留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温燃料电池用PTFE增强的PVC-PVP复合高温质子交换膜的制备与性能

代宇 张东彬 曾泽华 尹翔鹭 刘天豪 袁欣然

代宇, 张东彬, 曾泽华, 等. 高温燃料电池用PTFE增强的PVC-PVP复合高温质子交换膜的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 代宇, 张东彬, 曾泽华, 等. 高温燃料电池用PTFE增强的PVC-PVP复合高温质子交换膜的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
DAI Yu, ZHANG Dongbin, ZENG Zehua, et al. Preparation and properties of PVC-PVP composite high temperature proton exchange membranes reinforced with PTFE for high temperature fuel cells[J]. Acta Materiae Compositae Sinica.
Citation: DAI Yu, ZHANG Dongbin, ZENG Zehua, et al. Preparation and properties of PVC-PVP composite high temperature proton exchange membranes reinforced with PTFE for high temperature fuel cells[J]. Acta Materiae Compositae Sinica.

高温燃料电池用PTFE增强的PVC-PVP复合高温质子交换膜的制备与性能

基金项目: 子分公司项目 (2019 BJB4-011 PG);
详细信息
    通讯作者:

    张东彬,博士,工程师,研究方向为新能源电池关键材料 E-mail: dongbin10010619@163.com

  • 中图分类号: TB332

Preparation and properties of PVC-PVP composite high temperature proton exchange membranes reinforced with PTFE for high temperature fuel cells

Funds: Sub-branch Project(No. 2019 BJB4-011 PG);
  • 摘要: 在100℃以上工作的质子交换膜燃料电池(PEMFC)可以克服低温工作时的缺陷,提高铂催化剂抗CO中毒的能力、加速电极动力学、简化水热管理系统以及提高热的循环利用等。为了实现磷酸(PA)掺杂的高温质子交换膜(HT-PEM)同时具有高质子电导率和优异的力学性能,制备了一系列聚四氟乙烯(PTFE®)增强的聚乙烯吡咯烷酮-聚氯乙烯(PVP-PVC)复合膜。通过调整PVP和PVC的配比来寻找综合性能最佳的复合膜,并对其物理化学性能进行测试和表征。SEM结果表明,PVP-PVC均匀的填充到PTFE®膜的孔隙中,没有气泡以及孔洞。通过质子电导率以及机械性能测试结果表明,PTFE增强技术使复合膜具有良好的拉伸强度和尺寸稳定性。其中,PA掺杂的PVP与PVC质量比为4的PTFE®增强复合膜在160℃时的质子电导率高达0.161 S·cm−1,并且该膜在室温下最大的拉伸强度为15.6 MPa。在160℃时,该复合膜的峰值功率密度约为359 mW·cm−2。这些结果表明,PA掺杂的PTFE增强的复合膜具有作为HT-PEM的应用潜质。

     

  • 图  1  PTFE®增强的PVP-PVC复合膜的制备流程图

    Figure  1.  Schematic of the fabrication procedure and structure for PTFE reinforced PVP-PVC composite membrane.

    图  2  (a) PTFE®膜、(b) PVP-PVC-1复合膜和(c) PTFE/PVP-PVC-1复合膜的实物照片

    Figure  2.  Photos of (a) PTFE® membrane, (b) PVP-PVC-1 composite membrane and (c) PTFE/PVP-PVC-1 composite membrane.

    图  3  PTFE®膜(a : ×30000)、PVP-PVC-1膜(b : ×5000)和PTFE/PVP-PVC-1膜(c : ×5000)表面的SEM图像;PTFE/PVP-PVC-1膜(d : ×1000)膜的截面的SEM图像

    Figure  3.  SEM images of the surface of the PTFE® membrane (a : ×30000), PVP-PVC-1 membrane (b : ×5000) and PTFE/PVP-PVC-1 (c : ×5000); SEM images of cross-section of PTFE/ PVP-PVC-1 (d : ×1000).

    图  4  (a) PVP-PVC-4复合膜和(b) PTFE/PVP-PVC-4复合膜的表面AFM图像

    Figure  4.  The AFM images of (a) PVP-PVC-4 membrane and (b) PTFE/PVP-PVC-4 membrane.

    图  5  PVP-PVC-2和PTFE/PVP-PVC-2复合膜的TGA曲线

    Figure  5.  TGA curves of PVP-PVC-2 and PTFE/PVP-PVC-2 composite membranes.

    图  6  不同比例的PVP-PVC和PTFE增强的复合膜的磷酸掺杂量(复合膜在85 wt%磷酸中浸泡12 h,浸泡温度为45℃)

    Figure  6.  The acid doping content of the PVP-PVC membranes and PTFE reinforced composite membranes.

    图  7  磷酸掺杂的PVP-PVC和PTFE增强的复合膜的溶胀性(复合膜在85 wt%磷酸中浸泡12 h,浸泡温度为45℃)

    Figure  7.  The swelling ratio of PA doped PVP-PVC membranes and PTFE reinforced composite membranes.

    图  8  (a)不同比例的PVP-PVC复合膜和(b) PTFE增强的复合膜的电导率

    Figure  8.  Conductivity of the PVP-PVC composite membranes (a) and PTFE reinforced composite membranes (b).

    图  9  PTFE®纤维的方向示意图

    Figure  9.  Schematic diagram of the direction of the PTFE® fibers.

    图  10  PTFE增强的PVP-PVC复合膜在常温下的机械性能(a)拉伸方向为x(b)拉伸方向为y

    Figure  10.  Mechanical properties of PTFE reinforced PVP-PVC composite membranes at room temperature (a) the stretching direction is x (b) the stretching direction is y.

    图  11  磷酸掺杂的(a) PVP-PVC复合膜、(b) PTFE增强的PVP-PVC复合膜(x方向)在机械性能和(c) PTFE增强的PVP-PVC复合膜(y方向)在常温下的机械性能

    Figure  11.  Mechanical properties of (a) PA doped PVP-PVC composite membranes, (b) PTFE/PVP-PVC composite membranes (streching dirrection of x) and (c) PTFE/PVP-PVC composite membranes (streching dirrection of y) at room temperature.

    图  12  PTFE/PVP-PVC-4复合膜的极化曲线和功率密度图

    Figure  12.  Polarization and power density curves of the fuel cell based on PTFE/PVP-PVC-4 membrane fueling with anhydrous H2/O2 under atmospheric pressure, the Pt loading of the electrodes is 0.6 mg·cm2.

    表  1  不同比例聚乙烯吡咯烷酮-聚氯乙烯(PVP-PVC)共混膜的原料配比

    Table  1.   Raw material ratio of different proportions of polyvinylpyrrolidone-polyvinyl chloride (PVP-PVC) composite membranes.

    membrane PVP-PVC-4 PVP-PVC-3 PVP-PVC-2 PVP-PVC-1
    PVP∶PVC
    (ww)
    4∶1 3∶1 2∶1 1∶1
    下载: 导出CSV

    表  2  聚四氟乙烯(PTFE®)膜的基本参数

    Table  2.   Basic parameters of polytetrafluoroethylene (PTFE®) membrane.

    Membrane Poriness/% Mean Aperture
    Diameter/Μm
    Thickness/
    Μm
    PTFE® 80 0.15 10
    下载: 导出CSV

    表  3  不同比例的PVP-PVC浸渍液的配料比

    Table  3.   Raw material of different proportions of PVP-PVC DMF solution.

    Membrane PVP∶PVC
    (ww)
    PVP/g PVC/g DMF/
    mL
    Concentration/
    (g·mL−1)
    PTFE/PVP-
    PVC-4
    4∶1 2.40 0.60 25 0.12
    PTFE/PVP-
    PVC-3
    3∶1 2.25 0.75 25 0.12
    PTFE/PVP-
    PVC-2
    2∶1 2.00 0.10 25 0.12
    PTFE/PVP-
    PVC-1
    1∶1 1.50 1.50 25 0.12
    下载: 导出CSV

    表  4  PVP-PVC 基复合膜的电导率和活化能

    Table  4.   Conductivity and activation energy of PVP-PVC-based composite membranes.

    membrane Proton conductivity@120°C/(S·cm−1) Proton conductivity@160°C/(S·cm−1) Activation energy/(kJ·mol−1)
    PVP-PVC-4 0.151 ± 0.032 0.218 ± 0.033 13.1
    PVP-PVC-3 0.138 ± 0.030 0.198 ± 0.028 14.5
    PVP-PVC-2 0.081 ± 0.018 0.115 ± 0.012 15.1
    PVP-PVC-1 0.031 ± 0.003 0.054 ± 0.007 20.2
    PTFE/PVP-PVC-4 0.121 ± 0.015 0.161 ± 0.017 13.6
    PTFE/PVP-PVC-3 0.093 ± 0.010 0.125 ± 0.007 14.6
    PTFE/PVP-PVC-2 0.066 ± 0.009 0.094 ± 0.004 15.8
    PTFE/PVP-PVC-1 0.031 ± 0.002 0.048 ± 0.003 21.0
    下载: 导出CSV
  • [1] LI Q F, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Prog. Polym. Sci, 2009, 34(5): 449-477. doi: 10.1016/j.progpolymsci.2008.12.003
    [2] LIU Y F, LEHNERT W, JANSSEN H, et al. A review of hightemperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles[J]. J. Power Sources, 2016, 311: 91-102. doi: 10.1016/j.jpowsour.2016.02.033
    [3] QUARTARONE E, ANGIONI S, MUSTARELLI P, et al. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10(7): 687. doi: 10.3390/ma10070687
    [4] HU Y, LI X, YAN L, et al. Improving the overall characteristics of proton exchange membranes via nanophase separation technologies: a progress review[J]. Fuel Cells, 2017, 17(1): 3-17. doi: 10.1002/fuce.201600172
    [5] HAQUE M A, SULONG A B, LOH K S, et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review[J]. Int. J. Hydrogen Energy, 2017, 42(14): 9156-9179. doi: 10.1016/j.ijhydene.2016.03.086
    [6] ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. Int. J. Hydrogen Energy, 2016, 41(46): 21310-21344. doi: 10.1016/j.ijhydene.2016.09.024
    [7] SUBIANTO S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells[J]. Polym. Int, 2014, 63(7): 1134-1144. doi: 10.1002/pi.4708
    [8] GUO Z B, XU X, XIANG Y, et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers[J]. J. Mater. Chem. 2015, A 3 (1): 148–155.
    [9] 邹信. 聚偏氟乙烯(PVDF)阳离子交换膜的制备及其性能研究 [D]. 兰州: 兰州交通大学, 2019.

    XIN Z. Preparation and properties of polyvinylidene fluoride cation exchange membrane [D]. Lanzou: Lanzhou Jiaotong University, 2019.
    [10] XU X, WANG H N, LU S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 286: 458-463. doi: 10.1016/j.jpowsour.2015.04.028
    [11] GUO Z B, XIU R J, LU S F, et al. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. J. Mater. Chem. 2015, A 3 (16): 8847–8854.
    [12] BOZKURT A, MEYER W H, Proton-conducting poly(vinylpyrrolidon)- polyphosphoric acid blends[J]. J. Polym. Sci. Part B – Polym. Phys. 2001, 39 (17): 1987–1994.
    [13] QIAO J L, HAMAYA T, OKADA T, New highly proton-conducting membrane poly (vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl- 1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)[J]. Polymer. 2005, 46 (24) : 10809–10816.
    [14] KIM D J, JO M J, NAM S Y, A review of polymer-nano composite electrolyte membranes for fuel cell application[J]. J. Ind. Eng. Chem. 2015, 21: 36–52.
    [15] GUO Z, XIU R, LU S, et al. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. Journal of Materials Chemistry A, 2015, 3(16): 8847-8854. doi: 10.1039/C5TA00415B
    [16] HAO J, JIANG Y, GAO X, et al. Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger[J]. Journal of Membrane Science, 2017, 522: 23-30. doi: 10.1016/j.memsci.2016.09.010
    [17] WANG S, ZHAO C, MA W, et al. Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci, 2012, 411: 54-63.
    [18] SONDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. J. Power Sources, 2017, 342: 570-578. doi: 10.1016/j.jpowsour.2016.12.075
    [19] OZDENIR Y, OZKAN N, DEVRIM Y, Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells[J]. Electrochim. Acta. 2017, 245 : 1–13.
    [20] LU S F, XIU R J, XU X, et al. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci, 2014, 464: 1-7. doi: 10.1016/j.memsci.2014.03.053
    [21] LIN H L, YU T L, CHANG W K, et al. Preparation of a low proton resistance PBI/PTFE composite membrane[J]. J. Power Sources, 2007, 164(2): 481-487. doi: 10.1016/j.jpowsour.2006.11.036
    [22] FENG S S, ZHONG Z X, WANG Y, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications[J]. J. Membr. Sci, 2018, 549: 332-349. doi: 10.1016/j.memsci.2017.12.032
    [23] BAEK J S, PARK J S, SEKHON S S, et al. Preparation and Characterisation of Non-aqueous Proton-Conducting Membranes with the Low Content of Ionic Liquids[J]. Fuel Cells, 2010, 10(5): 762-769. doi: 10.1002/fuce.200900176
    [24] YANG J, WANG J, LIU C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science, 2015, 493: 80-87. doi: 10.1016/j.memsci.2015.06.010
    [25] BASCHUK J J, LI X G. Carbon monoxide poisoning of proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2001, 25(8): 695-713. doi: 10.1002/er.713
    [26] HEO P, KAJIYAMA N, KOBAYASHI K, et al. Proton conduction in Sn(0.95)Al(0.05)P(2)O(7)-PBI-PTFE composite membrane[J]. Electrochemical and Solid State Letters, 2008, 11(6): B91-B95. doi: 10.1149/1.2897758
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回