Preparation and properties of PVC-PVP composite high temperature proton exchange membranes reinforced with PTFE for high temperature fuel cells
-
摘要: 在100℃以上工作的质子交换膜燃料电池(PEMFC)可以克服低温工作时的缺陷,提高铂催化剂抗CO中毒的能力、加速电极动力学、简化水热管理系统以及提高热的循环利用等。为了实现磷酸(PA)掺杂的高温质子交换膜(HT-PEM)同时具有高质子电导率和优异的力学性能,制备了一系列聚四氟乙烯(PTFE®)增强的聚乙烯吡咯烷酮-聚氯乙烯(PVP-PVC)复合膜。通过调整PVP和PVC的配比来寻找综合性能最佳的复合膜,并对其物理化学性能进行测试和表征。SEM结果表明,PVP-PVC均匀的填充到PTFE®膜的孔隙中,没有气泡以及孔洞。通过质子电导率以及机械性能测试结果表明,PTFE增强技术使复合膜具有良好的拉伸强度和尺寸稳定性。其中,PA掺杂的PVP与PVC质量比为4的PTFE®增强复合膜在160℃时的质子电导率高达0.161 S·cm−1,并且该膜在室温下最大的拉伸强度为15.6 MPa。在160℃时,该复合膜的峰值功率密度约为359 mW·cm−2。这些结果表明,PA掺杂的PTFE增强的复合膜具有作为HT-PEM的应用潜质。Abstract: Proton exchange membrane fuel cell (PEMFC) operating above 100℃ can overcome the defects of low temperature operation, improve the ability of platinum catalyst to resist CO poisoning, accelerate electrode kinetics, simplify hydrothermal management system and improve heat recycling. In order to achieve both high proton conductivity and excellent mechanical properties of phosphoric acid (PA)-doped high temperature Proton exchange membrane (HT-PEM), we prepared a series of polytetrafluoroethylene (PTFE®)-reinforced polyvinylpyrrolidone-polyvinyl chloride (PVP-PVC) composite membranes. By adjusting the ratio of PVP and PVC, the best composite membrane was found, and its physical and chemical properties were tested and characterized. SEM results showed that PVP-PVC was uniformly filled into the pores of PTFE® membrane without bubbles and holes. The results of proton conductivity and mechanical property test show that PTFE® enhanced membrane has good tensile strength and dimensional stability, and the proton conductivity increases with the increase of PVP content in the composite membrane. As a result, the proton conductivity of PA-doped PTFE® reinforced composite membrane i.e. the mass ratio of PVP to PVC is 4 is as high as 0.161 S·cm−1 at 160℃, and the maximum tensile strength of the membrane at room temperature is 15.6 MPa. At 160℃, the peak power density of the composite membrane is about 359 mW·cm−2. These results indicate that PA-doped PTFE-reinforced composite membranes have the potential to be used as HT-PEM.
-
图 3 PTFE®膜(a : ×30000)、PVP-PVC-1膜(b : ×5000)和PTFE/PVP-PVC-1膜(c : ×5000)表面的SEM图像;PTFE/PVP-PVC-1膜(d : ×1000)膜的截面的SEM图像
Figure 3. SEM images of the surface of the PTFE® membrane (a : ×30000), PVP-PVC-1 membrane (b : ×5000) and PTFE/PVP-PVC-1 (c : ×5000); SEM images of cross-section of PTFE/ PVP-PVC-1 (d : ×1000).
图 11 磷酸掺杂的(a) PVP-PVC复合膜、(b) PTFE增强的PVP-PVC复合膜(x方向)在机械性能和(c) PTFE增强的PVP-PVC复合膜(y方向)在常温下的机械性能
Figure 11. Mechanical properties of (a) PA doped PVP-PVC composite membranes, (b) PTFE/PVP-PVC composite membranes (streching dirrection of x) and (c) PTFE/PVP-PVC composite membranes (streching dirrection of y) at room temperature.
表 1 不同比例聚乙烯吡咯烷酮-聚氯乙烯(PVP-PVC)共混膜的原料配比
Table 1. Raw material ratio of different proportions of polyvinylpyrrolidone-polyvinyl chloride (PVP-PVC) composite membranes.
membrane PVP-PVC-4 PVP-PVC-3 PVP-PVC-2 PVP-PVC-1 PVP∶PVC
(w∶w)4∶1 3∶1 2∶1 1∶1 表 2 聚四氟乙烯(PTFE®)膜的基本参数
Table 2. Basic parameters of polytetrafluoroethylene (PTFE®) membrane.
Membrane Poriness/% Mean Aperture
Diameter/ΜmThickness/
ΜmPTFE® 80 0.15 10 表 3 不同比例的PVP-PVC浸渍液的配料比
Table 3. Raw material of different proportions of PVP-PVC DMF solution.
Membrane PVP∶PVC
(w∶w)PVP/g PVC/g DMF/
mLConcentration/
(g·mL−1)PTFE/PVP-
PVC-44∶1 2.40 0.60 25 0.12 PTFE/PVP-
PVC-33∶1 2.25 0.75 25 0.12 PTFE/PVP-
PVC-22∶1 2.00 0.10 25 0.12 PTFE/PVP-
PVC-11∶1 1.50 1.50 25 0.12 表 4 PVP-PVC 基复合膜的电导率和活化能
Table 4. Conductivity and activation energy of PVP-PVC-based composite membranes.
membrane Proton conductivity@120°C/(S·cm−1) Proton conductivity@160°C/(S·cm−1) Activation energy/(kJ·mol−1) PVP-PVC-4 0.151 ± 0.032 0.218 ± 0.033 13.1 PVP-PVC-3 0.138 ± 0.030 0.198 ± 0.028 14.5 PVP-PVC-2 0.081 ± 0.018 0.115 ± 0.012 15.1 PVP-PVC-1 0.031 ± 0.003 0.054 ± 0.007 20.2 PTFE/PVP-PVC-4 0.121 ± 0.015 0.161 ± 0.017 13.6 PTFE/PVP-PVC-3 0.093 ± 0.010 0.125 ± 0.007 14.6 PTFE/PVP-PVC-2 0.066 ± 0.009 0.094 ± 0.004 15.8 PTFE/PVP-PVC-1 0.031 ± 0.002 0.048 ± 0.003 21.0 -
[1] LI Q F, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Prog. Polym. Sci, 2009, 34(5): 449-477. doi: 10.1016/j.progpolymsci.2008.12.003 [2] LIU Y F, LEHNERT W, JANSSEN H, et al. A review of hightemperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles[J]. J. Power Sources, 2016, 311: 91-102. doi: 10.1016/j.jpowsour.2016.02.033 [3] QUARTARONE E, ANGIONI S, MUSTARELLI P, et al. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10(7): 687. doi: 10.3390/ma10070687 [4] HU Y, LI X, YAN L, et al. Improving the overall characteristics of proton exchange membranes via nanophase separation technologies: a progress review[J]. Fuel Cells, 2017, 17(1): 3-17. doi: 10.1002/fuce.201600172 [5] HAQUE M A, SULONG A B, LOH K S, et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review[J]. Int. J. Hydrogen Energy, 2017, 42(14): 9156-9179. doi: 10.1016/j.ijhydene.2016.03.086 [6] ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. Int. J. Hydrogen Energy, 2016, 41(46): 21310-21344. doi: 10.1016/j.ijhydene.2016.09.024 [7] SUBIANTO S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells[J]. Polym. Int, 2014, 63(7): 1134-1144. doi: 10.1002/pi.4708 [8] GUO Z B, XU X, XIANG Y, et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers[J]. J. Mater. Chem. 2015, A 3 (1): 148–155. [9] 邹信. 聚偏氟乙烯(PVDF)阳离子交换膜的制备及其性能研究 [D]. 兰州: 兰州交通大学, 2019.XIN Z. Preparation and properties of polyvinylidene fluoride cation exchange membrane [D]. Lanzou: Lanzhou Jiaotong University, 2019. [10] XU X, WANG H N, LU S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 286: 458-463. doi: 10.1016/j.jpowsour.2015.04.028 [11] GUO Z B, XIU R J, LU S F, et al. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. J. Mater. Chem. 2015, A 3 (16): 8847–8854. [12] BOZKURT A, MEYER W H, Proton-conducting poly(vinylpyrrolidon)- polyphosphoric acid blends[J]. J. Polym. Sci. Part B – Polym. Phys. 2001, 39 (17): 1987–1994. [13] QIAO J L, HAMAYA T, OKADA T, New highly proton-conducting membrane poly (vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl- 1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)[J]. Polymer. 2005, 46 (24) : 10809–10816. [14] KIM D J, JO M J, NAM S Y, A review of polymer-nano composite electrolyte membranes for fuel cell application[J]. J. Ind. Eng. Chem. 2015, 21: 36–52. [15] GUO Z, XIU R, LU S, et al. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. Journal of Materials Chemistry A, 2015, 3(16): 8847-8854. doi: 10.1039/C5TA00415B [16] HAO J, JIANG Y, GAO X, et al. Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger[J]. Journal of Membrane Science, 2017, 522: 23-30. doi: 10.1016/j.memsci.2016.09.010 [17] WANG S, ZHAO C, MA W, et al. Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci, 2012, 411: 54-63. [18] SONDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. J. Power Sources, 2017, 342: 570-578. doi: 10.1016/j.jpowsour.2016.12.075 [19] OZDENIR Y, OZKAN N, DEVRIM Y, Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells[J]. Electrochim. Acta. 2017, 245 : 1–13. [20] LU S F, XIU R J, XU X, et al. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. J. Membr. Sci, 2014, 464: 1-7. doi: 10.1016/j.memsci.2014.03.053 [21] LIN H L, YU T L, CHANG W K, et al. Preparation of a low proton resistance PBI/PTFE composite membrane[J]. J. Power Sources, 2007, 164(2): 481-487. doi: 10.1016/j.jpowsour.2006.11.036 [22] FENG S S, ZHONG Z X, WANG Y, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications[J]. J. Membr. Sci, 2018, 549: 332-349. doi: 10.1016/j.memsci.2017.12.032 [23] BAEK J S, PARK J S, SEKHON S S, et al. Preparation and Characterisation of Non-aqueous Proton-Conducting Membranes with the Low Content of Ionic Liquids[J]. Fuel Cells, 2010, 10(5): 762-769. doi: 10.1002/fuce.200900176 [24] YANG J, WANG J, LIU C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science, 2015, 493: 80-87. doi: 10.1016/j.memsci.2015.06.010 [25] BASCHUK J J, LI X G. Carbon monoxide poisoning of proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2001, 25(8): 695-713. doi: 10.1002/er.713 [26] HEO P, KAJIYAMA N, KOBAYASHI K, et al. Proton conduction in Sn(0.95)Al(0.05)P(2)O(7)-PBI-PTFE composite membrane[J]. Electrochemical and Solid State Letters, 2008, 11(6): B91-B95. doi: 10.1149/1.2897758
计量
- 文章访问数: 94
- HTML全文浏览量: 91
- 被引次数: 0