留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回收碳纤维对混凝土电热性能的影响

王艳 李文俊 李奥阳 孙琳琳 郭冰冰

王艳, 李文俊, 李奥阳, 等. 回收碳纤维对混凝土电热性能的影响[J]. 复合材料学报, 2024, 41(12): 6514-6523.
引用本文: 王艳, 李文俊, 李奥阳, 等. 回收碳纤维对混凝土电热性能的影响[J]. 复合材料学报, 2024, 41(12): 6514-6523.
WANG Yan, LI Wenjun, LI Aoyang, et al. Effect of recycled carbon fiber on the electrothermal properties of concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6514-6523.
Citation: WANG Yan, LI Wenjun, LI Aoyang, et al. Effect of recycled carbon fiber on the electrothermal properties of concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6514-6523.

回收碳纤维对混凝土电热性能的影响

基金项目: 国家自然科学基金 (52078414);陕西省自然科学基金(2020JM-469)
详细信息
    通讯作者:

    王艳,博士,教授,博士生导师,研究方向为混凝土结构耐久性、智能材料及结构系统 E-mail:wangyanwjx@126.com

  • 中图分类号: TU528.582;TB332

Effect of recycled carbon fiber on the electrothermal properties of concrete

Funds: National Natural Science Foundation of China (52078414); Natural Science Foundation of Shanxi Province (2020JM-469)
  • 摘要: 碳纤维在生产使用过程中会产生大量的废弃料,将回收碳纤维(Recycle Carbon Fiber,RCF)掺入混凝土中既能减少RCF对环境造成的污染,又能实现高利用价值。本文研究了回收碳纤维混凝土(Recycle Carbon Fiber Concrete,RCFC)在不同RCF掺量下的力学性能、导电性能和电热性能。结果表明,随RCF掺量的增加,RCFC抗压强度降低,但抗折强度略有提升,而电阻率明显下降,最大降幅为99.11%。通电一定时间后,RCFC的热传导效果显著,且升温速率随着RCF掺量、输入电压的增加而增大。当环境温度为20℃、−10℃、−30℃ 时,能使RCFC产生电热性能的最小纤维掺量分别为1.0vol.%、1.5vol.%、2.0vol.%,所对应的最高升温速率分别是2.267℃/min、2.525℃/min和1.45℃/min。

     

  • 图  1  回收碳纤维(RCF)与原始碳纤维(VCF)外观

    Figure  1.  Recycle carbon fiber (RCF) and virgin carbon fiber (VCF) appearance

    图  2  RCF与VCF在水中分散性能

    Figure  2.  Dispersion properties of RCF and VCF in water

    图  3  RCF与VCF在SEM下微观形貌

    Figure  3.  The micro-morphology of RCF and VCF under SEM

    图  4  RCF的EDS能谱

    Figure  4.  EDS spectrum of RCF

    图  5  VCF的EDS能谱

    Figure  5.  EDS spectrum of VCF

    图  6  电热升温试验

    Figure  6.  Electrothermal heating test

    图  7  回收碳纤维混凝土(RCFC)力学和导电性能

    Figure  7.  Mechanical and electrical properties of recycle carbon fiber concrete (RCFC)

    图  8  RCFC内部搭接

    Figure  8.  RCFC internal lap joint

    图  9  20℃下RCFC的电热性能

    Figure  9.  Electrical and thermal performance of RCFC at 20°C

    图  10  −10℃下RCFC的电热性能

    Figure  10.  Electrical and thermal performance of RCFC at 20°C

    图  11  −30℃下RCFC的电热性能

    Figure  11.  Electrical and thermal performance of RCFC at 20°C

    图  12  RCFC传热机制

    Figure  12.  Heat transfer mechanism of RCFC

    图  13  10 V电压下RCFC升温速率

    Figure  13.  Heating rate of RCFC at 10 V voltage

    图  14  20 V电压下RCFC升温速率

    Figure  14.  Heating rate of RCFC at 20 V voltage

    图  15  30 V电压下RCFC升温速率

    Figure  15.  Heating rate of RCFC at 30 V voltage

    表  1  水泥化学成分/wt%

    Table  1.   Chemical composition of Cement/wt%

    SiO2Al2O3Fe2O3CaOMgOSO3K2ONa2OTiO2Else
    19.054.643.7158.282.453.921.110.280.316.25
    下载: 导出CSV
  • [1] 谭忆秋, 张驰, 徐慧宁等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.

    TAN Yiqiu, ZHANG Chi, XU Huining, et al. Summary of Research on the Characteristics and Road Performance of Active Deicing andSnow Melting on RoadSurface[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17(in Chinese).
    [2] 郭德栋. 基于微波与磁铁耦合效应的融雪除冰路面技术研究 [D]. 长安大学, 2011.

    GUO Dedong. Research on Snow Melting and Deicing Road Technology Based on the Coupling Effect of Microwave and Magnet [D]. Chang'an University, 2011(in Chinese).
    [3] KAI L, PEIXIN X, FANG W, et al. The accumulatedstress damage and residual life prediction of unreinforced concrete pavement with electric heating pipes[J]. Construction and Building Materials, 2021, 278: 122258 doi: 10.1016/j.conbuildmat.2021.122258
    [4] 徐慧宁, 谭忆秋, 周纯秀, 等. 太阳能-土壤源热能耦合桥面融雪系统温度分布特性的研究[J]. 太阳能学报, 2012, 33(11): 1920-1925.

    XU Huining, TAN Yiqiu, ZHOU Chun-xiu, et al. Temperature Distribution Characteristic inSolarground Source Coupled Snow-melting System forBridge Deck[J]. Acta Energiae SolarisSinica, 2012, 33(11): 1920-1925(in Chinese).
    [5] 陈洋臣. 钢纤维石墨导电混凝土电热性能及工程应用研究 [D]. 广州大学, 2017.

    CHEN Yangchen. Research on the Electric Heating Performance and Engineering Application of Steel Fiber Graphite Conductive Concrete [D]. Guangzhou University, 2017. (in Chinese).
    [6] 宁涛. 严寒环境石墨烯复相导电混凝土的制备及其融雪行为研究 [D]. 常州大学, 2022.

    NING Tao Preparation and snow melting beh aviorof graphene multiphase conductive concrete in severecold environment [D]. Changzhou University, 2022. (in Chinese).
    [7] 魏建强. 低温下碳纤维混凝土电热效应实验[J]. 西安科技大学学报, 2018, 38(3): 473-478.

    WEI Jianqiang. Experimental study on electric heating effect of carbon fiber reinforced concrete at low temperature[J]. Journal of Xi'anUniversity of Science and Technology, 2018, 38(3): 473-478(in Chinese).
    [8] 支雁飞, 王辉, 刘建颖. CFRC道面板电热效应模拟研究[J]. 中国民航大学学报, 2023, 41(05): 42-48.

    ZHI Yanfei, WANG Hui, LIU Jianjun Simulation stu dy on electrothermal effect of CFRC pavement slab[J]. Journal of Civil Aviation University of China. 2023, 41(05): 42-48. (in Chinese)
    [9] 成焕波, 郭立军, 周金虎. 再生碳纤维回收利用及其增材制造复合材料性能评价[J]. 机械工程学报, 2023, 59(7): 375-388. doi: 10.3901/JME.2023.07.375

    CHENG Huanbo, GUO Lijun, ZHOU Zaihu. et al. Recycling ofCarbon Fiber and Performance Evaluation for Its Reinforced Composites Made of Additive Manufacturing[J]. journal of mechanical engineering, 2023, 59(7): 375-388(in Chinese). doi: 10.3901/JME.2023.07.375
    [10] HUANBO C, HUAFENG W, JINHU Z, et al. Performance analysis of recycled carbon fiber under recycling process parameters optimized using response surface methodology[J]. Journal of Composite Materials, 2023, 57(18): 2857-2872. doi: 10.1177/00219983231179092
    [11] YAN W, AOYANG L, SHAOHUI Z, et al. A reviewon new methods of recycling waste carbonfiber and its application in construction and industry[J]. Construction and Building Materials, 2023, 367: 130361 doi: 10.1016/j.conbuildmat.2023.130361
    [12] 王艳, 张彤昕, 郭冰冰等. 回收碳纤维混凝土导电性[J]. 复合材料学报, 2022, 39(06): 2855-2863.

    WANG Yan, ZHANG Tongxin, GUO Bingbing, et al. Conductivity of recycling carbon fiberconcrete[J]. ActMater Compos Sin (in Chinese), 2022, 39(6): 2833–2841. (in Chinese).
    [13] 王艳, 全志平, 张少辉. 回收碳纤维对高强水泥基材料力学性能与导电性能的影响[J]. 硅酸盐学报, 2023, 51(5): 1332-1343.

    WANG Yan, QUAN Zhiping, ZHANG Shaohui. Effects of Recycled Carbon Fibers on Mechanical Property and Conductivity of High-Strength Cement-Based Material[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1332-1343(in Chinese).
    [14] 楠顶, 李鑫, 徐宇. 硅烷偶联剂改性氧化石墨烯增强环氧树脂复合涂料的防腐性能[J]. 化学工业与工程, 2023, 40(6): 130-135.

    NAN Ding, LI Xin, XU Yu, et al. Epoxy resin composite coating with silane coupling agent modified graphene oxide generating effective corrosion protection[J]. chemical industry and engineering, 2023, 40(6): 130-135(in Chinese).
    [15] 张彤昕. 废弃碳纤维对混凝土力学性能与导电性能影响研究 [D]. 西安建筑科技大学, 2022.

    ZHANG Tongxin Study on the influence of waste carbon fiber on the mechanical properties and electricalconductivity of concrete [D]. Xi'an University Of Architecture andTechnology, 2022(in Chinese).
    [16] 王振波, 王鹏宇, 孙鹏. 高延性水泥基材料纤维分布及其影响因素研究进展[J]. 硅酸盐学报, 2022, 50(8): 2284-2295.

    WANG Zhenbo, WANG Pengyu, SUN Peng et al. Research progress on fiber distribution and influencing factors of high ductility cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2284-2295(in Chinese).
    [17] 中国国家标准化管理委员会(标准制定单位). 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京, 中国建筑工业出版社, 2019.

    Standardization Administration of the People’sRepublic of China. Standard for testing methods for physicaland mechanical properties ofconcrete: GB/T 50081—2019[S] Beinjing: China Architecture & Building Press. 2019. (in Chinese)
    [18] 范文茹, 雷建, 董玉珊等. 基于四电极法的CFRP结构损伤检测研究[J]. 仪器仪表学报, 2017, 38(4): 961-968.

    FAN Wenru, LEI Jian, DONG Yushan, et al. Damagedetection of CFRP laminate structure based on four-probe method[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 961-968(in Chinese).
    [19] 陈宇良, 李堂, 姜锐, 等. 碳纤维再生混凝土复合受剪力学性能试验[J]. 复合材料学报, 2023, 40(7): 4107-4116.

    CHEN Yuliang, LI Tang, JIANG Rui, et al. Experimental study on the composite shear mechanical properties of carbon fiber reinforced recycled concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116(in Chinese).
    [20] AKBAR A, KODUR V K R, LIEW K M. Microstructuralchanges and mechanical performance of cementcomposites reinforced with recycledcarbon fibers[J]. Cement and Concrete Composites, 2021, 121: 104069. doi: 10.1016/j.cemconcomp.2021.104069
    [21] KIM T , LEY T M , KANG S, et al. Using particle composition of fly ash to predict concrete strength andelectrical resistivity[J]. Cement and Concrete Composites, 2020, 107(C): 103493-103493.
    [22] JING X, XIAOMIN W, ZHONGRUI W, et al. Investigations on influencing factors of resistivity measurement for graphite tailings concrete[J]. Cement and Concrete Composites, 2021, 123: 104206. doi: 10.1016/j.cemconcomp.2021.104206
    [23] 张立卿, 占小静, 韩宝国等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2023, 40(9): 5225-5240.

    ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240(in Chinese).
    [24] 唐祖全, 李卓球, 钱觉时. 碳纤维导电混凝土在路面除冰雪中的应用研究[J]. 建筑材料学报, 2004, (2): 215-220.

    TANG Zuquan, LI Zhuoqiu, QIAN Jueshi. Research on the application of carbon fiber conductive concretein road surface deicing and snow removal[J]. journal of building materials, 2004, (2): 215-220(in Chinese).
    [25] GOMIS J, GALAO O, GOMIS V, et al. Self-heatingand deicing conductive cement. Experimental study and modeling[J]. Construction and Building Materials, 2015, 75: 442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [26] SEONGWOO G, HYUNJUN K, MYOUNGSU S. Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber[J]. Cement and Concrete Composites, 2023, 137: 104942 doi: 10.1016/j.cemconcomp.2023.104942
    [27] JINSONG T, YIJING W, MING Z, et al. Heat transfer mechanism of glazed hollow bead insulation concrete[J]. Journal of Building Engineering, 2021, 40: 102629 doi: 10.1016/j.jobe.2021.102629
    [28] 路鹏程, 毕亚芳, 王志平, 等. 电热作用对碳纤维树脂基复合材料力学性能的影响[J]. 复合材料学报, 2016, 33(10): 2223-2229.

    LU Pengcheng, BI Yafang, WANG Zhiping, et al. Effects of electric thermal effect on mechanical properties of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2223-2229(in Chinese).
    [29] SHUOXUAN D, SUFEN D, XINYUE W, et al. Self-heatingultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures[J]. Cement and Concrete Composites, 2023, 138: 105005 doi: 10.1016/j.cemconcomp.2023.105005
    [30] UK T K, KYOUNG M K, WOONG J P, et al. Effects of temperature and humidity on self-stress sensing capacity of smart concrete blocks[J]. Journal of Building Engineering, 2023, 69: 106227. doi: 10.1016/j.jobe.2023.106227
    [31] 桂尊曜, 蒲云东, 张惠一. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 40(11): 6336-6350.

    GUi Zunyao, PU Yundong, ZHANG Huiyi, et al. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry [J] ActaMateriae CompositaeSinica, 2023, 40(11): 6336-6350. (in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  49
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-03-06
  • 录用日期:  2024-03-13
  • 网络出版日期:  2024-04-20
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回