留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维度Co@NCNTs/FCI的柔性聚氨酯复合材料薄膜的制备及其吸波性能

韩乔乔 王海波 成煦 杜晓声 王双 杜宗良

韩乔乔, 王海波, 成煦, 等. 基于多维度Co@NCNTs/FCI的柔性聚氨酯复合材料薄膜的制备及其吸波性能[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 韩乔乔, 王海波, 成煦, 等. 基于多维度Co@NCNTs/FCI的柔性聚氨酯复合材料薄膜的制备及其吸波性能[J]. 复合材料学报, 2024, 43(0): 1-10.
HAN Qiaoqiao, WANG haibo, CHENG Xu, et al. Preparation of flexible polyurethane composite film based on multidimensional Co@NCNTs/FCI and their microwave absorption properties[J]. Acta Materiae Compositae Sinica.
Citation: HAN Qiaoqiao, WANG haibo, CHENG Xu, et al. Preparation of flexible polyurethane composite film based on multidimensional Co@NCNTs/FCI and their microwave absorption properties[J]. Acta Materiae Compositae Sinica.

基于多维度Co@NCNTs/FCI的柔性聚氨酯复合材料薄膜的制备及其吸波性能

基金项目: 四川省科技厅省院省校合作项目(2024YFHZ0035);中央高校基本科研业务费专项资金资助
详细信息
    通讯作者:

    杜宗良,博士,教授,博士生导师,研究方向为电磁吸收、柔性传感器和金属涂层的制备与应用研究 E-mail: dzl407@163.com

  • 中图分类号: TB333

Preparation of flexible polyurethane composite film based on multidimensional Co@NCNTs/FCI and their microwave absorption properties

Funds: Sichuan Provincial Department of Science and Technology Provincial Institute Provincial School Cooperation Project (No. 2024YFHZ0035); The Fundamental Research Funds for the Central Universities
  • 摘要: 发展高性能吸波涂层是解决电磁波辐射的有效途径之一。2D片状羰基铁(FCI)由于其高比表面积、高磁饱和度和低矫顽力等优势,被广泛应用于电磁波吸收领域。但由于其在使用时存在比重大、掺杂量高等问题,极大限制了FCI材料的应用前景。为解决该问题,本工作利用具有导电性高、长径比大、重量轻的0D/1D Co@氮摻杂碳纳米管(NCNTs)复合材料和2D FCI成功构筑了具有0D/1D/2D分层结构的Co@NCNTs/FCI纳米吸波填料,并充分利用聚氨酯(polyurethane, PU)基体柔韧性好的特性,最终制备出柔性Co@NCNTs/FCI薄膜。基于介电/磁双重协同损耗,和多尺度异质结构的构建,Co@NCNTs/FCI材料表现出杰出的吸波能力,在填充量为30 wt%,厚度为1.9 mm时,最小反射损耗(minimum reflection loss, RLmin)达−43.38 dB。此外,由于NCNTs材料的分子热振动和Co纳米颗粒的局域表面等离子共振效应,Co@NCNTs/FCI薄膜还显示优异的光热转换能力。

     

  • 图  1  (a) Co@氮摻杂碳纳米管(NCNTs)/2D片状羰基铁(FCI)纳米复合材料的制备流程。(b) NCNTs的结构示意图。Co@NCNTs (c)、FCI (d)和Co@NCNTs/FCI纳米复合材料(e)的SEM图,(c, d)中的插图为对应的直径分布图。(f) Co@NCNTs/FCI 纳米复合材料的EDS元素图谱。(g-i) Co@NCNTs的TEM和HRTEM图。(j) XRD。(k) XPS全谱图。Co@NCNTs/FCI纳米复合材料的XPS高分辨分峰拟合图:O 1s (l)、N 1s (m)、Fe 2p (n)和Co 2p (o)。(p-q) 室温下的磁滞曲线。

    Figure  1.  (a) Illustration of the formation process of Co@ N Doped carbon nanotubes (NCNTs)/2D flake carbonyl iron (FCI) nanocomposites. (b) The structural diagram of NCNTs. SEM images of Co@NCNTs (c)、FCI (d) and Co@NCNTs/FCI nanocomposites (e), insets in (c, d) are the corresponding diameter size distributions. (f) EDS elemental mapping of Co@NCNTs/FCI nanocomposites. (g-i) TEM and HRTEM images of Co@NCNTs. (j) XRD patterns. (k) XPS curves. High-resolution XPS peak fitting diagrams of Co@NCNTs/FCI composites: O 1s (l)、N 1s (m)、Fe 2p (n) and Co 2p (o). (p-q) Magnetic hysteresis loops at room temperature.

    图  2  Co@NCNTs/FCI纳米复合材料(a-c)、Co@NCNTs (g)和FCI (h)的RL图。(d-f)阻抗匹配图。(i)衰减系数。(j)所制备的样品在不同厚度下的RLmin和EAB。(k) 与已报道的基于0D/1D/2D结构的复合材料进行关于EAB和厚度方面的吸波性能对比[8,18,23-25]

    Figure  2.  RL curves for Co@NCNTs/FCI nanocomposites (a-c), Co@NCNTs (g), and FCI (h)。(d-f) Impedance matching plots. (i) Attenuation constant. (j) RLmin and EAB at different thicknesses of as-prepared samples. (k) Comparison of microwave absorption performance considering the EAB and thickness with reported 0D/1D/2D structure-based composite [8,18,23-25].

    图  3  复合材料的电磁参数:(a)介电常数实部ε',(b) 介电常数虚部ε'',(c)介电损耗常数,(d)磁导率实部μ',(e)磁导率虚部μ''和(f)磁损耗常数。(g-j) Co@NCNTs/FCI纳米复合材料的微波吸收机制示意图。CST模拟结果:(k) PEC基底和(l) 覆盖有Co@NCNTs/FCI-2∶2吸波层的PEC的3D RCS图;(m) 样品在特定探测角度(theta)下的模拟RCS值。

    Figure  3.  Electromagnetic parameters of composite: (a) permittivity real part ε', (b) permittivity imaginary part ε'', (c) dielectric-loss factor, (d) permeability real part μ', (e) μ'' and (f) magnetic-loss factor. Schematic illustration of the microwave absorption mechanism of the Co@NCNTs/FCI nanocomposite (g-j). CST simulation results: 3D RCS plots for (k) PEC substrate and (l) PEC covered with Co@NCNTs/FCI-2∶2; (m) Simulated RCS values of sample under certain detecting angles.

    图  4  ε'-ε''曲线:(a) Co@NCNTs, (b) FCI和(c) Co@NCNTs/FCI-2:2。(d) 涡流损耗因子Co曲线图。

    Figure  4.  The ε'-ε'' curves of Co@NCNTs (a), FCI (b) and Co@NCNTs/FCI-2:2 (c). (d) Eddy-current loss factor Co curves.

    图  5  PU薄膜(a)和Co@NCNTs/FCI薄膜(b)的SEM横截面图。(c-d) Co@NCNTs/FCI薄膜的柔韧性。(e) AM 1.5 G太阳辐射光谱和Co@NCNTs/FCI薄膜的UV-Vis-NIR吸收光谱。(f) 太阳光辐射处理下,Co@NCNTs/FCI薄膜的实时温度曲线。(g) Co@NCNTs/FCI薄膜的光热转换机制:(ⅰ) NCNTs材料的分子热振动;(ⅱ) Co纳米粒子的等离子局部加热。

    Figure  5.  SEM cross-sectional images of PU (a) and Co@NCNTs/FCI film (b). (c-d) Flexibility of Co@NCNTs/FCI film. (e) Solar spectrum irradiance (AM 1.5 G) and the UV-Vis-NIR absorption spectrum of Co@NCNTs/FCI film. (f) Real-time temperature cure for Co@NCNTs/FCI film under solar irradiation treatment. (g) Photothermal conversion mechanisms for Co@NCNTs/FCI film: (ⅰ) Thermal vibration of molecules of NCNTs; (ⅱ) Plasmonic localized heating of Co nanoparticles.

  • [1] SHU R, YANG X, ZHAO Z. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band[J]. Carbon, 2023, 210: 118047. doi: 10.1016/j.carbon.2023.118047
    [2] 陈博文, 强荣, 邵玉龙, 等, 香蒲衍生 Fe/C 复合材料的制备及吸波性能[J]. 复合材料学报, 2023, 40(12): 6830-6840.

    CHEN Bowen, QIANG Rong, SHAO Yulong, et al. Cattail-derived Fe/C composites for efficient microwave absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6830-6840 (in Chinese).
    [3] LI S, MA T, CHAI Z, et al. Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption[J]. Carbon, 2023, 207: 105-115. doi: 10.1016/j.carbon.2023.02.066
    [4] NING M, LI J, KUANG B, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447: 244-253. doi: 10.1016/j.apsusc.2018.03.242
    [5] JIA Z, ZHANG X, GU Z, et al. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber[J]. Advanced Composites and Hybrid Materials, 2023, 6: 28. doi: 10.1007/s42114-022-00615-y
    [6] SUN M X, CAO W Q, ZHU P Y, et al. Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy toward high-efficiency microwave absorption and attenuation[J]. Advanced Composites and Hybrid Materials, 2023, 6: 54. doi: 10.1007/s42114-023-00629-0
    [7] HUANG W, QIU Q, YANG X, et al. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption[J]. Nano-Micro Letters, 2022, 14: 96. doi: 10.1007/s40820-022-00830-8
    [8] LI X, YOU W, XU C, et al. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization[J]. Nano-Micro Letters, 2021, 13: 157. doi: 10.1007/s40820-021-00680-w
    [9] WANG L, LI X, SHI X, et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy[J]. Nanoscale, 2021, 13(4): 2136-2156. doi: 10.1039/D0NR06267G
    [10] ZENG Q, WANG L, LI X, et al. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber[J]. Applied Surface Science, 2021, 538: 148051. doi: 10.1016/j.apsusc.2020.148051
    [11] ZHI D, LI T, QI Z, et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation[J]. Chemical Engineering Journal, 2022, 433(1): 134496.
    [12] WU Q, WANG J, JIN H, et al. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption[J]. Composites Science and Technology, 2020, 195: 108206. doi: 10.1016/j.compscitech.2020.108206
    [13] REN H, LI T, WANG H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal, 2022, 427: 131582. doi: 10.1016/j.cej.2021.131582
    [14] JIA T, QI X, WANG L, et al. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption[J]. Carbon, 2023, 206: 364-374. doi: 10.1016/j.carbon.2023.02.046
    [15] JIAO Y, DAI Z, FENG M, et al. Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites[J]. Materials Today Physics, 2023, 33: 101058. doi: 10.1016/j.mtphys.2023.101058
    [16] XIANG Z, SHI Y, ZHU X, et al. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion[J]. Nano-Micro Letters, 2021, 13: 150. doi: 10.1007/s40820-021-00673-9
    [17] LIU X, ZHOU J, XUE Y, et al. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 16: 174. doi: 10.1007/s40820-024-01396-3
    [18] MENG R, ZHANG T, LIU X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance[J]. Carbon, 2021, 185: 186-197. doi: 10.1016/j.carbon.2021.09.018
    [19] HAN Q, WANG H, WANG S, et al. Flexible polyurethane films based on porous carbon/Ni composite for electromagnetic absorber, photothermal deicing, and sensor[J]. Composites Part A: Applied Science and Manufacturing, 2024, 186: 108414. doi: 10.1016/j.compositesa.2024.108414
    [20] WANG J, YUE H, DU Z, et al. Highly flexible phase-change film with solar thermal storage and sensitive motion detection for wearable thermal management[J]. Chemical Engineering Journal, 2023, 466: 143334. doi: 10.1016/j.cej.2023.143334
    [21] YUE H, OU Y, WANG J, et al. Ti3C2Tx MXene/delignified wood supported flame-retardant phase-change composites with superior solar-thermal conversion efficiency and highly electromagnetic interference shielding for efficient thermal management[J]. Energy, 2024, 286: 129441. doi: 10.1016/j.energy.2023.129441
    [22] ZHANG P, ZHANG X, LI B, et al. Enhanced microwave absorption performance in an ultralight porous single-atom Co-N-C absorber[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1292-1301. doi: 10.1007/s42114-021-00308-y
    [23] LUO K, XU C, DU Y, et al. Multidimensional engineering induced interfacial polarization by in-situ confined growth of MoS2 nanosheets for enhanced microwave absorption[J]. Small, 2024: 2402729.
    [24] LI B, XU J, XU H, et al. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption[J]. Chemical Engineering Journal, 2022, 435(1): 134846.
    [25] SUN J, CHEN J, GE H, et al. 3D hierarchical porous structure formed by CS/GP/Ni0.5Co0.5Fe2O4 for high-efficiency microwave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107268. doi: 10.1016/j.compositesa.2022.107268
    [26] ZHANG S, LIU X, JIA C, et al. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics[J]. Nano-Micro Letters, 2023, 15(1): 204. doi: 10.1007/s40820-023-01179-2
    [27] WU J, ZHOU J, SHI Z, et al. Pickering aqueous foam templating: a promising strategy to fabricate porous waterborne polyurethane coatings[J]. Collagen and Leather, 2023, 5: 10. doi: 10.1186/s42825-023-00115-9
    [28] LIU C, WANG L, LI Y, et al. Fe3O4/carbon-decorated graphene boosts photothermal conversion and storage of phase change materials[J]. Journal of Colloid and Interface Science, 2024, 657: 590-597. doi: 10.1016/j.jcis.2023.12.015
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-10-22
  • 录用日期:  2024-10-23
  • 网络出版日期:  2024-11-01

目录

    /

    返回文章
    返回