT-Quartz Sand-TiO2光催化自清洁成膜涂层。结果表明,涂层接触角为 154.4°,滚动角小于 10°。TiO2有效地负载到石英砂表面,构造了优异的微纳米粗糙结构。涂层具有优良的光催化活性,可降解表面有机物小分子去除空气中的氮氧化物。此外,涂层在经过连续摩擦损伤、长期紫外暴露、冻融循环等不同的破坏形式后,仍能保持环境稳定性。

     

  • 图  1  光催化自清洁涂层的制备流程

    Figure  1.  Preparation process for the photocatalytic self-cleaning coating

    图  2  聚甲基氢硅氧烷(PMHS)/钛酸四丁酯(TBT)-Quartz Sand-TiO2涂层的SEM照片以及AFM粗糙度分析

    Figure  2.  The SEM photos of the poly(methylhydrosiloxane) (PMHS)/tetrabutyl titanate (TBT)-Quartz Sand-TiO2 coating as well as the AFM roughness analysis

    图  3  TiO2疏水化改性前后的红外光谱图

    Figure  3.  Infrared spectra of TiO2 before and after hydrophobic modification

    图  4  PMHS/TBT-Quartz Sand-TiO2涂层的X射线光电子能谱

    Figure  4.  The X-ray photoelectron energy spectrum of the PMHS/TBT-Quartz Sand-TiO2 coating

    图  5  PMHS/TBT-Quartz Sand-TiO2涂层的热重分析

    Figure  5.  A thermogravimetric analysis of the PMHS/TBT-Quartz Sand-TiO2 coating

    图  6  PMHS/TBT-Quartz Sand-TiO2涂层表面的超疏水性能

    Figure  6.  Superhydrophobic properties of the PMHS/TBT-Quartz Sand-TiO2 coating surface

    图  7  PMHS/TBT-Quartz Sand-TiO2涂层的耐油酸降解性能

    Figure  7.  The oleic acid-resistant degradation properties of the PMHS/TBT-Quartz Sand-TiO2 coating

    图  8  在光降解试验的9 h过程中,通过照片表征MB脱色的变化情况

    (插图为色度计对中间位置颜色的测量结果)

    Figure  8.  Changes in MB decolorization during the 9 h course of the photodegradation test, characterized by photographs

    (The inset shows the results of colorimeter measurement of the color at the middle position)

    图  9  PMHS/TBT-Quartz Sand-TiO2涂层的光催化降解MB性能

    Figure  9.  Photocatalytic degradation of the MB properties of the PMHS/TBT-Quartz Sand-TiO2 coating

    图  10  PMHS/TBT-Quartz Sand-TiO2涂层的光催化降解氮氧化合物性能

    Figure  10.  Photocatalytic degradation performance of PMHS/TBT-Quartz Sand-TiO2 coatings for nitrogen oxides

    图  11  每个磨损循环后的接触角滚动角变化,插图为第 10 次磨损后染色水滴在PMHS/TBT-Quartz Sand-TiO2涂层上的光学图片

    Figure  11.  Contact angle rolling angle change after each wear cycle, and the inset is the optical picture of the stained water droplets on the PMHS/TBT-Quartz Sand-TiO2 coating after the 10 th wear

    图  12  PMHS/TBT-Quartz Sand-TiO2涂层的耐紫外老化性能

    Figure  12.  The UV-aging resistance of the PMHS/TBT-Quartz Sand-TiO2 coating

    图  13  PMHS/TBT-Quartz Sand-TiO2涂层的抗硫酸盐侵蚀能力测试

    Figure  13.  Sulfate attack resistance test of PMHS/TBT-Quartz Sand-TiO2 coatings

    图  14  PMHS/TBT-Quartz Sand-TiO2涂层的抗冻融侵蚀能力测试

    Figure  14.  Sulfate attack resistance test of PMHS/TBT-Quartz Sand-TiO2 coatings

    图  15  PMHS/TBT- Quartz sand-TiO2光催化协同超疏水涂层模型

    Figure  15.  Model of PMHS/TBT- Quartz sand-TiO2 photocatalytic synergistic superhydrophobic coating

    表  1  砂浆配合比

    Table  1.   Mortar mix ratio /(kg·m−3)

    Water cement ratioCementSandWater
    0.464501350225
    下载: 导出CSV
  • [1] LIU G, ZHANG Y, NI Z, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution[J]. Construction and Building Materials, 2016, 115: 1-5. doi: 10.1016/j.conbuildmat.2016.03.213
    [2] SHEN W, LIU Y, YAN B, et al. Cement industry of China: Driving force, environment impact and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 618-628. doi: 10.1016/j.rser.2016.11.033
    [3] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. doi: 10.1007/s004250050096
    [4] NEINHUIS C, BARTHLOTT W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces[J]. Annals of Botany, 1997, 79: 667-677. doi: 10.1006/anbo.1997.0400
    [5] SHIBUICHI S, ONDA T, SATOH, et al. Super Water-Repellent Surfaces Resulting from Fractal Structure[J]. The Journal of Physical Chemistry, 1996, 100: 19512-19517. doi: 10.1021/jp9616728
    [6] FENG L, LI S Z, LI Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 10: 1857-1860.
    [7] ZHENG Y, GAO X, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft matter, 2007, 3(2): 178-182. doi: 10.1039/B612667G
    [8] JIANG L, YAO X, LI H, et al. “Water Strider” Legs with a Self-Assembled Coating of Single-Crystalline Nanowires of an Organic Semiconductor[J]. Advanced Materials, 2010, 19(1): 376-379.
    [9] FENG L, ZHANG Y, XI J, et al. Petal Effect: A Superhydrophobic State with High Adhesive Force[J]. Langmuir, 2008, 24(8): 4114-4119. doi: 10.1021/la703821h
    [10] WANG Y, OU B, NIU B, et al. High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface[J]. Surfaces and Interfaces, 2022, 29: 101747. doi: 10.1016/j.surfin.2022.101747
    [11] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12): 3971.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and properties of superhydrophobic preservative composite coating of functionalized nano TiO2/epoxy resin[J]. Journal of Composite Materials, 2021, 38(12): 3971(in Chinese).
    [12] BUZZETTI L, CRISENZA G E M, MELCHIORRE P. Mechanistic Studies in Photocatalysis[J]. Angewandte Chemie, 2019, 58 12: 3730-3747.
    [13] MENG A, ZHANG L Y, CHENG B, et al. Dual Cocatalysts in TiO2 Photocatalysis[J]. Advanced Materials, 2019, 31(30): 1807660. doi: 10.1002/adma.201807660
    [14] MIAO Y, ZHAO Y, ZHANG S, et al. Strain Engineering: A Boosting Strategy for Photocatalysis[J]. Advanced Materials, 2022, 34.
    [15] OLABARRIETA J E, ZORITA S, PENA I, et al. Aging of photocatalytic coatings under a water flow: Long run performance and TiO2 nanoparticles release[J]. Applied Catalysis B-environmental, 2012, 123: 182-192.
    [16] FENG Y, LI S H, LI Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2003, 14: 1857-1860.
    [17] CHEN J, POON C S. Photocatalytic construction and building materials: From fundamentals to applications[J]. Building and Environment, 2009, 44: 1899-1906. doi: 10.1016/j.buildenv.2009.01.002
    [18] 巩云 王龙龙, 徐亚琪, 等. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(2): 37-40.

    GONG Yun, WANG Long Long, XU Yaqi, et al. Progress in the modification of titanium dioxide photocatalytic materials[J]. Material Guide, 2020, 34(2): 37-40(in Chinese).
    [19] 陈超, 刘欣伟, 陈勇. La掺杂TiO2/改性石英砂复合光催化材料的制备及其光催化性能[J]. 功能材料, 2019, 50(3): 3096-3100.

    CHEN Chao, LIU Xinwei, CHEN Yong. Preparation of photocatalytic composite materials of La doped TiO2/modified quartz sand and its photocatalytic properties[J]. Functional materials, 2019, 50(3): 3096-3100(in Chinese).
    [20] 肖智文 黄静, 余杰, 等. 基于环氧树脂和纳米SiO2/TiO2的超疏水自清洁涂层的制备[J]. 化工新型材料, 2021, 49(4): 272-274.

    XIAO Zhiwen, HUANG Jing, YU Jie, et al. Preparation of superhydrophobic self-cleaning coating based on epoxy resin and nano SiO2/TiO2[J]. New chemical materials, 2021, 49(4): 272-274(in Chinese).
    [21] PANG B, JIA Y, ZHANG Y, et al. Effect of the combined treatment with inorganic and organic agents on the surface hardening and adhesion properties of cement-based materials[J]. Materials & Design, 2019, 169: 107673.
    [22] WANG Y, WöLL C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap[J]. Chemical Society reviews, 2017, 46(7): 1875-1932. doi: 10.1039/C6CS00914J
    [23] 李辉, 冷莹梦, 马长坡, 等. 聚硅氧烷表面改性TiO2粒子及其超疏水性能[J]. 精细化工, 2021, 9: 38.

    LI Hui, LENG Yingmeng, MA Changpo, et al. Poliloxane surface modified TiO2 particles and their superhydrophobic properties[J]. Fine Chemical Industry, 2021, 9: 38(in Chinese).
    [24] FENG J, FENG Q, XIN J, et al. Fabrication of durable self-cleaning photocatalytic coating with long-term effective natural light photocatalytic degradation performance[J]. Chemosphere, 2023, 139316.
    [25] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature, 2015, 527: 82-85. doi: 10.1038/nature15738
    [26] YABUMOTO D, OTA M, SAWEI Y, et al. Underwater wettability of oleic acid on TiO2 photocatalyst surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548: 32-36.
    [27] LUNA M, DELGADO J J, ROMERO I, et al. Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design[J]. Construction and Building Materials, 2022, 6(4): 338.
    [28] LUNA M, DELGADO J J, Gil M L A, et al. TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials[J]. Nanomaterials, 2018, 8: 177. doi: 10.3390/nano8030177
    [29] THI Huyen N, VAN TU N, VAN Hau T, et al. Boron nitride nanosheets decorated titanium dioxide nanorods for high photocatalytic degradation of methylene blue[J]. Materials Letters, 2023, 340: 134213. doi: 10.1016/j.matlet.2023.134213
    [30] BAULEO L, BUCCI S, AATONUCCI C, et al. Long-term exposure to air pollutants from multiple sources and mortality in an industrial area: a cohort study[J]. Occupational and Environmental Medicine, 2018, 76: 48-57.
    [31] BALLARI M M, YU Q, BROUWERS H J H. Experimental study of the NO and NO2 degradation by photocatalytically active concrete[J]. Catalysis Today, 2011, 161: 175-180. doi: 10.1016/j.cattod.2010.09.028
    [32] OHKO Y, NAKAMURA Y, NEGISHI N, et al. Photocatalytic oxidation of nitrogen monoxide using TiO2 thin films under continuous UV light illumination[J]. Journal of Photochemistry and Photobiology A-chemistry, 2009, 205: 28-33. doi: 10.1016/j.jphotochem.2009.04.005
    [33] 尚欢, 陈子越, 李浩, 等. 光催化去除NO的研究进展[J]. 环境化学, 2021, 40(11): 3316-3330.

    SHANG Huan, CHEN Ziyue, LI Hao, et al. Progress in the photocatalytic removal of NO[J]. Environmental chemistry, 2021, 40(11): 3316-3330(in Chinese).
    [34] CHENG Y, LU S, XU W, et al. Controllable fabrication of superhydrophobic alloys surface on copper substrate for self-cleaning, anti-icing, anti-corrosion and anti-wear performance[J]. Surface & Coatings Technology, 2018, 333: 61-70.
    [35] WANG P, SUN B, YAO T, et al. A novel dissolution and resolidification method for preparing robust superhydrophobic polystyrene/silica composite[J]. Chemical Engineering Journal, 2017, 326: 1066-1073. doi: 10.1016/j.cej.2017.06.058
    [36] PANG B, ZHANG Y, LIU G, et al. Interface Properties of Nanosilica-Modified Waterborne Epoxy Cement Repairing System[J]. ACS applied materials & interfaces, 2018, 10(25): 21696-21711.
    [37] 马保国, 罗忠涛, 高小建, 等. 不同品种水泥的抗碳硫硅酸钙型硫酸盐侵蚀性能[J]. 硅酸盐学报, 2006, 5: 23.

    MA Baoguo, LUO Zhongtao, GAO Xiaojian, et al. The erosion properties of different varieties of cement[J]. Journal of Silica, 2006, 5: 23(in Chinese).
    [38] XIAO Z, WANG Q, YAO D, et al. Enhancing the Robustness of Superhydrophobic Coatings via the Addition of Sulfide[J]. Langmuir : the ACS journal of surfaces and colloids, 2019, 35(20): 6650-6656.
    [39] 王宏, 毕菲非, 杨丽丽, 等. 溶胶-凝胶法制备Bi4Ti3O12/SiO2及其光催化性能[J]. 材料研究学报, 2016, 30(9): 6.

    WANG Hong, BI Feifei, YANG Lili, et al. Preparation of Bi4Ti3O12/SiO2 and its photocatalytic properties[J]. Journal of Materials Research, 2016, 30(9): 6(in Chinese).
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-05-23
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回