Preparation of flexible polyurethane composite film based on multidimensional Co@NCNTs/FCI and their microwave absorption properties
-
摘要: 发展高性能吸波涂层是解决电磁波辐射的有效途径之一。2D片状羰基铁(FCI)由于其高比表面积、高磁饱和度和低矫顽力等优势,被广泛应用于电磁波吸收领域。但由于其在使用时存在比重大、掺杂量高等问题,极大限制了FCI材料的应用前景。为解决该问题,本工作利用具有导电性高、长径比大、重量轻的0D/1D Co@氮摻杂碳纳米管(NCNTs)复合材料和2D FCI成功构筑了具有0D/1D/2D分层结构的Co@NCNTs/FCI纳米吸波填料,并充分利用聚氨酯(polyurethane, PU)基体柔韧性好的特性,最终制备出柔性Co@NCNTs/FCI薄膜。基于介电/磁双重协同损耗,和多尺度异质结构的构建,Co@NCNTs/FCI材料表现出杰出的吸波能力,在填充量为30 wt%,厚度为1.9 mm时,最小反射损耗(minimum reflection loss, RLmin)达−43.38 dB。此外,由于NCNTs材料的分子热振动和Co纳米颗粒的局域表面等离子共振效应,Co@NCNTs/FCI薄膜还显示优异的光热转换能力。Abstract: The development of high-performance microwave absorption materials is one of the best strategies to combat electromagnetic wave radiation. Because of its large specific surface area, high magnetic saturation, and low coercivity, 2D flake carbonyl iron (FCI) is frequently employed in microwave absorption. However, its application prospects have been severely constrained by high specific gravity and excessive doping. In order to solve this problem, multiscale heterostructure (0D/1D/2D) Co@N Doped carbon nanotubes (NCNTs)/FCI nano-absorbent fillers were successfully constructed by combination FCI with 0D/1D Co@NCNTs composites with high electrical conductivity, large aspect ratio, and light weight. Finally, the flexible Co@NCNTs/FCI film were prepared by making full of the high flexibility of the polyurethane (PU) matrix. The Co@NCNTs/FCI nanocomposites demonstrate exceptional microwave absorption performance due to the dielectric/magnetic dual synergistic loss and the construction of multiscale heterostructure. At a filling ratio of 30 wt% and a thickness of 1.9 mm, the minimum reflection loss (RLmin) reaches −43.38 dB. Furthermore, because of the molecular thermal vibration of NCNTs and the localized surface plasmon resonance effect of Co nanoparticles, the Co@NCNTs/FCI film also exhibits remarkable photothermal conversion capabilities.
-
图 1 (a) Co@氮摻杂碳纳米管(NCNTs)/2D片状羰基铁(FCI)纳米复合材料的制备流程。(b) NCNTs的结构示意图。Co@NCNTs (c)、FCI (d)和Co@NCNTs/FCI纳米复合材料(e)的SEM图,(c, d)中的插图为对应的直径分布图。(f) Co@NCNTs/FCI 纳米复合材料的EDS元素图谱。(g-i) Co@NCNTs的TEM和HRTEM图。(j) XRD。(k) XPS全谱图。Co@NCNTs/FCI纳米复合材料的XPS高分辨分峰拟合图:O 1s (l)、N 1s (m)、Fe 2p (n)和Co 2p (o)。(p-q) 室温下的磁滞曲线。
Figure 1. (a) Illustration of the formation process of Co@ N Doped carbon nanotubes (NCNTs)/2D flake carbonyl iron (FCI) nanocomposites. (b) The structural diagram of NCNTs. SEM images of Co@NCNTs (c)、FCI (d) and Co@NCNTs/FCI nanocomposites (e), insets in (c, d) are the corresponding diameter size distributions. (f) EDS elemental mapping of Co@NCNTs/FCI nanocomposites. (g-i) TEM and HRTEM images of Co@NCNTs. (j) XRD patterns. (k) XPS curves. High-resolution XPS peak fitting diagrams of Co@NCNTs/FCI composites: O 1s (l)、N 1s (m)、Fe 2p (n) and Co 2p (o). (p-q) Magnetic hysteresis loops at room temperature.
图 2 Co@NCNTs/FCI纳米复合材料(a-c)、Co@NCNTs (g)和FCI (h)的RL图。(d-f)阻抗匹配图。(i)衰减系数。(j)所制备的样品在不同厚度下的RLmin和EAB。(k) 与已报道的基于0D/1D/2D结构的复合材料进行关于EAB和厚度方面的吸波性能对比[8,18,23-25]。
Figure 2. RL curves for Co@NCNTs/FCI nanocomposites (a-c), Co@NCNTs (g), and FCI (h)。(d-f) Impedance matching plots. (i) Attenuation constant. (j) RLmin and EAB at different thicknesses of as-prepared samples. (k) Comparison of microwave absorption performance considering the EAB and thickness with reported 0D/1D/2D structure-based composite [8,18,23-25].
图 3 复合材料的电磁参数:(a)介电常数实部ε',(b) 介电常数虚部ε'',(c)介电损耗常数,(d)磁导率实部μ',(e)磁导率虚部μ''和(f)磁损耗常数。(g-j) Co@NCNTs/FCI纳米复合材料的微波吸收机制示意图。CST模拟结果:(k) PEC基底和(l) 覆盖有Co@NCNTs/FCI-2∶2吸波层的PEC的3D RCS图;(m) 样品在特定探测角度(theta)下的模拟RCS值。
Figure 3. Electromagnetic parameters of composite: (a) permittivity real part ε', (b) permittivity imaginary part ε'', (c) dielectric-loss factor, (d) permeability real part μ', (e) μ'' and (f) magnetic-loss factor. Schematic illustration of the microwave absorption mechanism of the Co@NCNTs/FCI nanocomposite (g-j). CST simulation results: 3D RCS plots for (k) PEC substrate and (l) PEC covered with Co@NCNTs/FCI-2∶2; (m) Simulated RCS values of sample under certain detecting angles.
图 5 PU薄膜(a)和Co@NCNTs/FCI薄膜(b)的SEM横截面图。(c-d) Co@NCNTs/FCI薄膜的柔韧性。(e) AM 1.5 G太阳辐射光谱和Co@NCNTs/FCI薄膜的UV-Vis-NIR吸收光谱。(f) 太阳光辐射处理下,Co@NCNTs/FCI薄膜的实时温度曲线。(g) Co@NCNTs/FCI薄膜的光热转换机制:(ⅰ) NCNTs材料的分子热振动;(ⅱ) Co纳米粒子的等离子局部加热。
Figure 5. SEM cross-sectional images of PU (a) and Co@NCNTs/FCI film (b). (c-d) Flexibility of Co@NCNTs/FCI film. (e) Solar spectrum irradiance (AM 1.5 G) and the UV-Vis-NIR absorption spectrum of Co@NCNTs/FCI film. (f) Real-time temperature cure for Co@NCNTs/FCI film under solar irradiation treatment. (g) Photothermal conversion mechanisms for Co@NCNTs/FCI film: (ⅰ) Thermal vibration of molecules of NCNTs; (ⅱ) Plasmonic localized heating of Co nanoparticles.
-
[1] SHU R, YANG X, ZHAO Z. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band[J]. Carbon, 2023, 210: 118047. doi: 10.1016/j.carbon.2023.118047 [2] 陈博文, 强荣, 邵玉龙, 等, 香蒲衍生 Fe/C 复合材料的制备及吸波性能[J]. 复合材料学报, 2023, 40(12): 6830-6840.CHEN Bowen, QIANG Rong, SHAO Yulong, et al. Cattail-derived Fe/C composites for efficient microwave absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6830-6840 (in Chinese). [3] LI S, MA T, CHAI Z, et al. Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption[J]. Carbon, 2023, 207: 105-115. doi: 10.1016/j.carbon.2023.02.066 [4] NING M, LI J, KUANG B, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447: 244-253. doi: 10.1016/j.apsusc.2018.03.242 [5] JIA Z, ZHANG X, GU Z, et al. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber[J]. Advanced Composites and Hybrid Materials, 2023, 6: 28. doi: 10.1007/s42114-022-00615-y [6] SUN M X, CAO W Q, ZHU P Y, et al. Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy toward high-efficiency microwave absorption and attenuation[J]. Advanced Composites and Hybrid Materials, 2023, 6: 54. doi: 10.1007/s42114-023-00629-0 [7] HUANG W, QIU Q, YANG X, et al. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption[J]. Nano-Micro Letters, 2022, 14: 96. doi: 10.1007/s40820-022-00830-8 [8] LI X, YOU W, XU C, et al. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization[J]. Nano-Micro Letters, 2021, 13: 157. doi: 10.1007/s40820-021-00680-w [9] WANG L, LI X, SHI X, et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy[J]. Nanoscale, 2021, 13(4): 2136-2156. doi: 10.1039/D0NR06267G [10] ZENG Q, WANG L, LI X, et al. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber[J]. Applied Surface Science, 2021, 538: 148051. doi: 10.1016/j.apsusc.2020.148051 [11] ZHI D, LI T, QI Z, et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation[J]. Chemical Engineering Journal, 2022, 433(1): 134496. [12] WU Q, WANG J, JIN H, et al. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption[J]. Composites Science and Technology, 2020, 195: 108206. doi: 10.1016/j.compscitech.2020.108206 [13] REN H, LI T, WANG H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal, 2022, 427: 131582. doi: 10.1016/j.cej.2021.131582 [14] JIA T, QI X, WANG L, et al. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption[J]. Carbon, 2023, 206: 364-374. doi: 10.1016/j.carbon.2023.02.046 [15] JIAO Y, DAI Z, FENG M, et al. Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites[J]. Materials Today Physics, 2023, 33: 101058. doi: 10.1016/j.mtphys.2023.101058 [16] XIANG Z, SHI Y, ZHU X, et al. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion[J]. Nano-Micro Letters, 2021, 13: 150. doi: 10.1007/s40820-021-00673-9 [17] LIU X, ZHOU J, XUE Y, et al. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 16: 174. doi: 10.1007/s40820-024-01396-3 [18] MENG R, ZHANG T, LIU X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance[J]. Carbon, 2021, 185: 186-197. doi: 10.1016/j.carbon.2021.09.018 [19] HAN Q, WANG H, WANG S, et al. Flexible polyurethane films based on porous carbon/Ni composite for electromagnetic absorber, photothermal deicing, and sensor[J]. Composites Part A: Applied Science and Manufacturing, 2024, 186: 108414. doi: 10.1016/j.compositesa.2024.108414 [20] WANG J, YUE H, DU Z, et al. Highly flexible phase-change film with solar thermal storage and sensitive motion detection for wearable thermal management[J]. Chemical Engineering Journal, 2023, 466: 143334. doi: 10.1016/j.cej.2023.143334 [21] YUE H, OU Y, WANG J, et al. Ti3C2Tx MXene/delignified wood supported flame-retardant phase-change composites with superior solar-thermal conversion efficiency and highly electromagnetic interference shielding for efficient thermal management[J]. Energy, 2024, 286: 129441. doi: 10.1016/j.energy.2023.129441 [22] ZHANG P, ZHANG X, LI B, et al. Enhanced microwave absorption performance in an ultralight porous single-atom Co-N-C absorber[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1292-1301. doi: 10.1007/s42114-021-00308-y [23] LUO K, XU C, DU Y, et al. Multidimensional engineering induced interfacial polarization by in-situ confined growth of MoS2 nanosheets for enhanced microwave absorption[J]. Small, 2024: 2402729. [24] LI B, XU J, XU H, et al. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption[J]. Chemical Engineering Journal, 2022, 435(1): 134846. [25] SUN J, CHEN J, GE H, et al. 3D hierarchical porous structure formed by CS/GP/Ni0.5Co0.5Fe2O4 for high-efficiency microwave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107268. doi: 10.1016/j.compositesa.2022.107268 [26] ZHANG S, LIU X, JIA C, et al. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics[J]. Nano-Micro Letters, 2023, 15(1): 204. doi: 10.1007/s40820-023-01179-2 [27] WU J, ZHOU J, SHI Z, et al. Pickering aqueous foam templating: a promising strategy to fabricate porous waterborne polyurethane coatings[J]. Collagen and Leather, 2023, 5: 10. doi: 10.1186/s42825-023-00115-9 [28] LIU C, WANG L, LI Y, et al. Fe3O4/carbon-decorated graphene boosts photothermal conversion and storage of phase change materials[J]. Journal of Colloid and Interface Science, 2024, 657: 590-597. doi: 10.1016/j.jcis.2023.12.015
计量
- 文章访问数: 24
- HTML全文浏览量: 13
- 被引次数: 0