留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝离子电池正极材料研究进展

程成 雷鑫 孙涛 范红玉 申薛靖 武湛君

程成, 雷鑫, 孙涛, 等. 铝离子电池正极材料研究进展[J]. 复合材料学报, 2024, 41(8): 3839-3865. doi: 10.13801/j.cnki.fhclxb.20240015.003
引用本文: 程成, 雷鑫, 孙涛, 等. 铝离子电池正极材料研究进展[J]. 复合材料学报, 2024, 41(8): 3839-3865. doi: 10.13801/j.cnki.fhclxb.20240015.003
CHENG Cheng, LEI Xin, SUN Tao, et al. Research progress of cathode materials for aluminum-ion batteries[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3839-3865. doi: 10.13801/j.cnki.fhclxb.20240015.003
Citation: CHENG Cheng, LEI Xin, SUN Tao, et al. Research progress of cathode materials for aluminum-ion batteries[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3839-3865. doi: 10.13801/j.cnki.fhclxb.20240015.003

铝离子电池正极材料研究进展

doi: 10.13801/j.cnki.fhclxb.20240015.003
基金项目: 青年人才托举工程(YESS20200084);国家自然科学基金(12302218);中国博士后科学基金(2022M721851)
详细信息
    通讯作者:

    孙涛,博士,教授,硕士生导师,研究方向为纳米功能材料可控制备、耐极端环境复合材料设计和制备、高性能铝离子电池和关键材料设计用开发 E-mail: suntao@jiangnan.edu.cn

    范红玉,博士,副教授,硕士生导师,研究方向为纳米功能材料 E-mail: fanhy@jiangnan.edu.cn

    武湛君,博士,教授,博士生导师,研究方向为先进复合材料与结构、结构健康监测、智能/纳米材料与结构、铝离子电池与储能结构E-mail: wuzhj@jiangnan.edu.cn

  • 中图分类号: TM911;TB333

Research progress of cathode materials for aluminum-ion batteries

Funds: Young Elite Scientists Sponsorship Program by CAST (YESS20200084); National Natural Science Foundation of China (12302218); China Postdoctoral Science Foundation (2022M721851)
  • 摘要: 铝离子电池具有高理论比容量、安全性高、低成本、原料来源充足等优势,被认为是锂离子电池的潜在替代品。但正极材料固有特性的不足极大地限制了铝离子电池的进一步发展。本文总结了正极材料在铝离子电池应用领域所发挥的重要作用,综述了铝离子电池正极材料的作用机制和研究进展,概述了碳基、过渡金属氧化物、硫化物、有机材料、金属有机骨架化合物等正极材料对铝离子电池电化学性能的影响。最后,对正极材料在铝离子电池领域亟需解决的问题进行了探讨,对未来铝离子电池正极材料的发展方向提出了展望。

     

  • 图  1  电化学中常见金属元素比容量、标准反应电位(相对于标准氢电极)、地壳中元素储量和阳离子半径[21]

    Figure  1.  Specific capacities, standard reaction potentials (vs standard hydrogen electrode), abundances of elements in the Earth's crust, and cation radii for common metal elements in electrochemistry[21]

    图  2  (a) Al/石墨(PG)电池放电过程示意图;(b) Al/PG电池的恒流充放电曲线;(c) Al/PG电池的循环性能[28]

    [EMIm]Cl—1-ethyl-3-methylimidazole chloride

    Figure  2.  (a) Schematic drawing of the Al/graphite (PG) cell during discharge; (b) Charge and discharge curves of an Al/PG cell; (c) Cycling performance of an Al/PG cell[28]

    图  3  (a) 小石墨纳米片(SGN)制备工艺示意图;(b) 天然石墨(NG)的SEM图像;(c) SGN的SEM图像[31]

    CTAB—Cetyltrimethyl ammonium bromide

    Figure  3.  (a) Schematic illustration of the preparation process of small graphite nanosheets (SGN); (b) SEM image of natural graphite(NG); (c) SEM image of SGN[31]

    图  4  NG和SGN在不同电流密度下的循环充放电曲线(a)和速率性能(b);(c) SGN的循环性能[31]

    Figure  4.  Charge and discharge curves (a) and rate performance test (b) of the cycle of NG and SGN at different current densities;(c) Cycling performance of SGN[31]

    图  5  (a) 原始膨胀石墨(EG3 K)独立膜的SEM图像;((b), (c)) 独立EG3 K阴极膜在充满电状态时的表面和截面SEM图像;((d), (e)) EG3 K正极材料在充满电状态时的TEM图像[14]

    Figure  5.  (a) SEM image of the original expanded graphite (EG3 K) free-standing film; ((b), (c)) Surface and cross-section SEM images of the free-standing EG3 K cathode film at the fully charged state; ((d), (e)) TEM images of the EG3 K cathode material at the fully charged state[14]

    图  6  (a) 不同电流密度下具有独立正极膜的EG3 K Al离子电池(AIBs)的循环性能;((b), (c)) EG3 K涂层AIBs在不同电流密度下的循环性能[15]

    ET—Triethylamine hydrochloride

    Figure  6.  (a) Cycling performance at different current densities of the EG3 K Al ion battery (AIBs) system with the free-standing cathode film; ((b), (c)) Cycling performance at different current densities of the EG3 K-coating AIBs system[15]

    图  7  (a) 柔性BDC-1800的照片;(b) 8种原始集电器的密度[35]

    CC—Carbon cloth; BDC—3D interconnect porous carbon

    Figure  7.  (a) Photos of the flexible BDC-1800; (b) Density of the eight types of pristine current collectors[35]

    图  8  石墨烯气凝胶(GA)薄膜正极的制造工艺示意图[40]

    GO—Graphene oxide; GOA—Graphene oxide aerogel

    Figure  8.  Illustration of the fabrication process of graphene aerogel (GA) film cathode[40]

    图  9  GA薄膜的形貌和结构表征:(a) 低倍率SEM图像;(b) 高倍率SEM图像;(c) TEM图像;((d), (e)) 低倍率和高倍率GA薄膜截面SEM图像;(f) GA薄膜俯视图SEM图像 [40]

    Figure  9.  Morphological and structural characterizations of GA films: (a) Low-magnification SEM image; (b) High-magnification SEM image; (c) TEM image; ((d), (e)) Low and high magnification cross-section SEM images of GA films; (f) Top-view SEM image of GA films[40]

    图  10  Al/GA的电化学性能:(a) 充放电曲线;(b) 速率性能;(c) 不同电流密度下的长循环稳定性 [40]

    Figure  10.  Electrochemical characterization of Al/GA: (a) Charge-discharge curves; (b) Rate capability; (c) Long-term cycling stability at different current densities[40]

    图  11  (a) 少层石墨烯纳米片(FLG)正极制备过程示意图;(b) FLG的平坦表面和高结晶度(插入衍射点)的TEM图像;(c) 单层(左)、双层(中)和五层(右) FLG纳米片的HRTEM图像;FLG薄膜的横切面(d)及俯视(e)的SEM图像[27]

    Figure  11.  (a) Scheme describing low-layer graphene nanosheets (FLG) cathode formation; (b) TEM image showing the flat surface, and high crystallinity (inset diffraction spots) of FLG; (c) HRTEM images of single-layer (left), double-layer (middle), and five-layer (right) FLG nanosheets; Cross-section (d) and top-view (e) SEM images of FLG film[27]

    图  12  FLG AIBs的电化学性能:(a) 倍率性能;(b) 不同循环下的充放电曲线;(c) 10 A/g电流密度下的循环性能[27]

    SLG—Reduced graphene oxide positive electrode

    Figure  12.  Electrochemical characterization of FLG-AIBs: (a) Rate capability; (b) Charge-discharge curves at different cycle; (c) Cycling stability tested at 10 A/g[27]

    图  13  (a) 多壁碳纳米管(MWCNTs)不能储存$\mathrm{AlCl}_4^{-} $示意图;(b) 柔性多壁碳纳米管(UCNTs)储存$\mathrm{AlCl}_4^{-} $示意图;(c) UCNTs制备的可弯曲柔性电极;((d), (e)) 优化后UCNTs的SEM图像和TEM图像;(f) 优化后UCNTs外缘的HRTEM图像[45]

    Figure  13.  (a) Multi-walled carbon nanotubes (MWCNTs) which cannot store $\mathrm{AlCl}_4^{-} $; (b) Unzipped multiwalled carbon nanotubes (UCNTs) to store $\mathrm{AlCl}_4^{-} $; (c) Digital photograph of a bendable flexible electrode prepared using the optimized UCNTs; ((d), (e)) SEM image and TEM image of the optimized UCNTs; (f) HRTEM image for the external edge of the optimized UCNTs[45]

    图  14  (a) UCNTs电极的充放电曲线;(b) UCNT-Al电池的循环性能[45]

    Figure  14.  (a) Charge-discharge curves of UCNTs electrode; (b) Cycle performance of UCNT-Al pouch cell[45]

    图  15  (a) 碳纳米卷的合成步骤示意图;(b) 高温裂解温度达到1000℃时中间产物的SEM图像;((c), (d))碳纳米卷的SEM图像;(e) 样品的TEM图像;(f) 高倍率TEM (插图中IFFT图像显示了单个石墨烯层)[46]

    Figure  15.  (a) Schematic illustration of the fabrication steps for the synthesis of carbon nanoscrolls; (b) SEM image of the intermediate state product when the annealing temperature reaches 1000℃; ((c), (d)) SEM images of the as-prepared carbon nanoscrolls; (e) Typical TEM image of the sample; (f) High-resolution TEM (The IFFT image in the illustration exhibits a single graphene layer)[46]

    图  16  合成碳纳米卷的循环性能:(a) 充放电曲线;(b) 长期循环性能[46]

    Figure  16.  Cycle performance of as-synthesized carbon nanoscrolls: (a) Charge-discharge curves; (b) Long-term cycle performance of carbon nanoscrolls[46]

    图  17  (a) LiV3O8 (LVO)的SEM图像;LVO的低倍率TEM图像(b)和高倍率TEM图像(c)[48]

    d(111)—Interplanar spacing

    Figure  17.  (a) SEM image of LiV3O8 (LVO); Low-magnification (b) and high-magnification (c) TEM images of LVO[48]

    图  18  (a) 不同电流密度下的倍率性能;(b) 0.59 C电流密度下的循环性能[48]

    Figure  18.  (a) Rate performances at different current densities; (b) Cycle life curves at 0.59 C[48]

    图  19  Co3S4微球的XRD图谱(a)、SEM图像(b)及其TEM图像((c), (d)) (Fig.19(b)中的插图是Co3S4微球的EDS光谱;Fig.19(d)中的插图是Co3S4微球的HRTEM图像[50])

    Figure  19.  XRD pattern (a), SEM image (b) and TEM images ((c), (d)) of the Co3S4 microspheres (Inset in Fig.19(b) is an EDS spectrum of the Co3S4 microspheres; Inset in Fig.19(d) is an HRTEM image of the Co3S4 microspheres[50])

    图  20  Co3S4正极的初始充放电曲线(a)和循环性能(b);(c) Co3S4正极用于AIBs与其他代表性金属氧化物/硫化物的循环性能的比较;(d) 不同电流密度下的Co3S4正极倍率性能[50]

    Figure  20.  Initial discharge/charge curves (a) and cycling performance (b) of Co3S4 cathode; (c) Comparison of the cycling performance of Co3S4 cathodes with other representative metal oxides/sulfides for AIBs; (d) Rate performance of Co3S4 cathode at different current densities[50]

    图  21  MoSe2 螺旋纳米棒阵列(HNRA)应用于AIBs的示意图:(a) 通过掠角沉积系统生长Mo HNRA;(b) 等离子体辅助硒化过程;(c)基于MoSe2 HNRA的AIBs的工作机制[52]

    GLAD—Glancing angle deposition; ICP—Low temperature plasma assisted

    Figure  21.  Schematic illustration of the MoSe2 helical nanorod arrays(HNRA) toward AIBs: (a) Growth of Mo HNRAs by the glancing angle depositing system; (b) Plasma-assisted selenization process; (c) Working mechanism of the MoSe2 HNRA-based AIBs[52]

    图  22  MoSe2 HNRA正极的电化学性能:(a) 充放电曲线;((b), (c)) 不同电流密度的循环性能[52]

    Figure  22.  Electrochemical performance of MoSe2 HNRA: (a) Comparison of charge/discharge curves; ((b), (c)) Cycling performance at different current densities [52]

    图  23  铝离子电池中n型、p型和双极型有机正极的反应化学[55-56]

    Figure  23.  Reaction chemistries of n-types, p-type and bipolar organic positive electrodes in Al-ion batteries[55-56]

    图  24  羰基化合物的分子结构

    Figure  24.  Molecular structures of carbonyl compounds

    图  25  (a) 菲醌(PQ)单体(PQ-Ref)、线性PQ三聚体(PQ-Lin)和PQ三角形(PQ-Δ)的结构式;(b) PQ-Δ的电化学氧化还原反应及其示意图;(c) PQ-Δ及PQ衍生物的循环性能;(d) PQ-Δ倍率性能;(e) 2 A/g的电流密度下PQ-Δ的循环性能;(f) 0.2 A/g电流密度下三角形大环共混化合物(PQ-Δ-HY)的循环性能;(g) PQ-Δ-HY的倍率性能[63]

    Figure  25.  (a) Structural formulae of phenquinone (PQ) monomer (PQ-Ref), linear PQ trimer (PQ-Lin) and PQ triangle (PQ-Δ); (b) Electrochemical redox chemistry of PQ-Δ and its schematic representation; (c) Cycling performances of PQ-Δ and PQ derivatives; (d) Rate capability measurement of PQ-Δ; (e) Extended cycling test of PQ-Δ at 2 A/g; (f) Cycling performance of PQ-Δ-HY at the current rate of 0.2 A/g; (g) Rate capability measurement of PQ-Δ-HY[63]

    图  26  (a) 苝-3, 4, 9, 10-四羧酸二酐(PTCDA)的聚合反应机制;PTCDA正极在充放电过程中的电化学氧化还原反应(b)、倍率性能和循环稳定性((c), (d));(e) 软包电池原理图;(f) AIBs中不同有机正极材料的比较[64]

    PI—Polyimide

    Figure  26.  (a) Polymerization reaction mechanism of perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA); Electrochemical redox reaction (b), rate capability and cycling stability ((c), (d)) of PTCDA in the process of charge and discharge; (e) Schematic diagram of soft pack battery; (f) Comparison of different organic positive electrode materials in AIBs[64]

    图  27  ((a), (b)) 5, 10, 15, 20-四苯基卟啉(H2TPP)和5, 10, 15, 20-四(4-羧基苯基)卟啉(H2TCPP)的分子结构;(c) H2TPP-xAlCl2模型修正的密度泛函理论(DFT)计算得出的反应过程的吉布斯自由能;(d)采用分子静电电位法(MESP)对H2TPP电极进行两步氧化还原;(e) H2TPP和H2TCPP循环性能[65]

    ΔG—Gibbs free energy

    Figure  27.  ((a), (b)) Molecular structure of 5, 10, 15, 20-tetraphenyl porphyrin (H2TPP) and 5, 10, 15, 20-tetraphenyl (4-carboxyphenyl) porphyrin (H2TCPP); (c) Gibbs free energy of the reaction process fromdensity functional theory (DFT) calculations for H2TPP-xAlCl2 model positive; (d) Two-step redox process of H2TPP electrode obtained by molecular electrostatic potential (MESP) method; (e) Cycling stability of H2TPP and H2TCPP[65]

    图  28  (a) 四氰基乙烯(TCNE)、四氰基醌二甲烷(TCNQ)和四(4-氰基苯基)甲烷(TCPM)的化学结构;((b), (c)) 利用密度泛函理论(DFT)计算的TCNE、TCNQ和TCPM的分子静电势(MESP)图、最低未占据分子轨道(LUMO)和最高占据分子轨道(HOMO);(d) 基于双电子反应的电化学氧化还原反应;(e) 带乙炔黑改性隔膜和未带的Al-TCNQ 电池中的循环性能[60]

    ABMS—Acetylene black modified separator; Eg—Energy gap

    Figure  28.  (a) Chemical structures of tetracyanoethylene (TCNE), tetracyanoquinodimethane (TCNQ), and tetrakis(4-cyanophenyl)methane (TCPM);((b), (c)) Molecular electrostatic potential (MESP) map, the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) of TCNE, TCNQ, and TCPM calculated using density functional theory (DFT); (d) Electrochemical redox reactions based on two-electron reaction; (e) Cycling performance of TCNQ in the Al batteries with and without acetylene black modified separator[60]

    图  29  CuTe@C复合材料的制备[73]

    Figure  29.  Preparation process of CuTe@C composite material[73]

    图  30  CuTe@C的电化学性能:(a) 不同电流密度下的倍率性能;(b) CuTe@C正极与其他文献中的正极的比较;(c) 循环性能[73]

    Figure  30.  Electrochemical performances of CuTe@C: (a) Rate performance at different current densities; (b) Comparison of CuTe@C electrode with other reported materials; (c) Cycling performance[73]

    图  31  NiTe2@Cu正极的电化学性能:(a) 充放电曲线;(b) 倍率性能;(c) 200 mA/g电流密度下的NiTe2@Cu与NiTe2的循环性能的比较[74]

    Figure  31.  Electrochemical properties of NiTe2@Cu: (a) Comparison of charge/discharge curves; (b) Rate performance; (c) Comparison of the cycle performance of NiTe2@Cu and NiTe2 at 200 mA/g[74]

    图  32  SEM图像:((a), (b)) Ti3AlC2;((c), (d)) Ti3C2;((e), (f)) Ti3C2@CTAB;((g), (h)) 不同放大倍率下的Ti3C2@CTAB-Se [76]

    CTAB—Cetyltrimethyl ammonium bromide

    Figure  32.  SEM images: ((a), (b)) Ti3AlC2; ((c), (d)) Ti3C2; ((e), (f)) Ti3C2@CTAB; ((g), (h)) Ti3C2@CTAB-Se at different magnifications[76]

    图  33  (a) 不同电流密度下Ti3C2@CTAB-Se的充放电曲线;(b) 循环性能;(c) 本文与其他文献中铝电池正极材料在容量和电压中的比较[76]

    Figure  33.  (a) Charge-discharge curves of Ti3C2@CTAB-Se at different current densities; (b) Cycles performance; (c) Comparison of capacity and voltage of aluminum batteries cathode materials in this work and literature[76]

    图  34  (a) 铝硫电池放电过程示意图;Al-S电池的充放电曲线(b)和循环稳定性(c)[1, 78]

    Figure  34.  (a) Illustration of discharge process for Al-S batteries; Charge/discharge curves (b) and cycling stability (c) of an Al-S battery [1, 78]

    图  35  (a) 中空纳米管碳包覆碲(Te@CT)的制备示意图;一维碳包覆纳米纤维(Te@CW)的SEM图像((b), (c))和 TEM图像((d)~(g))[81]

    Figure  35.  (a) Preparation schematic diagram of hollow nanotube carbon-coated tellurium (Te@CT); SEM images ((b), (c)) and TEM images ((d)-(g)) of one-dimensional carbon-coated Te nanofibers (Te@CW)[81]

    图  36  Te@CT的电化学性能:(a) 倍率性能曲线;(b) 循环性能[81]

    Figure  36.  Electrochemical performance of Te@CT: (a) Rate performance; (b) Cycle performance[81]

    图  37  (a) N-PC-Te和N-PC-rGO-Te复合电极的合成过程示意图;ZIF-67、N-PC-27、N-PC-Te和N-PC-rGO-Te的SEM图像(插图是相应的单个十二面体)((b)~(e))及相应的透射电镜图像((f)~(i))[82]

    Figure  37.  (a) Schematic illustration of the synthetic procedure of the N-PC-Te and N-PC-rGO-Te composite electrodes; SEM images ((b)-(e)) and corresponding TEM images ((f)-(i)) of ZIF-67, N-PC-27, N-PC-Te and N-PC-rGO-Te[82]

    N-PC—N-doped porous carbon; rGO—Reduced graphene oxide inset is the corresponding single dodecahedron; PDDA—Polydiallyl dimethyl ammonium chloride

    图  38  N-PC-rGO-Te正极的电化学性能:((a), (b))不同电流密度下的速率性能及相应的充放电曲线;(c) 500 mA/g电流密度下循环性能[82]

    Figure  38.  Electrochemical performances of N-PC-rGO-Te positive electrode: ((a), (b)) Rate performance and corresponding charge/discharge curves at various current densities; (c) Cycling performance at a current density of 500 mA/g[82]

  • [1] LI C, HOU C C, CHEN L, et al. Rechargeable Al-ion batteries[J]. EnergyChem, 2021, 3(2): 100049. doi: 10.1016/j.enchem.2020.100049
    [2] LI H, LI L, LIN R B, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges[J]. EnergyChem, 2019, 1(1): 100006. doi: 10.1016/j.enchem.2019.100006
    [3] HUANG Y, LI J. Key challenges for grid-scale lithium-ion battery energy storage[J]. Advanced Energy Materials, 2022, 12(48): 2202197. doi: 10.1002/aenm.202202197
    [4] 李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527.

    LI Zhongming, LI Bin, FENG Dong, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527 (in Chinese).
    [5] ZHANG J, LIU T, CHENG X, et al. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage[J]. Nano Energy, 2019, 60: 340-361. doi: 10.1016/j.nanoen.2019.03.078
    [6] PIRAYESH P, JIN E, WANG Y, et al. Na metal anodes for liquid and solid-state Na batteries[J]. Energy & Environmental Science, 2024, 17(2): 442-496.
    [7] WANG H, MATIOS E, LUO J, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chemical Society Reviews, 2020, 49(12): 3783-3805. doi: 10.1039/D0CS00033G
    [8] ZHENG X, GU Z, FU J, et al. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries[J]. Energy & Environmental Science, 2021, 14(9): 4936-4947.
    [9] 陈亚鑫, 蔡雅菱, 曹振江, 等. 软@硬复合炭结构设计及其协同电化学储钾[J]. 复合材料学报, 2023, 40(1): 192-200.

    CHEN Yaxin, CAI Yaling, CAO Zhenjiang, et al. Hard@soft composite carbon anodes towards synergistic potassium storage[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 192-200 (in Chinese).
    [10] LIU Q, DENG W, SUN C F. A potassium–tellurium battery[J]. Energy Storage Materials, 2020, 28: 10-16. doi: 10.1016/j.ensm.2020.02.021
    [11] DING J, ZHANG H, FAN W, et al. Potassium-sulfur batteries: Review of emerging potassium-sulfur batteries[J]. Advanced Materials, 2020, 32(23): 2070174. doi: 10.1002/adma.202070174
    [12] HUANG X L, GUO Z, DOU S X, et al. Rechargeable potassium-selenium batteries[J]. Advanced Functional Materials, 2021, 31(29): 2102326. doi: 10.1002/adfm.202102326
    [13] PARK J, XU Z L, YOON G, et al. Calcium-ion batteries: Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite[J]. Advanced Materials, 2020, 32(4): 2070029. doi: 10.1002/adma.202070029
    [14] YAO Z, HEGDE V I, ASPURU-GUZIK A, et al. Discovery of calcium-metal alloy anodes for reversible Ca-ion batteries[J]. Advanced Energy Materials, 2019, 9(9): 1802994. doi: 10.1002/aenm.201802994
    [15] 涂天成, 李龙燕, 代启航. 水系镁离子电池研究进展[J]. 复合材料学报, 2023, 40(7): 3756-3770.

    TU Tiancheng, LI Longyan, DAI Qihang. Research progress of aqueous magnesium ion battery[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3756-3770 (in Chinese).
    [16] LI C, SHYAMSUNDER A, KEY B, et al. Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries[J]. Joule, 2023, 7(12): 2798-2813. doi: 10.1016/j.joule.2023.10.012
    [17] NG K L, AMRITHRAJ B, AZIMI G. Nonaqueous rechargeable aluminum batteries[J]. Joule, 2022, 6(1): 134-170. doi: 10.1016/j.joule.2021.12.003
    [18] RAMESH A, TRIPATHI A, BALAYA P. A mini review on cathode materials for sodium-ion batteries[J]. International Journal of Applied Ceramic Technology, 2022, 19(2): 913-923. doi: 10.1111/ijac.13920
    [19] WANG G, WANG Z, SHI H, et al. Progress and perspective on rechargeable magnesium-ion batteries[J]. Science China Chemistry, 2024, 67(1): 214-246. doi: 10.1007/s11426-022-1454-0
    [20] ELIA G A, KRAVCHYK K V, KOVALENKO M V, et al. An overview and prospective on Al and Al-ion battery technologies[J]. Journal of Power Sources, 2021, 481: 228870. doi: 10.1016/j.jpowsour.2020.228870
    [21] WU F, YANG H, BAI Y, et al. Paving the path toward reliable cathode materials for aluminum-ion batteries[J]. Advanced Materials, 2019, 31(16): 1806510. doi: 10.1002/adma.201806510
    [22] SHEN X, SUN T, WU Z, et al. Ultrafast charging and ultralong cycle life in solid-state Al-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(15): 8178-8185. doi: 10.1039/D2TA00630H
    [23] SHEN X, SUN T, YANG L, et al. Ultra-fast charging in aluminum-ion batteries: Electric double layers on active anode[J]. Nature Communications, 2021, 12(1): 820. doi: 10.1038/s41467-021-21108-4
    [24] CAI T, ZHAO L, HU H, et al. Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries[J]. Energy & Environmental Science, 2018, 11(9): 2317-2341.
    [25] HUANG Z, SONG W L, LIU Y, et al. Stable quasi-solid-state aluminum batteries[J]. Advanced Materials, 2022, 34(8): 2104557. doi: 10.1002/adma.202104557
    [26] ZHOU L, YANG H, HAN T, et al. Carbon-based modification materials for lithium-ion battery cathodes: Advances and perspectives[J]. Frontiers in Chemistry, 2022, 10: 101446. doi: 10.3389/fchem.2022.914930
    [27] HUANG H, ZHOU F, LU P, et al. Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries[J]. Energy Storage Materials, 2020, 27: 396-404. doi: 10.1016/j.ensm.2020.02.011
    [28] LIN M C, GONG M, LU B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 324-328. doi: 10.1038/nature14340
    [29] WANG D Y, WEI C Y, LIN M C, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode[J]. Nature Communications, 2017, 8(1): 14283. doi: 10.1038/ncomms14283
    [30] LI Z, NIU B, LIU Y, et al. Prelithiation treatment of graphite as cathode material for rechargeable aluminum batteries[J]. Electrochimica Acta, 2018, 263: 68-75. doi: 10.1016/j.electacta.2017.12.166
    [31] HU H, CAI T, BAI P, et al. Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries[J]. Chemical Communications, 2020, 56(10): 1593-1596. doi: 10.1039/C9CC06895C
    [32] DONG X, XU H, CHEN H, et al. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery[J]. Carbon, 2019, 148: 134-140. doi: 10.1016/j.carbon.2019.03.080
    [33] DONG X, CHEN H, LAI H, et al. A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability[J]. Journal of Energy Chemistry, 2022, 66: 38-44. doi: 10.1016/j.jechem.2021.07.016
    [34] WANG J, TU J, LEI H, et al. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries[J]. RSC Advances, 2019, 9(67): 38990-38997. doi: 10.1039/C9RA07234A
    [35] ZHOU Z, LI N, WANG P, et al. All-carbon positive electrodes for stable aluminium batteries[J]. Journal of Energy Chemistry, 2020, 42: 17-26. doi: 10.1016/j.jechem.2019.03.027
    [36] KONG Y, TANG C, HUANG X, et al. Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries[J]. Advanced Functional Materials, 2021, 31(17): 2010569. doi: 10.1002/adfm.202010569
    [37] RAJEEVAN S, JOHN S, GEORGE S C. The effect of poly(vinylidene fluoride) binder on the electrochemical performance of graphitic electrodes[J]. Journal of Energy Storage, 2021, 39: 102654. doi: 10.1016/j.est.2021.102654
    [38] KUMAR C N S, KONRAD M, CHAKRAVADHANULA V S K, et al. Nanocrystalline graphene at high temperatures: Insight into nanoscale processes[J]. Nanoscale Advances, 2019, 1(7): 2485-2494. doi: 10.1039/C9NA00055K
    [39] SONG Y, ZOU W, LU Q, et al. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene[J]. Small, 2021, 17(48): 2007600. doi: 10.1002/smll.202007600
    [40] HUANG H, ZHOU F, SHI X, et al. Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries[J]. Energy Storage Materials, 2019, 23: 664-669. doi: 10.1016/j.ensm.2019.03.001
    [41] SONI S K, THOMAS B, KAR V R. A comprehensive review on CNTs and CNT-reinforced composites: Syntheses, characteristics and applications[J]. Materials Today Communications, 2020, 25: 101546. doi: 10.1016/j.mtcomm.2020.101546
    [42] ZHU S, YANG X, YAO Y, et al. One-dimensional heterostructures of polyoxometalate-encapsulated carbon nanotubes for enhanced capacitive energy storage[J]. Cell Reports Physical Science, 2023, 4(6): 101446. doi: 10.1016/j.xcrp.2023.101446
    [43] QI S, SUN J, MA J, et al. Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium–sulfur batteries[J]. Nanotechnology, 2019, 30(2): 024001. doi: 10.1088/1361-6528/aae6e5
    [44] LIU S, CAO Z, MENG Y, et al. Aerophilic Co-embedded N-doped carbon nanotube arrays as highly efficient cathodes for aluminum–air batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26853-26860.
    [45] ZHANG E, WANG J, WANG B, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Materials, 2019, 23: 72-78. doi: 10.1016/j.ensm.2019.05.030
    [46] LIU Z, WANG J, DING H, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. doi: 10.1021/acsnano.8b03961
    [47] LI C, ZHANG X, HE W. Design and modification of cathode materials for high energy density aluminum-ion batteries: A review[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(16): 14353-14370. doi: 10.1007/s10854-018-9478-1
    [48] SOUNDHARRAJAN V, NITHIANANTH S, LEE J, et al. LiV3O8 as an intercalation-type cathode for aqueous aluminum-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(35): 18162-18169. doi: 10.1039/D2TA04823J
    [49] WANG S, JIAO S, WANG J, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode[J]. ACS Nano, 2017, 11(1): 469-477. doi: 10.1021/acsnano.6b06446
    [50] LI H, YANG H, SUN Z, et al. A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries[J]. Nano Energy, 2019, 56: 100-108. doi: 10.1016/j.nanoen.2018.11.045
    [51] YIN X, REN Y, WU L, et al. Construction of polysulfides defense system for greatly improving the long cycle life of metal sulfide anodes for sodium-ion batteries[J]. Journal of Energy Chemistry, 2022, 71: 210-217. doi: 10.1016/j.jechem.2022.03.012
    [52] AI Y, WU S C, WANG K, et al. Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries[J]. ACS Nano, 2020, 14(7): 8539-8550. doi: 10.1021/acsnano.0c02831
    [53] SHADIKE Z, TAN S, WANG Q C, et al. Review on organosulfur materials for rechargeable lithium batteries[J]. Materials Horizons, 2021, 8(2): 471-500. doi: 10.1039/D0MH01364A
    [54] LEE S, KWON G, KU K, et al. Recent progress in organic electrodes for Li and Na rechargeable batteries[J]. Advanced Materials, 2018, 30(42): 1704682. doi: 10.1002/adma.201704682
    [55] TIE Z, NIU Z. Design strategies for high-performance aqueous Zn/organic batteries[J]. Angewandte Chemie International Edition, 2020, 59(48): 21293-21303. doi: 10.1002/anie.202008960
    [56] YANG Z, WANG F, MENG P, et al. Recent advances in developing organic positive electrode materials for rechargeable aluminum-ion batteries[J]. Energy Storage Materials, 2022, 51: 63-79. doi: 10.1016/j.ensm.2022.06.018
    [57] LU Y, CHEN J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142. doi: 10.1038/s41570-020-0160-9
    [58] FRIEBE C, SCHUBERT U S. High-power-density organic radical batteries[J]. Topics in Current Chemistry, 2017, 375(1): 19. doi: 10.1007/s41061-017-0103-1
    [59] BITENC J, LINDAHL N, VIZINTIN A, et al. Concept and electrochemical mechanism of an Al metal anode-organic cathode battery[J]. Energy Storage Materials, 2020, 24: 379-383. doi: 10.1016/j.ensm.2019.07.033
    [60] GUO F, HUANG Z, WANG M, et al. Active cyano groups to coordinate AlCl2+ cation for rechargeable aluminum batteries[J]. Energy Storage Materials, 2020, 33: 250-257. doi: 10.1016/j.ensm.2020.08.016
    [61] YOO D J, CHOI J W. Elucidating the extraordinary rate and cycling performance of phenanthrenequinone in aluminum-complex-ion batteries[J]. The Journal of Physical Chemistry Letters, 2020, 11(6): 2384-2392. doi: 10.1021/acs.jpclett.0c00324
    [62] CASEY A, DIMITROV S D, SHAKYA-TULADHAR P, et al. Effect of systematically tuning conjugated donor polymer lowest unoccupied molecular orbital levels via cyano substitution on organic photovoltaic device performance[J]. Chemistry of Materials, 2016, 28(14): 5110-5120. doi: 10.1021/acs.chemmater.6b02030
    [63] KIM D J, YOO D J, OTLEY M T, et al. Rechargeable aluminium organic batteries[J]. Nature Energy, 2019, 4(1): 51-59.
    [64] LIU Y, LUO W, LU S, et al. Novel carbonyl cathode for green and sustainable aluminum organic batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53702-53710.
    [65] HAN X, LI S, SONG W L, et al. Stable high-capacity organic aluminum-porphyrin batteries[J]. Advanced Energy Materials, 2021, 11(32): 2101446. doi: 10.1002/aenm.202101446
    [66] MAO M, LUO C, POLLARD T P, et al. A pyrazine-based polymer for fast-charge batteries[J]. Angewandte Chemie International Edition, 2019, 58(49): 17820-17826. doi: 10.1002/anie.201910916
    [67] CHEN J, ZHU Q, JIANG L, et al. Rechargeable aqueous aluminum organic batteries[J]. Angewandte Chemie International Edition, 2021, 60(11): 5794-5799. doi: 10.1002/anie.202011144
    [68] LI H, FANG M, HOU Y, et al. Different effect of the additional electron-withdrawing cyano group in different conjugation bridge: The adjusted molecular energy levels and largely improved photovoltaic performance[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12134-12140.
    [69] CHEN H, XU H, WANG S, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12): eaao7233.
    [70] HU Y, YE D, LUO B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries[J]. Advanced Materials, 2018, 30(2): 1703824. doi: 10.1002/adma.201703824
    [71] ZHANG K, KIRLIKOVALI K O, LE Q V, et al. Extended metal-organic frameworks on diverse supports as electrode nanomaterials for electrochemical energy storage[J]. ACS Applied Nano Materials, 2020, 3(5): 3964-3990. doi: 10.1021/acsanm.0c00702
    [72] WANG J, KIRLIKOVALI K O, KIM S Y, et al. Metal organic framework-based nanostructure materials: Applications for non-lithium ion battery electrodes[J]. CrystEngComm, 2022, 24(16): 2925-2947. doi: 10.1039/D1CE01737C
    [73] QIN T, QIN L, LI J. Metal-organic framework-derived CuTe@porous carbon composites as novel cathodes for aluminum ion batteries[J]. Ionics, 2022, 28(6): 2853-2863. doi: 10.1007/s11581-022-04530-6
    [74] QIN L, QIN T, ZHONG J, et al. Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 928: 117014. doi: 10.1016/j.jelechem.2022.117014
    [75] HUANG P, ZHANG S, YING H, et al. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries[J]. Nano Research, 2021, 14(4): 1218-1227. doi: 10.1007/s12274-020-3221-y
    [76] LI Z, WANG X, ZHANG W, et al. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries[J]. Chemical Engineering Journal, 2020, 398: 125679. doi: 10.1016/j.cej.2020.125679
    [77] KLIMPEL M, KOVALENKO M V, KRAVCHYK K V. Advances and challenges of aluminum-sulfur batteries[J]. Communications Chemistry, 2022, 5(1): 77. doi: 10.1038/s42004-022-00693-5
    [78] YANG H, YIN L, LIANG J, et al. An aluminum-sulfur battery with a fast kinetic response[J]. Angewandte Chemie International Edition, 2018, 57(7): 1898-1902. doi: 10.1002/anie.201711328
    [79] ZHANG X, JIAO S, TU J, et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries[J]. Energy & Environmental Science, 2019, 12(6): 1918-1927.
    [80] ZHANG X, TU J, WANG M, et al. A strategy for massively suppressing the shuttle effect in rechargeable Al-Te batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(20): 4000-4009. doi: 10.1039/D0QI00841A
    [81] LI Z, LYU W, WU G, et al. Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries[J]. Electrochimica Acta, 2022, 401: 139498. doi: 10.1016/j.electacta.2021.139498
    [82] ZHANG X, WANG M, TU J, et al. Hierarchical N-doped porous carbon hosts for stabilizing tellurium in promoting Al-Te batteries[J]. Journal of Energy Chemistry, 2021, 57: 3783-3785.
  • 加载中
图(38)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  319
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2023-12-26
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回