留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性

唐玉玲 韩露 张峻霞 任煜赫 姜美姣

唐玉玲, 韩露, 张峻霞, 等. 曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性[J]. 复合材料学报, 2023, 40(6): 3651-3661. doi: 10.13801/j.cnki.fhclxb.20220825.003
引用本文: 唐玉玲, 韩露, 张峻霞, 等. 曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性[J]. 复合材料学报, 2023, 40(6): 3651-3661. doi: 10.13801/j.cnki.fhclxb.20220825.003
TANG Yuling, HAN Lu, ZHANG Junxia, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661. doi: 10.13801/j.cnki.fhclxb.20220825.003
Citation: TANG Yuling, HAN Lu, ZHANG Junxia, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661. doi: 10.13801/j.cnki.fhclxb.20220825.003

曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性

doi: 10.13801/j.cnki.fhclxb.20220825.003
基金项目: 国家自然科学基金(11272105);天津市科技计划项目(20JCYBJC01430)
详细信息
    通讯作者:

    张峻霞,博士,教授,博士生导师,研究方向为轻量化结构设计 E-mail:zjx@tust.edu.cn

  • 中图分类号: TB332

Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure

Funds: National Natural Science Foundation of China (11272105); Science and Technology Planning Project of Tianjin (20JCYBJC01430)
  • 摘要: 采用热压一次成型的工艺制备了曲面碳纤维增强树脂复合材料点阵夹芯结构,进行了三点弯试验探究了结构的弯曲破坏载荷与破坏模式。结果显示:结构的载荷位移曲线分为4个阶段,分别为线性阶段、损伤起始阶段、损伤演化阶段和失效阶段;破坏模式主要为面板压溃与节点失效。通过ABAQUS显示求解器建立了有效的弯曲和模态振动模型,得到弯曲破坏过程的失效模式、载荷位移曲线及结构振动模态与固有频率。讨论了不同参数(几何参数和材料性能)对弯曲和振动性能的影响,比较了不同边界条件对固有频率的影响。结果显示:相对密度(面板厚度、芯子直径)的增加会使结构的弯曲破坏载荷和固有频率增大,而芯子倾角ω的增大会使弯曲破坏载荷与固有频率的减小;材料的比刚度越大,固有频率越高。

     

  • 图  1  曲面碳纤维增强树脂复合材料点阵夹芯结构和芯子单胞示意图

    Figure  1.  Schematic diagram of curved carbon fiber reinforced polymer pyramidal sandwich structure and core cell

    α—Arc Angle; h—Height; ω—Angle; B—Panel width; d—Rod diameter; t—Panel thickness; k—Reserved distance; lc—Length; r—Radius of curvature

    图  2  曲面碳纤维增强树脂复合材料点阵夹芯结构的制备过程

    Figure  2.  Preparation process of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  3  曲面碳纤维增强树脂复合材料点阵夹芯结构的三点弯曲载荷示意图

    Figure  3.  Schematic diagram of three-point bending load of curved carbon fiber reinforced polymer pyramidal sandwich structure

    L—Base span; E—Reserved straight edge; U—Displacement load

    图  4  曲面碳纤维增强树脂复合材料点阵夹芯结构有限元示意图

    Figure  4.  Finite element diagram of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  5  曲面碳纤维增强树脂复合材料点阵夹芯结构常见的破坏模式

    Figure  5.  Common failure modes of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  6  典型曲面碳纤维增强树脂复合材料点阵夹芯结构试件(No.03)三点弯曲的载荷-位移曲线与破坏模式(相对密度为12.53%)

    Figure  6.  Load-displacement curves and failure modes of a typical curved carbon fiber reinforced polymer pyramidal sandwich structure specimen (No.03) under three-point bending (Relative density is 12.53%)

    图  7  曲面碳纤维增强树脂复合材料点阵夹芯结构(相对密度为12.53%)的破坏模式试验与数值模拟对比

    Figure  7.  Comparison of failure mode obtained from test and numerical simulation of curved carbon fiber reinforced polymer pyramidal sandwich structure (Relative density 12.53%)

    图  8  曲面碳纤维增强树脂复合材料点阵夹芯结构弯曲的应力分布演化过程

    Figure  8.  Stress distribution and evolution process of curved carbon fiber reinforced polymer pyramidal sandwich structure under bending

    图  9  曲面碳纤维增强树脂复合材料点阵夹芯结构弯曲载荷最终失效时的损伤情况

    Figure  9.  Damage of curved carbon fiber reinforced polymer pyramidal sandwich structure when bending load finally failure

    图  10  曲面碳纤维增强树脂复合材料点阵夹芯结构有限元的网格收敛性

    Figure  10.  Mesh convergence of curved carbon fiber reinforced polymer pyramidal sandwich structure finite element

    图  11  曲面碳纤维增强树脂复合材料点阵夹芯结构的工况:((a)、(b)) 受力与自由荷载工况;(c) 完全自由工况

    Figure  11.  Working conditions of curved carbon fiber reinforced polymer pyramidal sandwich structure: ((a), (b)) Stress and free load conditions; (c) Completely free working condition

    图  12  曲面碳纤维增强树脂复合材料点阵夹芯结构的前六阶模态:(a)一阶;(b)二阶;(c)三阶;(d)四阶;(e)五阶;(f)六阶

    Figure  12.  First six modes of curved carbon fiber reinforced polymer pyramidal sandwich structure: (a) First order; (b) Second order; (c) Third order; (d) Fourth order; (e) Fifth order; (f) Sixth order

    图  13  不同面板厚度t对曲面碳纤维增强树脂复合材料点阵夹芯结构弯曲破坏载荷的影响

    Figure  13.  Influence of different panel thickness t on the bending failure load of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  14  不同面板厚度t对曲面碳纤维增强树脂复合材料点阵夹芯结构固有频率的影响

    Figure  14.  Influence of different panel thickness t on natural frequency of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  15  不同芯子直径d对曲面碳纤维增强树脂复合材料点阵夹芯结构弯曲破坏载荷的影响

    Figure  15.  Effect of different core diameter d on bending failure load of curved carbon fiber reinforced polymer pyramidal sandwich structure

    h—Hight

    图  16  曲面碳纤维增强树脂复合材料点阵夹芯结构芯子直径d对频率的影响

    Figure  16.  Effect of different core diameter d of curved carbon fiber reinforced polymer pyramidal sandwich structure on frequency

    图  17  不同芯子倾角ω对曲面碳纤维增强树脂复合材料点阵夹芯结构的影响

    Figure  17.  Different core angles ω influence on of curved carbon fiber reinforced polymer pyramidal sandwich structure

    图  18  不同材料对曲面碳纤维增强树脂复合材料点阵夹芯结构频率的影响

    Figure  18.  Influence of different materials on the structural frequency of curved carbon fiber reinforced polymer pyramidal sandwich structure

    表  1  碳纤维增强环氧树脂基复合材料(T300/BMP-316)单层预浸料的力学性能

    Table  1.   Mechanical properties of carbon fiber reinforced epoxy resin matrix composites (T300/BMP-316) monolayer prepreg

    PropertyValue
    Longitudinal stiffness E11/GPa123
    Transverse stiffness E22/GPa8.4
    Out-of-plane stiffness E33/GPa8.4
    Poisson’s ratio ν12, ν13, ν230.32, 0.32, 0.3
    Shear modulus G12, G13, G23/MPa5500, 5500, 3000
    Longitudinal tensile
    strength XT/MPa
    2100
    Longitudinal compressive
    strength XC/MPa
    800
    Transverse tensile
    strength YT/MPa
    25
    Transverse compressive
    strength YC/MPa
    120
    Out-of-plane tensile
    strength ZT/MPa
    50
    Density $ \rho $/(kg·m−3)1560
    下载: 导出CSV

    表  2  曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲破坏载荷(相对密度为12.53%)

    Table  2.   Bending failure load of curved carbon fiber reinforced polymer pyramidal sandwich structure (Relative density is 12.53%)

    No.Test/NAverage/NNumerical simulation/NError/%
    01175116251581−2.7
    021680
    031446
    下载: 导出CSV

    表  3  曲面碳纤维增强树脂复合材料点阵夹芯结构在不同工况下的前六阶频率

    Table  3.   First six frequencies of curved carbon fiber reinforced polymer pyramidal sandwich structure under different working conditions

    Natural frequency/HzWork condition
    CFCFCFFFFFFF
    First order 1425.3 371.62 1.83
    Second order 2061.8 409.46 2.33
    Third order 2127.9 784.33 4.01
    Fourth order 2639.3 1013.31 5.61
    Fifth order 2716.3 1524.5 8.22
    Sixth order 2953.6 1585.5 9.25
    下载: 导出CSV

    表  4  曲面碳纤维增强树脂复合材料点阵夹芯结构试件参数

    Table  4.   Parameters of curved carbon fiber reinforced polymer pyramidal sandwich structure specimen

    No.Number of
    panel layers
    Lay-upRelative
    density/%
    Quality/g
    1 6 [0°/90°]3 8.45 30
    2 8 [0°/90°]4 10.53 45
    3 10 [0°/90°]5 12.53 66
    4 12 [0°/90°]6 14.43 81
    下载: 导出CSV

    表  5  不同复合材料的基本力学性能参数

    Table  5.   Basic mechanical property parameters of different composites

    SymbolT300/BMP-316T700/Epoxy[17]T800 H/2500[18]IM6/Epoxy[19]Glass/Epoxy[19]
    E11/GPa12313215520360
    E22/GPa8.410.39.011.213
    E33/GPa8.410.39.011.213
    ν12, ν13, ν230.32, 0.32, 0.30.25, 0.25, 0.380.3, 0.3, 0.30.32, 0.32, 0.320.3, 0.3, 0.3
    G12, G13, G23/MPa5500, 5500, 30006500, 6500, 39104550, 4550, 45508400, 8400, 84003400, 3400, 3400
    XT/MPa21002100290035001800
    XC/MPa800105016001540650
    YT/MPa2524705640
    $ \rho $/(kg·m−3)15601570160016002100
    E/$ \rho $78.8584.0796.88126.8828.57
    Note: E/$ \rho $—Specific stiffness.
    下载: 导出CSV
  • [1] XIONG J, MA L, PAN S, et al. Shear and bending perfor-mance of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Acta Materialia,2012,60(4):1455-1466. doi: 10.1016/j.actamat.2011.11.028
    [2] XIONG J, GHOSH R, MA L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures,2014,116:793-804.
    [3] HU Yang, LI Wanxin, AN Xiyue, et al. Fabrication and mechanical behaviors of corrugated lattice truss compo-site sandwich panels[J]. Composites Science and Technology,2016,125:114-122.
    [4] LIU Jiayi, XIANG Linling, KAN Tao. The effect of tempera-ture on the bending properties and failure mechanism of composite truss core sandwich structures[J]. Composites Part A: Applied Science and Manufacturing,2015,79:146-154. doi: 10.1016/j.compositesa.2015.09.017
    [5] WANG Bing, WU Linzhi, MA Li, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core[J]. Materials and Design,2010,31(5):2659-2663. doi: 10.1016/j.matdes.2009.11.061
    [6] ZHAO Zhao, WEN Shurui, LI Fengming. Vibration analysis of multi-span lattice sandwich beams using the assumed mode method[J]. Composite Structures,2018,185:716-727.
    [7] XU Menghui, QIU Zhiping. Free vibration analysis and optimization of composite lattice truss core sandwich beams with interval parameters[J]. Composite Structures,2013,106:85-95. doi: 10.1016/j.compstruct.2013.05.048
    [8] YANG Jinshui, XIONG Jian, MA Li, et al. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers[J]. Composite Structures,2013,106:570-580. doi: 10.1016/j.compstruct.2013.07.015
    [9] LOU Jia, WU Linzhi, MA Li, et al. Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure[J]. Composites part B: Engineering,2014,62:73-87. doi: 10.1016/j.compositesb.2014.02.012
    [10] 李爽, 杨金水, 吴林志, 等. 边界和杆件倾角对沙漏点阵结构振动特性的影响[J]. 哈尔滨工程大学学报, 2019, 40(5):878-885. doi: 10.11990/jheu.201806085

    LI Shuang, YANG Jinshui, WU Linzhi, et al. Influence of boundary and member inclination on vibration characteristics of hourglass lattice structure[J]. Journal of Harbin Engineering University,2019,40(5):878-885(in Chinese). doi: 10.11990/jheu.201806085
    [11] WANG Yongjing, ZHANG Zhijia, XUE Xiaomin, et al. Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core[J]. Thin-Walled Structures,2019,145:106425. doi: 10.1016/j.tws.2019.106425
    [12] SHI Zheng, ZHONG Yifeng, LIU Rong, et al. VAM-based reduced plate model for composite sandwich folded plate (CSFP) with V-shaped folded cores[J]. Thin-Walled Structures,2022,170:108601. doi: 10.1016/j.tws.2021.108601
    [13] YANG Jinshui, MA Li, MAURICIO Chaves-vargas, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites science and technology,2017,147(jul.28):89-99.
    [14] HOU Wenbin, SHEN Yuanxing, JIANG Kai, et al. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood[J]. Composite Structures,2022,286:115302. doi: 10.1016/j.compstruct.2022.115302
    [15] 张国旗. 复合材料点阵结构吸能特性和抗低速冲击性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHANG Guoqi. Study on energy absorption characteristics and low-speed impact resistance of composite lattice structure[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [16] ABAQUS. ABAQUS Version. 10, Dassault Systemes[R]. Providence, RI. 2010.
    [17] HASSAN S A, SANTULLI C, YAHYA M Y B, et al. The potential of biomimetics design in the development of impact resistant material[J]. FME Transactions,2018,46(1):108-116.
    [18] HA S K, KIM D J, SUNG T H. Optimum design of multi-ring composite flywheel rotor using a modified generalized plane strain assumption[J]. International Journal of Mechanical Sciences,2001,43(4):993-1007. doi: 10.1016/S0020-7403(00)00047-3
    [19] 王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012.

    WANG Yaoxian. Composite mechanics and structural design[M]. Shanghai: East China University of Science and Technology Press, 2012(in Chinese).
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  865
  • HTML全文浏览量:  404
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-08-08
  • 录用日期:  2022-08-11
  • 网络出版日期:  2022-08-26
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回