留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoI2抑制界面非辐射复合制备高效率无机钙钛矿太阳电池

王三龙 王跃霖 祖阁

王三龙, 王跃霖, 祖阁. CoI2抑制界面非辐射复合制备高效率无机钙钛矿太阳电池[J]. 复合材料学报, 2024, 43(0): 1-8.
引用本文: 王三龙, 王跃霖, 祖阁. CoI2抑制界面非辐射复合制备高效率无机钙钛矿太阳电池[J]. 复合材料学报, 2024, 43(0): 1-8.
WANG Sanlong, WANG Yuelin, ZU Ge. High efficiency inorganic perovskite solar cells prepared by CoI2 inhibited interfacial non-radiation recombination[J]. Acta Materiae Compositae Sinica.
Citation: WANG Sanlong, WANG Yuelin, ZU Ge. High efficiency inorganic perovskite solar cells prepared by CoI2 inhibited interfacial non-radiation recombination[J]. Acta Materiae Compositae Sinica.

CoI2抑制界面非辐射复合制备高效率无机钙钛矿太阳电池

基金项目: 吉林省教育厅科技项目 (JJKH20230103KJ)
详细信息
    通讯作者:

    祖阁,博士,硕士生导师,研究方向偏微分方程及数值模拟 E-mail: zuge18@mails.jlu.edu.cn

  • 中图分类号: TB331

High efficiency inorganic perovskite solar cells prepared by CoI2 inhibited interfacial non-radiation recombination

Funds: Science and Technology Project of Education Department of Jilin Province (JJKH20230103KJ)
  • 摘要: 无机钙钛矿太阳电池(Inorganic perovskite solar cells, IPSCs)因其优异的光、热稳定性引起了广泛关注。然而,由于界面处非常严重的非辐射复合,IPSCs往往面临着非常巨大的开路电压(VOC)损失。为解决这一问题,本文提出利用无机材料碘化钴(CoI2)抑制界面非辐射复合,在不引入有机材料的前提下增强IPSCs的光伏性能,实现界面缺陷的有效管理,降低非辐射复合,最终,基于CoI2界面处理的空气环境下制备的IPSCs实现了19.50%的光电转换效率,VOC损失仅仅为447 mV且稳定性优异,为有效降低IPSCs的VOC损失提供了新策略。

     

  • 图  1  (a)无机钙钛矿薄膜制备流程图,(b) Control样品SEM形貌示意图,(c) CoI2处理样品SEM形貌示意图,(d)粒径尺寸统计分布图

    Figure  1.  (a) Preparation flow chart of inorganic perovskite film, (b) SEM morphology of control sample, (c) SEM morphology of COI2-treated sample, (d) statistical distribution diagram of particle size

    图  2  (a) CoI2的作用机制示意图,(b) IPSCs器件结构示意图,(c) IPSCs的J-V测试曲线及光伏性能参数,(d) EQE测试曲线,(e)稳态功率输出(SPO)效率测试曲线

    Figure  2.  (a) Schematic diagram of the action mechanism of CoI2, (b) schematic diagram of IPSCs device structure, (c) J-V test curve of IPSCs and photovoltaic performance parameters, (d) EQE test curve, (e) steady-state power output (SPO) efficiency test curve

    图  3  CoI2处理前后IPSCs光伏性能参数分布统计图

    Figure  3.  Statistical distribution of photovoltaic performance parameters of IPSCs devices before and after CoI2 treatment

    图  4  (a) TRPL测试曲线,(b) Control器件的SCLC测试曲线,(c) CoI2处理器件的SCLC测试曲线,(d)暗态J-V测试曲线,(e) EIS测试曲线,(f) C-V测试曲线

    Figure  4.  (a) TRPL test curve, (b) SCLC test curve of control device, (c) SCLC test curve of CoI2 treated device, (d) dark state J-V test curve, (e) EIS test curve, (f) C-V test curve

    图  5  (a) Control薄膜水接触角测试光学照片,(b) CoI2处理薄膜水接触角测试光学照片,(c)湿度稳定性测试,(d) 65℃热稳定性测试

    Figure  5.  (a) Optical photos of water contact Angle test of the control film, (b) optical photos of water contact Angle test of the CoI2 treated film, (c) humidity stability test, (d) thermal stability test at 65℃

  • [1] WANG S, LI M. -H, ZHANG Y, et al. Surface n-type band bending for stable inverted CsPbI3perovskite solar cells with over 20% efficiency[J]. Energy & Environmental Science, 2023, 16(6): 2572-2578.
    [2] LIU N, LIU Z, WANG J, et al. Synchronous surface reconstruction and grain boundary healing toward efficient and stable inverted CsPbI3 perovskite solar cells[J]. Chemical Engineering Journal, 2024, 485; 149590.
    [3] YU B, TAN S, LI D, et al. The stability of inorganic perovskite solar cells: from materials to devices[J]. Materials Futures, 2023, 2(3): 032101. doi: 10.1088/2752-5724/acd56c
    [4] GUO, Q, WANG, C. Y, Hayat, T et al[J]. Recent advances in perovskite/organic integrated solar cells. Rare Metals, 2021, 40: 2763-2777.
    [5] WANG S, WANG P, SHI B, et al. Inorganic Perovskite Surface Reconfiguration for Stable Inverted Solar Cells with 20.38% Efficiency and Its Application in Tandem Devices[J]. Advanced Materials, 2023, 35(28): 2300581. doi: 10.1002/adma.202300581
    [6] LANG K, GUO Q, HE Z, et al. High Performance Tandem Solar Cells with Inorganic Perovskite and Organic Conjugated Molecules to Realize Complementary Absorption[J]. The Journal of Physical Chemistry Letters, 2020, 11(22): 9596-9604. doi: 10.1021/acs.jpclett.0c02794
    [7] WANG S; WANG P; CHEN B, et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346. doi: 10.1016/j.esci.2022.04.001
    [8] CHEN CL, ZHANG SS, LIU TL et al. Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl. Rare Metals. 2020, 39: 131-138.
    [9] GAO R, CHEN R, WAN P et al. High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells[J]. Energy & Environmental Materials, 2024, 7(1): e12513.
    [10] XU T, XIANG W, YANG J, et al. Interface Modification for Efficient and Stable Inverted Inorganic Perovskite Solar Cells[J]. Advanced Materials, 2023, 35(31): 2303346. doi: 10.1002/adma.202303346
    [11] GUO X, JIA Z, LIU S, et al. Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells[J]. Joule, 2024, 8(7): 2123-2134. doi: 10.1016/j.joule.2024.05.005
    [12] LI C, LI Y, CHEN Y, et al. Enhancing Efficiency of Industrially-Compatible Monolithic Perovskite/Silicon Tandem Solar Cells with Dually-Mixed Self-Assembled Monolayers[J]. Advanced Functional Materials, 2024: 2407805.
    [13] WANG K, TIAN Q, ZHAO G, et al. Beach-Chair-Shaped Energy Band Alignment for High-Performance β-CsPbI3 Solar Cells[J]. Cell Reports Physical Science, 2020, 1 (9).
    [14] LIU T, ZHAO X, ZHONG X, et al. Improved Absorber Phase Stability, Performance, and Lifetime in Inorganic Perovskite Solar Cells with Alkyltrimethoxysilane Strain-Release Layers at the Perovskite/TiO2 Interface[J]. ACS Energy Letters, 2022, 7(10): 3531-3538. doi: 10.1021/acsenergylett.2c01610
    [15] ZHANG J, CHE B, ZHAO W, et al. Polar Species for Effective Dielectric Regulation to Achieve High-Performance CsPbI3 Solar Cells[J]. Advanced Materials, 2022, 34(41): 2202735. doi: 10.1002/adma.202202735
    [16] FU S, LE J, GUO X, et al. Polishing the Lead-Poor Surface for Efficient Inverted CsPbI3 Perovskite Solar Cells[J]. Advanced Materials, 2022, 34(38): 2205066. doi: 10.1002/adma.202205066
    [17] CHU X, YE Q, WANG Z, et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency[J]. Nature Energy, 2023, 8(4): 372-380. doi: 10.1038/s41560-023-01220-z
    [18] JIANG Y, XU T. -F, DU H. -Q, et al. Organic-inorganic hybrid nature enables efficient and stable CsPbI3-based perovskite solar cells[J]. Joule, 2023, 7 (12): 2905-2922.
    [19] XU T, XIANG W, KU D. J, et al. Simultaneous Lattice Engineering and Defect Control via Cadmium Incorporation for High-Performance Inorganic Perovskite Solar Cells[J]. Advanced Science, 2022, 9(36): 2204486. doi: 10.1002/advs.202204486
    [20] YUAN J, ZHANG D, DENG B, et al. High Efficiency Inorganic Perovskite Solar Cells Based On Low Trap Density and High Carrier Mobility CsPbI3 Films[J]. Advanced Functional Materials, 2022, 32(47): 2209070. doi: 10.1002/adfm.202209070
    [21] ZHANG S, ZHANG L, TIAN Q, et al. Spontaneous Construction of Multidimensional Heterostructure Enables Enhanced Hole Extraction for Inorganic Perovskite Solar Cells to Exceed 20% Efficiency[J]. Advanced Energy Materials, 2021, 12(1): 2103007.
    [22] HUANG J, WANG H, CHEN C, et al. Ionic Bilateral Passivator Carboxyethylisothiuronium Chloride for CsPbI3-xBrx Perovskite Solar Cells with PCE 20.9% and Superior Stability[J]. Materials Today, 2023, 67: 46-56. doi: 10.1016/j.mattod.2023.05.008
    [23] TAN S, YU B, CUI Y, et al. Temperature-Reliable Low-Dimensional Perovskites Passivated Black-Phase CsPbI3 toward Stable and Efficient Photovoltaics[J]. Angewandte Chemie International Edition, 2022, 61(23): e202201300. doi: 10.1002/anie.202201300
    [24] LI M. -H, MA X, FU J, et al. Molecularly tailored perovskite/poly(3-hexylthiophene) interfaces for high-performance solar cells[J]. Energy & Environmental Science, 2024, 17(15): 5513-5520.
    [25] LI R, ZHANG S, ZHANG H, et al. Customizing Aniline-Derived Molecular Structures to Attain beyond 22% Efficient Inorganic Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2024, 341: e202410600.
    [26] WANG S, QI S, SUN H, et al. Nanoscale Local Contacts Enable Inverted Inorganic Perovskite Solar Cells with 20.8% Efficiency[J]. Angewandte Chemie International Edition, 2024, 63(19): e202400018. doi: 10.1002/anie.202400018
    [27] LIU Y, XIANG W, MOU S, et al. Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells[J]. Chemical Engineering Journal, 2022, 447: 137515. doi: 10.1016/j.cej.2022.137515
    [28] GU X, XIANG W, TIAN Q, et al. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2021, 60(43): 23164-23170. doi: 10.1002/anie.202109724
    [29] WU W, XIONG H, DENG J, et al. Rotatable Skeleton for the Alleviation of Thermally Accumulated Defects in Inorganic Perovskite Solar Cells[J]. ACS Energy Letters, 2023, 8(5): 2284-2291. doi: 10.1021/acsenergylett.3c00535
    [30] QIU J, MEI X, ZHANG M, et al. Dipolar Chemical Bridge Induced CsPbI3 Perovskite Solar Cells with 21.86 % Efficiency[J]. Angewandte Chemie International Edition, 2024, 63(18): e202401751. doi: 10.1002/anie.202401751
    [31] YAO Z XU Z, ZHAO W, et al. Enhanced Efficiency of Inorganic CsPbI3−xBrx Perovskite Solar Cell via Self-Regulation of Antisite Defects[J]. Advanced Energy Materials, 2021, 11(23): 2100403. doi: 10.1002/aenm.202100403
    [32] SUN H, WANG S, QI S, et al. Surface Defects Management by In Situ Etching with Methanol for Efficient Inverted Inorganic Perovskite Solar Cells[J]. Advanced Functional Materials, 2023, 33(23): 2213913. doi: 10.1002/adfm.202213913
    [33] LUO M, WANG S, ZHU Z, et al. Novel cathode buffer layer enabling over 21.6%/20.9% efficiency in wide bandgap/inorganic perovskite solar cells[J]. Nano Energy, 2024, 121: 109162. doi: 10.1016/j.nanoen.2023.109162
    [34] LU C, LI X, GUO X, et al. Efficient inverted CsPbI3 perovskite solar cells fabricated in common air[J]. Chemical Engineering Journal, 2023, 452: 139495. doi: 10.1016/j.cej.2022.139495
    [35] FU S, ZHANG W, LI X, et al. Humidity-Assisted Chlorination with Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI3 Perovskite Solar Cells[J]. ACS Energy Letters, 2021, 6(10): 3661-3668. doi: 10.1021/acsenergylett.1c01817
    [36] HEO J H, ZHANG F, PARK J K, et al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells[J]. Joule, 2022, 6(7): 1672-1688. doi: 10.1016/j.joule.2022.05.013
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-10-11
  • 录用日期:  2024-10-19
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回