留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子交联纳米复合高强度水凝胶的制备与性能

游曼可 周卿云 柴子铧 王大威 吴江渝 曾小平

游曼可, 周卿云, 柴子铧, 等. 离子交联纳米复合高强度水凝胶的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 游曼可, 周卿云, 柴子铧, 等. 离子交联纳米复合高强度水凝胶的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
YOU Manke, ZHOU Qingyun, CHAI Zihua, et al. Preparation and properties of ionic crosslinked nanocomposite high strength hydrogel[J]. Acta Materiae Compositae Sinica.
Citation: YOU Manke, ZHOU Qingyun, CHAI Zihua, et al. Preparation and properties of ionic crosslinked nanocomposite high strength hydrogel[J]. Acta Materiae Compositae Sinica.

离子交联纳米复合高强度水凝胶的制备与性能

基金项目: 生物无机化学与药物湖北省重点实验室开放基金(BCMM2020003)
详细信息
    通讯作者:

    曾小平,博士,副教授,研究生导师,研究方向为智能响应水凝胶 E-mail: xpzeng@wit.edu.cn

  • 中图分类号: TB332

Preparation and properties of ionic crosslinked nanocomposite high strength hydrogel

Funds: Open Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (BCMM2020003)
  • 摘要: 通过自由基聚合法和盐溶液浸泡法相结合,制备了一种综合性能良好的离子交联纳米复合水凝胶。首先用水溶性短链壳聚糖(CS)改性埃洛石纳米管(HNTs),再与丙烯酰胺(AM)、丙烯酸(AA)等经过热引发自由基聚合得到纳米复合水凝胶基体,随后浸泡Fe(NO3)3溶液、Na2SO4溶液,得到力学性能优异、具有独特抗溶胀性且抗冻的离子交联纳米复合水凝胶。FTIR及TEM结果证实形成了CS修饰HNTs的结构,复合水凝胶的SEM结果显示浸泡离子后结构变得更加紧密、孔洞尺寸明显减少。考察了不同含量的AA、HNTs对复合水凝胶力学性能的影响。结果表明,当CS为2 wt%,AA占单体总量的12 mol%、AM占88 mol%,HNTs为3.5 wt%且浸泡了Fe3+和$\text{SO}_{4}^{2-} $离子溶液时,水凝胶的综合力学性能最佳,拉伸强度与断裂伸长率分别达到3.96 MPa与553%,85%应变下的抗压强度为13.4 MPa,且经过去离子水浸泡48小时后,拉伸强度增长到5.64 MPa,模量高达15 MPa,为设计和开发强韧水凝胶提供了新策略。

     

  • 图  1  埃洛石纳米管(HNTs)@壳聚糖(CS)制备流程示意图

    Figure  1.  Schematic diagram of halloysite nanotubes (HNTs)@chitosan (CS) preparation process

    图  2  HNTs @CS(左)与HNTs分散液(右)的稳定性

    Figure  2.  Stability of HNTs @CS (left) and HNTs dispersion (right)

    图  3  CS、HNTs和HNTs @CS的红外光谱

    Figure  3.  FTIR spectrums of CS, HNTs, and HNTs @CS

    图  4  HNTs(ab)和HNTs @CS(cd)的透射电镜图像

    Figure  4.  TEM images of HNTs (ab) and HNTs @CS (cd)

    图  5  DN-gel制备流程示意图

    Figure  5.  Schematic diagram of DN-gel preparation process

    图  6  纳米复合凝胶基体(ab)和DN-gel(cd)扫描电镜图像

    Figure  6.  SEM image of nano composite gel matrix (ab) and DN-gel (cd)

    图  7  DN-gel(a)打结(b)回弹和(c)悬挂反应釜

    Figure  7.  DN-gel (a) knotting (b) rebound and (c) suspension reaction kettle

    图  8  AA含量对水凝胶(a)应力应变曲线(b)模量(c)断裂强度(d)断裂伸长率的影响

    Figure  8.  Effect of AA content on (a) stress-strain curve (b) modulus (c) breaking strength (d) breaking elongation of hydrogel

    图  9  HNTs含量对水凝胶(a)断裂强度、断裂伸长率(b)模量影响

    Figure  9.  Effect of HNTs content on (a) breaking strength and elongation at break (b) modulus of hydrogel

    图  10  离子交联前后水凝胶压缩应力-应变曲线

    Figure  10.  Compressive stress-strain curves of hydrogels before and after ionic crosslinking

    图  11  DN-gel的(a)压缩循环曲线及(b)每个压缩循环应变50%时应力变化曲线

    Figure  11.  (a) Compression cycle curve of and (b) Stress variation curve at 50% strain per compression cycle DN-gel

    图  12  离子交联前后水凝胶溶胀性能变化曲线

    Figure  12.  Change curve of swelling property of hydrogel before and after ionic crosslinking

    图  13  去离子水浸泡前后DN-gel力学性能的变化曲线(a)应力应变曲线(b)模量

    Figure  13.  Changes in mechanical properties of DN-gel before and after immersion in deionized water (a) stress-strain curve (b) modulus

    图  14  低温下水凝胶的柔性变化示意图

    Figure  14.  Schematic diagram of flexibility change of hydrogel at low temperature

  • [1] MCCARTHY P , ZHANG Y , ABEBE F . Recent Applications of Dual-Stimuli Responsive Chitosan Hydrogel Nanocomposites as Drug Delivery Tools[J]. Molecules, 2021, 26(16): 4735.
    [2] CHATTERJEE S , HUI C L . Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems[J]. Polymers, 2021, 13(13): 2086
    [3] ZHANG J , CHEN L , SHEN B , et al. Ultra-high strength poly(N-(2-hydroxyethyl)acrylamide)/chitosan hydrogel with “repelling and killing” bacteria property[J]. Carbohydrate Polymers, 2019, 225: 115160.
    [4] CHATTERJEE S , HUI C L, WAT E , et al. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy[J]. Carbohydrate Polymers, 2020, 236: 116074.
    [5] KAMOUN E A , KENAWY E R S , CHEN X . A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research, 2017, 8(3)217-233.
    [6] XU C , LEE W , DAI G , et al. Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing[J]. Acs Appl Mater Interfaces, 2018, 10(12): 9969-9979.
    [7] Njuguna D G , Schnherr H . Xanthan Gum Hydrogels as High-Capacity Adsorbents for Dye Removal[J]. ACS Applied Polymer Materials, 2021, 3, 6, 3142–3152.
    [8] KIM J , CAMPBELL A. S , DE Ávila, BERTA Esteban-Fernández, et al. Wearable Biosensors for Healthcare Monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406.
    [9] XIA S , SONG S , JIA F , et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring[J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-4648.
    [10] XU Pan, SHANG Zhijie, YAO Meiling, KE Zhenyu, LI Xinxue, LIU Pingde, Molecular insights on the mechanical properties of double-network hydrogels reinforced by covalently compositing with silica-nanoparticles[J]. Journal of Molecular Liquids, 2022, 368: 120611.
    [11] WANG X, DU Y, LUO J, et al. A novel biopolymer/rectorite nanocomposite with antimicrobial activity[J]. Carbohydrate Polymers, 2009, 77(3): 449-456. Gong
    [12] KATTI K S, KATTI D R , DASH R . Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering[J]. Biomedical Materials, 2008, 3(3): 034122.
    [13] MONVISADE P , SIRIPHANNON P . Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption[J]. Applied Clay Science, 2009, 42(3-4): 427-431.
    [14] 黄池光, 孙钰杰, 向双飞等. 埃洛石纳米管复合高分子双网络水凝胶[J]. 稀有金属材料与工程, 2014, 43(S1): 200-204.

    HUANG Chiguang, SUN Yujie, XIANG Shuangfei, et al, Halloysite nanotubes composite polymer double network hydrogel [J], RARE MENTAL MATERIALS AND ENGINEERING, 2014, 43(S1): 200-204(in Chinese).
    [15] RAO K M , KUMAR A , HAN S S . Polysaccharide based hydrogels reinforced with halloysite nanotubes via polyelectrolyte complexation[J]. Materials Letters, 2017, 213: 231-235.
    [16] HUANG B , LIU M , ZHOU C . Chitosan composite hydrogels reinforced with natural clay nanotubes[J]. Carbohydrate Polymers, 2017, 175: 689-698.
    [17] ZHAI R , ZHANG B , WAN Y , et al. Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal[J]. Chemical Engineering Journal, 2013, 214: 304-309.
    [18] FERESHTEH K , VAHID J, MARYAM D, et al. Injectable chitosan hydrogel embedding modified Halloysite nanotubes for bone tissue engineering[J]. Carbohydrate Polymers, 2021, 269: 118311.
    [19] XU P , WANG C , ZHAO B , et al. A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries[J]. Journal of Power Sources, 2021, 506: 230196.
    [20] ZHENG H , DU Y , YU J , et al. Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers[J]. Journal of Applied Polymer Science, 2001, 80(13): 2558-2565
    [21] OHKAWA K , CHA D , KIM H , et al. Electrospinning of chitosan[J]. Macromolecular Rapid Communications, 2010, 25(18): 1600-1605.
    [22] WANG X, TANG Y, LI Y, et al. The rheological behaviour and drug-delivery property of chitosan/rectorite nanocomposites[J]. Journal of Biomaterials Science Polymer Edition, 2010, 21(2): 171-184. doi: 10.1163/156856209X410300
    [23] DARDER M , COLILLA M , RUIZ-HITZKY E . Chitosan–clay nanocomposites: application as electrochemical sensors[J]. Applied Clay Science, 2005, 28(1-4): 199-208.
    [24] LI Shineng, LI Baoqiang, YU zhiran, LI Yang, et al. Constructing dual ionically cross-linked poly(acrylamide-co-acrylic acid) /chitosan hydrogel materials embedded with chitosan decorated halloysite nanotubes for exceptional mechanical performance – ScienceDirect[J]. Composites Part B: Engineering, 2020, 194: 108046. doi: 10.1016/j.compositesb.2020.108046
    [25] LIANG Yongzhi, YE Lina, SUN Xingyue, et al. Tough and Stretchable Dual lonically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors[J]. ACS applied materials & interfaces, 2020, 12(1): 1577-1587.
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-07-28
  • 录用日期:  2024-08-03
  • 网络出版日期:  2024-08-24

目录

    /

    返回文章
    返回