Effect of reinforcing phase type on current-carrying tribological behavior of aluminum matrix composites
-
摘要: 轻质6063铝合金具有一定的强度和耐蚀性使其在载流摩擦领域中得到广泛应用,但6063铝合金的载流摩擦性能难以满足服役需求,因此,亟待提升6063铝合金的载流摩擦磨损性能。本研究以颗粒(TiB2p)、纤维(Cf)和晶须(SiCw)作为增强相,通过放电等离子烧结(SPS)和热挤压工艺相结合分别制备了增强相体积分数为5vol.%的TiB2p/6063Al、Cf/6063Al和SiCw/6063Al复合材料。重点研究了增强相类型对6063Al基复合材料载流摩擦磨损性能的影响,深入分析了复合材料的摩擦系数、磨损率、磨损表面形貌及磨损机制。结果表明,TiB2p和Cf在6063Al基体中分布较均匀,而SiCw在复合材料中存在团聚现象。其中,TiB2p/6063Al的硬度(68.38 HB)最高,较6063Al基体提升约11.55%;Cf/6063Al复合材料的致密度(99.41%)和导电率(48.4% IACS)最高。载流摩擦磨损试验结果表明,不同增强相的添加会使6063Al基复合材料的平均摩擦系数均有不同程度的降低,对磨损率、载流质量和磨损形貌均有不同的影响。对比三种增强相,Cf在提升6063Al的载流摩擦性能方面表现最为出色,磨损率大幅降低,载流摩擦系数稳定性和载流效率提高明显。Cf/6063Al复合材料的摩擦过程出现长时间的稳定摩擦滑动阶段,线磨损率(3.19 × 10−5 mg/mm)最小,较6063Al基体减少32.27%;载流效率(66.61%)最高,较6063Al基体提升29.44%;同时,其微观磨损表面较平整,存在较少的金属熔融物,磨损机制以磨粒磨损和电弧侵蚀为主。此外,Cf/6063Al复合材料良好的导电率可能是Cf/6063Al复合材料载流摩擦系数较稳定和载流效率较高的原因之一。SiCw/6063Al复合材料的平均摩擦系数(0.235)最小,但其线磨损率较6063Al基体增加11.25%,载流质量也较差。TiB2p/6063Al复合材料的平均摩擦系数和线磨损率分别较6063Al基体减小8.85%和7.01%,其载流质量较差。Abstract: Lightweight 6063 aluminum alloy has a certain strength and corrosion resistance, which makes it widely used in the field of current-carrying friction, but the current-carrying friction performance of 6063 aluminum alloy is difficult to meet the service requirements, so it is urgent to improve the current-carrying friction and wear performance of 6063 aluminum alloy. In this study, TiB2p/6063Al, Cf/6063Al and SiCw/6063Al composites with a volume fraction of 5 vol.% were prepared by combining discharge plasma sintering (SPS) and hot extrusion processes with particles (TiB2p), fibers (Cf) and whiskers (SiCw) as reinforcing phases, respectively. The influence of the reinforcing phase type on the current-carrying friction and wear properties of 6063Al matrix composites was studied, and the friction coefficient, wear rate, wear surface morphology and wear mechanism of the composites were analyzed in depth. The results show that TiB2p and Cf are evenly distributed in the 6063Al matrix, while SiCw is agglomerated in the composites. Among them, the hardness of TiB2p/6063Al (68.38 HB) is the highest, which is about 11.55% higher than that of 6063Al matrix. Cf/6063Al composites have the highest density (99.41%) and electrical conductivity (48.4% IACS). The results of current-carrying friction and wear test show that the addition of different reinforcing phases will reduce the average friction coefficient of 6063Al matrix composites to different degrees, and have different effects on wear rate, current-carrying quality and wear morphology. Compared with the three reinforcing phases, Cf has the best performance in improving the current-carrying friction performance of 6063Al, with a significant reduction in wear rate, and a significant improvement in the stability of the current-carrying friction coefficient and the current-carrying efficiency. The friction process of Cf/6063Al composites showed a long-term stable friction and sliding stage, and the linear wear rate (3.19 × 10−5 mg/mm) was the smallest, which was 32.27% lower than that of 6063Al matrix. The current-carrying efficiency (66.61%) was the highest, which was 29.44% higher than that of 6063Al matrix. At the same time, the microscopic wear surface is relatively flat, there is less metal melt, and the wear mechanism is mainly abrasive wear and arc erosion. In addition, the good conductivity of Cf/6063Al composites may be one of the reasons for the stable current-carrying friction coefficient and high current-carrying efficiency of Cf/6063Al composites. The average friction coefficient (0.235) of SiCw/6063Al composites is the smallest, but its linear wear rate is 11.25% higher than that of 6063Al matrix, and the current-carrying quality is also poor. The average friction coefficient and linear wear rate of TiB2p/6063Al composites are 8.85% and 7.01% lower than those of 6063Al matrix, respectively, and their current-carrying quality is poor.
-
Key words:
- Aluminum-matrix composites /
- TiB2p /
- Carbon fiber(Cf) /
- SiCw /
- Current-carrying friction wear /
- Wear mechanism
-
表 1 6063铝合金的名义成分表
Table 1. Nominal composition list of 6063Al alloy
6063Al alloy Al Mg Si Fe Cu Mn Cr Ti Zn Content/wt.% Bal. 0.45~0.90 0.20~0.60 0.35 0.10 0.10 0.10 0.10 0.10 表 2 6063Al基复合材料的基础性能
Table 2. Basic properties of 6063Al matrix composites
Aluminum matrix and composites Relative density/% Hardness/HB Electrical conductivity/% IACS TiB2p/6063Al 98.63 68.38(±0.56) 44.52(±0.18) Cf/6063Al 99.41 63.40(±0.71) 48.40(±0.07) SiCw/6063Al 97.57 67.74(±1.28) 45.65(±0.16) 6063Al 99.87 61.30(±0.48) 50.40(±0.06) -
[1] LI Shisheng, SU Yishi, ZHU Xinhai, et al. Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites[J]. Materials & Design, 2016, 107: 130-138. [2] 孟祥臣. 微量Cu和Cr对6063铝合金的组织及力学性能的影响[D]. 沈阳: 沈阳工业大学, 2023.MENG Xiangchen. Effect of micro-additions of Cu and Cr on the microstructure and mechanical properties of Al 6063 alloy [D]. Shenyang: Shenyang University of Technology, 2023(in Chinese). [3] HE Wei, LI Hui, HAN Xudong, et al. High-temperature dry sliding friction and wear behavior of in-situ (Al3Zr+ZrB2)/AA6016 aluminum matrix composites[J]. Materials Today Communications, 2024, 39: 108951-. doi: 10.1016/j.mtcomm.2024.108951 [4] 李月英, 刘勇兵, 曹占义. 飞灰颗粒增强铝基复合材料的摩擦与磨损特性[J]. 复合材料学报, 2003, (6): 26-30. doi: 10.3321/j.issn:1000-3851.2003.06.006LI Yueying, LIU Yongbing, CAO Zhanyi. Friction and wear properties of fly ash particles reinforced ZL109 composites[J]. Acta Materiae Compositae Sinica, 2003, (6): 26-30(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.06.006 [5] 杜亭亭. 金属纤维增强铝基复合材料高强韧设计[D]. 哈尔滨: 哈尔滨工业大学, 2022.DU Tingting. Metal fiber reinforced aluminum matrix composite high strength design[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese). [6] 姚正军, 姚一波, 袁明. 尼龙66纤维/6061铝合金复合板静电植绒工艺及隔声性能[J]. 复合材料学报, 2015, 32(6): 1625-1632.YAO Zhengjun, YAO Yibo, YUAN Ming. Electrostatic flocking technology and sound insulation properties of nylon 66 fibers/aluminium alloy 6061 composite plates[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1625-1632(in Chinese). [7] PRABAKARAN V, R P, M P, et al. Study of tribological performance and corrosion resistance of aluminum alloy 6063 composites enhanced with a combination of silicon carbide and tungsten disulfide particles[J]. Results in Surfaces and Interfaces, 2024, 15: 100233-. doi: 10.1016/j.rsurfi.2024.100233 [8] 王东伟, 李发强, 黄起昌, 等. 表面织构对滑动电接触界面摩擦学行为的影响[J]. 表面技术, 2024, 53(9): 137-147+179.WANG Dongwei, LI Faqiang, HUANG Qichang, et al. Effect of surface texture on tribological behavior of sliding electrical contact interface.[J]. Surface Technology, 2024, 53(9): 137-147+179(in Chinese). [9] 林焕然, 国秀花, 宋克兴, 等. (WC+SiCw)/Cu-Al2O3复合材料载流摩擦磨损行为[J]. 表面技术, 2022, 51(01): 33-42.LIN Huanran, GUO Xiuhua, SONG Kexing, Current carrying friction and wear behavior of (WC+SiCw)/Cu-Al2O3 composites[J]. Surface Technology, 2022, 51(01): 33-42(in Chinese). [10] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2p颗粒增强铜基复合材料的制备与载流摩擦磨损性能[J]. 复合材料学报, 2019, 36(10): 2348-2356.ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2p particles[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2348-2356(in Chinese). [11] 肖琪聃, 周峰, 吴珊. 无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能[J]. 复合材料学报, 2018, 35(10): 2832-2840.XIAO Qidan, ZHOU Feng, WU Shan. Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2832-2840(in Chinese). [12] 周文艳, 冉丽萍, 彭可, 等. Mo2C改性C/C-Cu复合材料的组织及载流摩擦磨损性能[J]. 复合材料学报, 2016, 33(9): 2074-2081.ZHOU Wenyan, RAN Keli, PENG Ke. et al. Structure and tribological property with electric current of Mo2C modified C/C-Cu composites[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 2074-2081(in Chinese). [13] KUMAR S, BALASUBRAMANIAN V. Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites—a statistical analysis[J]. Tribology International, 2010, 43(1-2): 414-422. doi: 10.1016/j.triboint.2009.07.003 [14] KUMAR S, BALASUBRAMANIAN V. Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites[J]. Wear, 2007, 264(11): 1026-1034. [15] 苗永鑫, 焦安源, 李海一, 等. 高体积分数SiCp/Al复合材料的螺旋铣削试验研究[J]. 表面技术, 2024, 53(14): 164-172.MIAO Yongxin, JIAO Anyuan, LI Haiyi. et al. Experimental study of helical milling of high volume fraction SiCp/Al composites[J]. Surface Technology, 2024, 53(14): 164-172(in Chinese). [16] WU Weiguo, ZENG Tiancheng, HAO Wenfeng, et al. Microstructure and mechanical properties of aluminum matrix composites reinforced with in-situ TiB2p particles[J]. Frontiers in Materials, 2022, 9. [17] ROUHI M, MOAZAMI-GOUDARZI M, ARDESTANI M. Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1169-1183. doi: 10.1016/S1003-6326(19)65025-9 [18] 张现亮. TiB2p颗粒增强7075铝基复合材料挤压型材组织与性能研究[D]. 济南: 山东大学, 2023.ZHANG Xianliang. Research on microstructure and properties of extruded profile of TiB2p Particulate Reinforced 7075Al Composite[D]. Jinan: Shandong University, 2023(in Chinese). [19] 田经纬, 齐肖, 郭瑞, 等. 湿热老化对碳纤维增强复合材料力学和摩擦磨损性能的影响[J/OL]. 复合材料学报, 2025, 42.TIAN Jingwei, QI Xiao, GUO Rui, et al. Effect of hygrothermal aging on the mechanical and frictional wearproperties of carbon fiber reinforced composites[J/OL]. Acta Materiae Compositae Sinica, 2025, 42(in Chinese). [20] 许玮, 胡锐, 高媛, 等. 碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(3): 303-307.XU Wei, HU Rui, GAO Yuan, et al. Friction and wear properties of carbon nanotubes reinforced copper matrix composites with and with out electric current[J]. Tribology, 2010, 30(3): 303-307(in Chinese). [21] 金延文, 曲彦平, 王东, 等. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(3): 334-343.JIN Yanwen, QU Yanping, WANG Dong, et al. Sliding wear behavior of aluminum matrix composites hybrid reinforced by SiCp and spherical graphite particles[J]. Tribology, 2021, 41(3): 334-343(in Chinese). [22] 杨静煜, 朱明光, 王云华, 等. 铝/石墨复合材料高速高温下的摩擦磨损特性[J]. 复合材料学报, 1987, (03): 51-6+97-8.YANG Jingyu, ZHU Mingguang, WANG Yunhua, et al. Friction and wear behavior of graphite particle/Al composites at high sliding spdde and high temperature[J]. Acta Materiae Compositae Sinica, 1987, (03): 51-56+97-98(in Chinese). [23] PARK O, KIM S, YOU N, et al. Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites[J]. Composites Part B, 2014, 56: 365-371. doi: 10.1016/j.compositesb.2013.08.065 [24] LU Haibao, YAO Yongtao, HUANG Weimin, et al. Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites[J]. Composites Part B, 2014, 67: 290-295. doi: 10.1016/j.compositesb.2014.07.022 [25] 贾进浩. Cf/SiC-Al复合材料的制备及其性能的研究[D]. 长沙: 国防科技大学, 2022.JIA Jinhao. Fabrication and performance of Cf/SiC-Al composites[D]. Changsha: National University of Defense Technology, 2022(in Chinese). [26] VAMSEE P, PAVAN K K, VAIRA R V, et al. Development and characterization of aluminum matrix composite reinforced with continuous stainless-steel fibers[J]. Materials Today: Proceedings, 2021, 45(P9): 7816-7821. [27] PEI Risheng, CHEN Guoqin, WANG Yaping, et al. Effect of interfacial microstructure on the thermal-mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum composites[J]. Journal of Alloys and Compounds, 2018, 756: 8-18. doi: 10.1016/j.jallcom.2018.04.330 [28] ZHANG Yunhe, WU Gaohui. Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2148-2151. doi: 10.1016/S1003-6326(09)60433-7 [29] AKBARZADEH E, PICAS J A, BAILE M. Orthogonal experimental design applied for wear characterization of aluminum/C-sf metal composite fabricated by the thixomixing method[J]. International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM, 2016, 9(5): 601-612. [30] CAO Xiong, SHI Qingyu, LIU Daming, et al. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: evaluation of microstructural, mechanical and Tribological Behaviors[J]. Composites Part B, 2018, 139: 97-105. doi: 10.1016/j.compositesb.2017.12.001 [31] 王铀, 曹利, 刘家设, 等. SiCw/Al复合材料滑动磨损的微观机制[J]. 复合材料学报, 1991, (2): 85-90.WANG You, CAO Li, LIU Jiashe, et al. Micromechanism of dry sliding wear of SiCw/Al composites[J]. Acta Materiae Compositae Sinica, 1991, (2): 85-90(in Chinese). [32] ZHONG Xinmiao, LI Qingyuan, GONG Yingze, et al. Effects of various proportions TiB2P-TiCp reinforced Al-Cu-Mg composites in high-temperature mechanical properties and sliding wear behaviors[J]. Journal of Materials Research and Technology, 2024, 30: 4169-4180. doi: 10.1016/j.jmrt.2024.04.159 [33] CALIMAN R. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers[J]. IOP Conference Series: Materials Science and Engineering, 2016, 145(7). [34] CUI Lihui, LUO Ruiying, MA Denghao. Carbon fiber reinforced carbon-Al-Cu composite for friction material[J]. Materials, 2018, 11(4): 538. doi: 10.3390/ma11040538 [35] 邵若男, 贺甜甜, 杜三明, 等. 铝合金表面Al2O3-Ni涂层的制备及耐磨性研究[J]. 表面技术, 2020, 49(4): 173-179.SHAO Ruonan, HE Tiantian, DU Sanming, et al. Preparation and wear resistance of Al2O3-Ni coating on aluminum alloy surface[J]. Surface Technology, 2020, 49(4): 173-179(in Chinese). [36] 张昂昂. CNTs-SiC复合颗粒的制备及其对铝基复合材料性能的影响[D]. 西安: 西安理工大学, 2019.ZHANG Angang. Preparation of CNTs-SiC composite particles and its effect on properties of aluminum matrix composites[D]. Xian: Xi’an University of Technology, 2019(in Chinese). [37] LI Shaolin, JIA Chaofan, GUO Xiuhua, et al. Enhancement mechanism of carbon fiber on the current-carrying tribological properties of Cf-Al2O3/Cu composites[J]. Wear, 2023, 530-531. [38] 邹存磊. 原位Cu-Ti(Zr)-B颗粒增强铜基复合材料的制备与性能研究[D]. 大连: 大连理工大学, 2018.ZOU Cunlei. Study on the fabrication and properties of in situ Cu-Ti(Zr)-B particulate reinforced copper matrix composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese). [39] MOSTAFA E, SALEH K, OMAYMA E, et al. Microstructure and mechanical properties of CF/Al composites fabricated by hot coining technique[J]. Ceramics International, 2021, 47(15): 21890-21904. doi: 10.1016/j.ceramint.2021.04.207 [40] ZHAI Hongxiang, HUANG Zhenying. Instabilities of sliding friction governed by asperity interference mechanisms[J]. Wear, 2004, 257(3-4): 414-422. doi: 10.1016/j.wear.2004.01.018 [41] DU Jiebin, LU Mingchong, FANG Jiamin, et al. Current-carrying friction behavior and wear mechanism of Ag coatings by rotary spray deposition[J]. Wear, 2024, 546-547: 205367-. doi: 10.1016/j.wear.2024.205367 [42] 程晓超. 短碳纤维增强铝基复合材料的制备及性能研究[D]. 天津: 河北工业大学, 2019.CHENG Xiaochao. Preparation and properties of short carbon fiber reinforced aluminum matrix composites[D]. Tianjin: Hebei University of Technology, 2019(in Chinese). [43] HOON K, SEUNGJIN N, SOO S, et al. Tribological properties of carbon fiber-reinforced aluminum composites processed by spark plasma sintering[J]. Carbon letters, 2017, 21: 103-106. doi: 10.5714/CL.2017.21.103 [44] LIU Lei, LI Weiwei, TANG Yiping, et al. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites[J]. Wear, 2008, 266(7): 733-738. [45] 冯江. 颗粒晶须混杂增强铜基复合材料电性能和力学性能研究[D]. 西安: 西安理工大学, 2022.FENG Jiang. Study on electrical and mechanical properties of particle and whisker hybrid reinforced copper matrix composites[D]. Xian: Xi'an University of Technology, 2022(in Chinese).
计量
- 文章访问数: 32
- HTML全文浏览量: 40
- 被引次数: 0