Preparation and electromagnetic wave absorption properties of Fe2O3@CoFe2O4/MXene composites
-
摘要: 近年来,在低频波段实现电磁吸波剂的高效微波吸收性能仍然存在很大挑战。本文通过将金属氧化物Fe2O3@CoFe2O4均匀分散于Ti3C2Tx MXene纳米片上,调控MXene含量构建导电网络的同时优化了复合电磁吸波剂的阻抗匹配,有效增强了微波吸收性能。结果表明,本研究制备的Fe2O3@CoFe2O4/MXene-3 (FCFM-3)在频率为3.60 GHz处的最小反射损耗(Reflection loss, RL)高达−72.26 dB,同时在1.272 mm的超薄厚度下,最小RL值高达−71.66 dB,实现了在低频段的高性能电磁波吸收,为吸波剂在民用领域开拓了广阔的应用前景。
-
关键词:
- Fe2O3@CoFe2O4 /
- MXene /
- 电磁吸波 /
- 反射损耗 /
- 阻抗匹配
Abstract: In recent years, it is still a great challenge to realize the high efficiency microwave absorption performance of electromagnetic wave absorbers in the low-frequency band. In this work, the metal oxide Fe2O3@CoFe2O4 is evenly distributed on Ti3C2Tx MXene nanosheets, and the impedance matching for the absorbers is optimized by regulating the content of MXene to construct a conductive network. The results show that the minimum reflection loss (RLmin) of Fe2O3@CoFe2O4/MXene-3 (FCFM-3) prepared in this study is up to −72.26 dB at the frequency of 3.60 GHz, and simultaneously achieves a RLmin value of −71.66 dB at an ultra-thin thickness of 1.272 mm, which realizes the high-performance electromagnetic wave absorption (EMA) in the low-frequency range, thereby opening up a broad application prospect for absorbers in the civil field.-
Key words:
- Fe2O3@CoFe2O4 /
- MXene /
- electromagnetic wave absorption /
- reflection loss /
- impedance matching
-
图 5 FCF和FCFM复合材料的介电常数实部$ {\varepsilon }' $ (a)、介电常数虚部$ {\varepsilon }'' $ (b)、介电损耗正切$ \text{tan}{\delta }_{\varepsilon } $ (c)、磁导率实部$ {\mu }' $ (d)、磁导率虚部$ {\mu }'' $ (e)、磁损耗正切$ \text{tan}{\delta }_{\mu } $ (f)
Figure 5. Real part of permittivity $ {\varepsilon }' $ (a), imaginary part of permittivity $ {\varepsilon }'' $ (b), tangent of dielectric loss $ \text{tan}{\delta }_{\varepsilon } $ (c), real part of permeability $ {\mu }' $ (d), imaginary part of permeability $ {\mu }'' $ (e), tangent of magnetic loss $ \text{tan}{\delta }_{\mu } $ (f) of FCF and FCFM composites.
图 7 FCFM-1和FCFM-3的三维RL值(a)、(d);(b)、(e) FCFM-1反射损耗与频率关系图及阻抗匹配图;(c)、(f) FCFM-3反射损耗与频率关系图及阻抗匹配Z图
Figure 7. 3 D RL values of FCFM-1 and FCFM-3 (a) and (d); (b), (e) FCFM-1 reflection loss and frequency relationship and impedance matching; (c), (f) FCFM-3 reflection loss and frequency relationship and impedance matching Z.
-
[1] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12.WANG Y F, ZHU L, HAN L, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12(in Chinese). [2] 杨亚楠, 夏龙, 张昕宇, 等. Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能[J]. 复合材料学报, 2019, 36(11): 2651-2664.YANG Y N, XIA L, ZHANG X Y, et al. Preparation and microwave absorbing properties of Fe3O4@lithium aluminum silicate glass ceramic/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica, 2019, 36(11): 2651-2664(in Chinese). [3] HUI S C, ZHOU X, ZHANG L M, et al. Constructing Multiphase-Induced Interfacial Polarization to Surpass Defect-Induced Polarization in Multielement Sulfide Absorbers[J]. Adv. Sci., 2024, 11(6): 2307649. doi: 10.1002/advs.202307649 [4] WEN J M, CHEN G, HUI S C, et al. Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers[J]. Advanced Powder Materials, 2024, 3(3): 100180. doi: 10.1016/j.apmate.2024.100180 [5] CHENG J Y, ZHANG H B, NING M Q, et al. Emerging Materials and Designs for Low- and Multi-Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy[J]. Advanced Functional Materials, 2022, 32(23): 2200123. doi: 10.1002/adfm.202200123 [6] CHENG J B, LIU B W, WANG Y Q, et al. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption[J]. Journal of Materials Science & Technology, 2022, 130: 157-165. [7] LI Q W, NAN K, WANG W, et al. Electrostatic self-assembly sandwich-like 2D/2D NiFe-LDH/MXene heterostructure for strong microwave absorption[J]. Journal of Colloid and Interface Science, 2023, 648: 983-993. doi: 10.1016/j.jcis.2023.06.061 [8] WANG X, OU P X, ZHENG Q, et al. Embedding Multiple Magnetic Components in Carbon Nanostructures via Metal-Oxo Cluster Precursor for High-Efficiency Low-/Middle-Frequency Electromagnetic Wave Absorption[J]. 2024. [9] MENG Y X, ZHANG Z, HOU X G, et al. Flexible and ultra-thin graphene@MXene@Fe3O4 composites with excellent microwave absorption performance[J]. Ceramics International, 2024, 50(4): 6624-6633. doi: 10.1016/j.ceramint.2023.11.411 [10] GUO Z Z, LUO P E, ZONG Z, et al. Construction of CoFe2O4/MXene hybrids with plentiful heterointerfaces for high-performance electromagnetic wave absorption through dielectric-magnetic cooperation strategy[J]. Materials Today Physics, 2023, 38: 101277. doi: 10.1016/j.mtphys.2023.101277 [11] TIAN N, WANG C K, YOU C Y. Synthesis of nanospherical CoFe2O4/Ti3C2Tx MXene composites with enhanced microwave absorbing performance[J]. Journal of Alloys and Compounds, 2023, 967: 171796. doi: 10.1016/j.jallcom.2023.171796 [12] EBRAHIMI-TAZANGI F, SEYED-YAZDI J, HEKMATARA S H. α-Fe2O3@CoFe2O4/GO nanocomposites for broadband microwave absorption by surface/interface effects[J]. Journal of Alloys and Compounds, 2022, 900: 163340. doi: 10.1016/j.jallcom.2021.163340 [13] SHEN G Z, MEI B Q, WU H Y, et al. Microwave Electromagnetic and Absorption Properties of N-Doped Ordered Mesoporous Carbon Decorated with Ferrite Nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(7): 3846-3853. doi: 10.1021/acs.jpcc.6b10906 [14] GE J W, LIU S M, LIU L, et al. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres[J]. Journal of Materials Science & Technology, 2021, 81: 190-202. [15] KHANAHMADI S, MASOUDPANAH S M. Preparation and microwave absorption properties of CoFe2O4/NiCo2O4 composite powders[J]. Ceramics International, 2024, 50(6): 9779-9788. doi: 10.1016/j.ceramint.2023.12.299 [16] ASHFAQ M Z, ASHFAQ A, MAJEED M K, et al. Confined tailoring of CoFe2O4/MWCNTs hybrid-architectures to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Ceramics International, 2022, 48(7): 9569-9578. doi: 10.1016/j.ceramint.2021.12.155 [17] WU C, WANG J, ZHANG X H, et al. Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption[J]. Nano-Micro Letters, 2023, 15(1): 7. doi: 10.1007/s40820-022-00963-w [18] CHEN G, LIANG H S, YUN J J, et al. Ultrasonic Field Induces Better Crystallinity and Abundant Defects at Grain Boundaries to Develop CuS Electromagnetic Wave Absorber[J]. Advanced Materials, 2023, 35(49): 2305586. doi: 10.1002/adma.202305586 [19] LI Z J, ZHANG L M, WU H J. A Regulable Polyporous Graphite/Melamine Foam for Heat Conduction, Sound Absorption and Electromagnetic Wave Absorption[J]. Small, 2024, 20(11): 2305120. doi: 10.1002/smll.202305120 [20] LI X, WEN C Y, YANG L T, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon, 2021, 175: 509-518. doi: 10.1016/j.carbon.2020.11.089 [21] XU R X, XU D W, ZENG Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal, 2022, 427: 130796. doi: 10.1016/j.cej.2021.130796 [22] LV H L, YANG Z H, PAN H G, et al. Electromagnetic absorption materials: Current progress and new frontiers[J]. Progress in Materials Science, 2022, 127: 100946. doi: 10.1016/j.pmatsci.2022.100946 [23] 谢文翰, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese). [24] CHEN G, LI Z J, ZHANG L M, et al. Mechanisms, design, and fabrication strategies for emerging electromagnetic wave-absorbing materials[J]. Cell Reports Physical Science, 2024, 5(7): 102097. doi: 10.1016/j.xcrp.2024.102097
计量
- 文章访问数: 44
- HTML全文浏览量: 25
- 被引次数: 0