Effect of recycled carbon fiber on the electrothermal properties of concrete
-
摘要: 碳纤维在生产使用过程中会产生大量的废弃料,将回收碳纤维(Recycle Carbon Fiber,RCF)掺入混凝土中既能减少RCF对环境造成的污染,又能实现高利用价值。本文研究了回收碳纤维混凝土(Recycle Carbon Fiber Concrete,RCFC)在不同RCF掺量下的力学性能、导电性能和电热性能。结果表明,随RCF掺量的增加,RCFC抗压强度降低,但抗折强度略有提升,而电阻率明显下降,最大降幅为99.11%。通电一定时间后,RCFC的热传导效果显著,且升温速率随着RCF掺量、输入电压的增加而增大。当环境温度为20℃、−10℃、−30℃ 时,能使RCFC产生电热性能的最小纤维掺量分别为1.0vol.%、1.5vol.%、2.0vol.%,所对应的最高升温速率分别是2.267℃/min、2.525℃/min和1.45℃/min。Abstract: Carbon fiber in the production and use of the process will produce a large number of waste materials, the recycled carbon fiber (Recycle Carbon Fiber (RCF)) into the concrete can reduce the pollution caused by RCF to the environment, but also to achieve a high value of utilization. In this paper, the mechanical properties, electrical conductivity and electro-thermal properties of Recycle Carbon Fiber Concrete (RCFC) were investigated under different RCF mixing amounts. The results showed that with the increase of RCF dosage, the compressive strength of RCFC decreased, but the flexural strength slightly increased, while the electrical resistivity decreased significantly, with a maximum decrease of 99.11%. After a certain time of energization, the heat conduction effect of RCFC is significant, and the warming rate increases with the increase of RCF doping and input voltage. When the ambient temperature is 20℃, −10℃ and −30℃, the minimum fiber doping amount that can make RCFC produce electrical and thermal performance is 1.0vol.%, 1.5vol.% and 2.0vol.%, respectively, and the corresponding maximum temperature rise rate is 2.267℃/min, 2.525℃/min and 1.45℃/min, respectively.
-
表 1 水泥化学成分/wt%
Table 1. Chemical composition of Cement/wt%
SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O TiO2 Else 19.05 4.64 3.71 58.28 2.45 3.92 1.11 0.28 0.31 6.25 -
[1] 谭忆秋, 张驰, 徐慧宁等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.TAN Yiqiu, ZHANG Chi, XU Huining, et al. Summary of Research on the Characteristics and Road Performance of Active Deicing andSnow Melting on RoadSurface[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17(in Chinese). [2] 郭德栋. 基于微波与磁铁耦合效应的融雪除冰路面技术研究 [D]. 长安大学, 2011.GUO Dedong. Research on Snow Melting and Deicing Road Technology Based on the Coupling Effect of Microwave and Magnet [D]. Chang'an University, 2011(in Chinese). [3] KAI L, PEIXIN X, FANG W, et al. The accumulatedstress damage and residual life prediction of unreinforced concrete pavement with electric heating pipes[J]. Construction and Building Materials, 2021, 278: 122258 doi: 10.1016/j.conbuildmat.2021.122258 [4] 徐慧宁, 谭忆秋, 周纯秀, 等. 太阳能-土壤源热能耦合桥面融雪系统温度分布特性的研究[J]. 太阳能学报, 2012, 33(11): 1920-1925.XU Huining, TAN Yiqiu, ZHOU Chun-xiu, et al. Temperature Distribution Characteristic inSolarground Source Coupled Snow-melting System forBridge Deck[J]. Acta Energiae SolarisSinica, 2012, 33(11): 1920-1925(in Chinese). [5] 陈洋臣. 钢纤维石墨导电混凝土电热性能及工程应用研究 [D]. 广州大学, 2017.CHEN Yangchen. Research on the Electric Heating Performance and Engineering Application of Steel Fiber Graphite Conductive Concrete [D]. Guangzhou University, 2017. (in Chinese). [6] 宁涛. 严寒环境石墨烯复相导电混凝土的制备及其融雪行为研究 [D]. 常州大学, 2022.NING Tao Preparation and snow melting beh aviorof graphene multiphase conductive concrete in severecold environment [D]. Changzhou University, 2022. (in Chinese). [7] 魏建强. 低温下碳纤维混凝土电热效应实验[J]. 西安科技大学学报, 2018, 38(3): 473-478.WEI Jianqiang. Experimental study on electric heating effect of carbon fiber reinforced concrete at low temperature[J]. Journal of Xi'anUniversity of Science and Technology, 2018, 38(3): 473-478(in Chinese). [8] 支雁飞, 王辉, 刘建颖. CFRC道面板电热效应模拟研究[J]. 中国民航大学学报, 2023, 41(05): 42-48.ZHI Yanfei, WANG Hui, LIU Jianjun Simulation stu dy on electrothermal effect of CFRC pavement slab[J]. Journal of Civil Aviation University of China. 2023, 41(05): 42-48. (in Chinese) [9] 成焕波, 郭立军, 周金虎. 再生碳纤维回收利用及其增材制造复合材料性能评价[J]. 机械工程学报, 2023, 59(7): 375-388. doi: 10.3901/JME.2023.07.375CHENG Huanbo, GUO Lijun, ZHOU Zaihu. et al. Recycling ofCarbon Fiber and Performance Evaluation for Its Reinforced Composites Made of Additive Manufacturing[J]. journal of mechanical engineering, 2023, 59(7): 375-388(in Chinese). doi: 10.3901/JME.2023.07.375 [10] HUANBO C, HUAFENG W, JINHU Z, et al. Performance analysis of recycled carbon fiber under recycling process parameters optimized using response surface methodology[J]. Journal of Composite Materials, 2023, 57(18): 2857-2872. doi: 10.1177/00219983231179092 [11] YAN W, AOYANG L, SHAOHUI Z, et al. A reviewon new methods of recycling waste carbonfiber and its application in construction and industry[J]. Construction and Building Materials, 2023, 367: 130361 doi: 10.1016/j.conbuildmat.2023.130361 [12] 王艳, 张彤昕, 郭冰冰等. 回收碳纤维混凝土导电性[J]. 复合材料学报, 2022, 39(06): 2855-2863.WANG Yan, ZHANG Tongxin, GUO Bingbing, et al. Conductivity of recycling carbon fiberconcrete[J]. ActMater Compos Sin (in Chinese), 2022, 39(6): 2833–2841. (in Chinese). [13] 王艳, 全志平, 张少辉. 回收碳纤维对高强水泥基材料力学性能与导电性能的影响[J]. 硅酸盐学报, 2023, 51(5): 1332-1343.WANG Yan, QUAN Zhiping, ZHANG Shaohui. Effects of Recycled Carbon Fibers on Mechanical Property and Conductivity of High-Strength Cement-Based Material[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1332-1343(in Chinese). [14] 楠顶, 李鑫, 徐宇. 硅烷偶联剂改性氧化石墨烯增强环氧树脂复合涂料的防腐性能[J]. 化学工业与工程, 2023, 40(6): 130-135.NAN Ding, LI Xin, XU Yu, et al. Epoxy resin composite coating with silane coupling agent modified graphene oxide generating effective corrosion protection[J]. chemical industry and engineering, 2023, 40(6): 130-135(in Chinese). [15] 张彤昕. 废弃碳纤维对混凝土力学性能与导电性能影响研究 [D]. 西安建筑科技大学, 2022.ZHANG Tongxin Study on the influence of waste carbon fiber on the mechanical properties and electricalconductivity of concrete [D]. Xi'an University Of Architecture andTechnology, 2022(in Chinese). [16] 王振波, 王鹏宇, 孙鹏. 高延性水泥基材料纤维分布及其影响因素研究进展[J]. 硅酸盐学报, 2022, 50(8): 2284-2295.WANG Zhenbo, WANG Pengyu, SUN Peng et al. Research progress on fiber distribution and influencing factors of high ductility cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2284-2295(in Chinese). [17] 中国国家标准化管理委员会(标准制定单位). 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京, 中国建筑工业出版社, 2019.Standardization Administration of the People’sRepublic of China. Standard for testing methods for physicaland mechanical properties ofconcrete: GB/T 50081—2019[S] Beinjing: China Architecture & Building Press. 2019. (in Chinese) [18] 范文茹, 雷建, 董玉珊等. 基于四电极法的CFRP结构损伤检测研究[J]. 仪器仪表学报, 2017, 38(4): 961-968.FAN Wenru, LEI Jian, DONG Yushan, et al. Damagedetection of CFRP laminate structure based on four-probe method[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 961-968(in Chinese). [19] 陈宇良, 李堂, 姜锐, 等. 碳纤维再生混凝土复合受剪力学性能试验[J]. 复合材料学报, 2023, 40(7): 4107-4116.CHEN Yuliang, LI Tang, JIANG Rui, et al. Experimental study on the composite shear mechanical properties of carbon fiber reinforced recycled concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116(in Chinese). [20] AKBAR A, KODUR V K R, LIEW K M. Microstructuralchanges and mechanical performance of cementcomposites reinforced with recycledcarbon fibers[J]. Cement and Concrete Composites, 2021, 121: 104069. doi: 10.1016/j.cemconcomp.2021.104069 [21] KIM T , LEY T M , KANG S, et al. Using particle composition of fly ash to predict concrete strength andelectrical resistivity[J]. Cement and Concrete Composites, 2020, 107(C): 103493-103493. [22] JING X, XIAOMIN W, ZHONGRUI W, et al. Investigations on influencing factors of resistivity measurement for graphite tailings concrete[J]. Cement and Concrete Composites, 2021, 123: 104206. doi: 10.1016/j.cemconcomp.2021.104206 [23] 张立卿, 占小静, 韩宝国等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2023, 40(9): 5225-5240.ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240(in Chinese). [24] 唐祖全, 李卓球, 钱觉时. 碳纤维导电混凝土在路面除冰雪中的应用研究[J]. 建筑材料学报, 2004, (2): 215-220.TANG Zuquan, LI Zhuoqiu, QIAN Jueshi. Research on the application of carbon fiber conductive concretein road surface deicing and snow removal[J]. journal of building materials, 2004, (2): 215-220(in Chinese). [25] GOMIS J, GALAO O, GOMIS V, et al. Self-heatingand deicing conductive cement. Experimental study and modeling[J]. Construction and Building Materials, 2015, 75: 442-449. doi: 10.1016/j.conbuildmat.2014.11.042 [26] SEONGWOO G, HYUNJUN K, MYOUNGSU S. Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber[J]. Cement and Concrete Composites, 2023, 137: 104942 doi: 10.1016/j.cemconcomp.2023.104942 [27] JINSONG T, YIJING W, MING Z, et al. Heat transfer mechanism of glazed hollow bead insulation concrete[J]. Journal of Building Engineering, 2021, 40: 102629 doi: 10.1016/j.jobe.2021.102629 [28] 路鹏程, 毕亚芳, 王志平, 等. 电热作用对碳纤维树脂基复合材料力学性能的影响[J]. 复合材料学报, 2016, 33(10): 2223-2229.LU Pengcheng, BI Yafang, WANG Zhiping, et al. Effects of electric thermal effect on mechanical properties of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2223-2229(in Chinese). [29] SHUOXUAN D, SUFEN D, XINYUE W, et al. Self-heatingultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures[J]. Cement and Concrete Composites, 2023, 138: 105005 doi: 10.1016/j.cemconcomp.2023.105005 [30] UK T K, KYOUNG M K, WOONG J P, et al. Effects of temperature and humidity on self-stress sensing capacity of smart concrete blocks[J]. Journal of Building Engineering, 2023, 69: 106227. doi: 10.1016/j.jobe.2023.106227 [31] 桂尊曜, 蒲云东, 张惠一. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 40(11): 6336-6350.GUi Zunyao, PU Yundong, ZHANG Huiyi, et al. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry [J] ActaMateriae CompositaeSinica, 2023, 40(11): 6336-6350. (in Chinese).