Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber
-
摘要: 微流控纺丝技术融合了微流控技术和纺丝技术的优点,可设计制备常规纺丝技术难以实现的复杂结构微纤维。通过对微尺度流体流动的精确调控及利用微通道内流体的层流流动特性,微流控纺丝技术制备的多元结构功能微纤维在生物医学、柔性电子、分析化学等领域具有广泛应用。本文系统介绍了微流控纺丝技术的纺丝装置及固化机制,综述了实心/多孔纤维、中空/核壳纤维、Janus/双组分/多组分纤维、纺锤状纤维、螺旋纤维等多元结构纤维的制备方法、结构特点及其在柔性可穿戴中的应用,最后分析了微流控纺丝技术在制备微纤维中的优势与不足,并对微流控纺丝技术的应用前景进行展望。Abstract: Microfluidic spinning technology combines the advantages of microfluidic technology and spinning technology, and can design and fabricate complex microfibers that are difficult to be realized by conventional spinning technology. Through the precise regulation of micro-scale fluid flow and the use of laminar flow characteristics of the fluid in the micro-channel, microfluidic spinning technology has a wide range of applications in biomedicine, flexible electronics, analytical chemistry and other fields. In this paper, the spinning device and curing mechanism of microfluidic spinning technology are systematically introduced, and the preparation methods, structural characteristics and applications of multi-structure fibers such as solid/porous fiber, hollow/core-shell fiber, Janus/two-component/multi-component fiber, spindle fiber and spiral fiber are reviewed. Finally, the advantages and disadvantages of microfluidic spinning technology in the preparation of microfibers are analyzed, and the application prospect of microfluidic spinning technology is forecasted.
-
Key words:
- microfiber /
- chip /
- microfluidic spinning /
- multistructural fiber /
- flexible and wearable
-
图 3 微流控制备纤维固化原理示意图[30]:(a)光聚合;(b)化学交联;(c)离子交联;(d)溶剂交换;(e)非溶剂诱导的相分离;(f)溶剂蒸发
Figure 3. Schematic diagram of curing principle of microfluidic controlled standby fiber[30]: (a) Photopolymerization; (b) Chemical crosslinking; (c) Ionic crosslinking; (d) Solvent exchange; (e) Non-solvent induced phase separation; (f) Solvent vaporing
图 4 (a) 碳纳米枝/聚氨酯(CNBs/TPU)纤维制造的示意图[37];(b) 具有荧光和储能能力的CNBs的制造示意图[38];(c) 分层多孔石墨烯纤维组装织物(HP-GFF)的微流控组装及基于织物的超级电容器的构建及其应用[39];(d) 石墨烯中氮掺杂机制及制备N掺杂的多孔石墨烯纤维的示意图[41]
UV—Ultraviolet; GO—Graphite oxide; P-GO—Porous-graphite oxide; GOFF—Graphite oxide fiber-assembled fabric; PVA—Polyvinyl alcohol; rGO—Reduced-graphite oxide; MGFs—Microfluidic-directed graphene fibers
Figure 4. (a) Schematic diagram of carbon nanobranches/thermoplastic polyurethane (CNBs/TPU) fiber manufacturing[37]; (b) Schematic diagram of manufacturing CNBs with fluorescent and energy storage capabilities[38]; (c) Microfluidic assembly of hierarchical porous graphene fibers-assembled fabric (HP-GFF) and construction and application of fabric-based supercapacitors[39]; (d) Schematic diagram of nitrogen doping mechanisms in graphene and preparation of N-doped porous graphene fibers[41]
图 5 (a)用于电子皮肤的具有MXene封装的形态水凝胶超细纤维的示意图[42];(b)双中空与薄带状纤维的制备[43];(c)具有中空螺旋结构的磁性混合微型游泳器的微流体制造示意图[44]
Q—Quantity of flow; NaAlg—Sodium alginate; PEG-DA—Poly(ethylene glycol) diacrylate; PI—Photoinitiator
Figure 5. (a) Schematic diagram of morphologic hydrogel microfiber with MXene encapsulation for electronic skin[42]; (b) Preparation of double hollow and thin ribbon fibers[43]; (c) Schematic diagram of microfluidics manufacturing of magnetic hybrid micro-swimmer with hollow spiral structure[44]
图 6 (a)用于超级电容器的仿生多组分碳纳米管微纤维的示意图[46];(b)液态金属(LM)集成微纤维的制备装置和过程及所产生的中空和LM集成微纤维图[47];(c)氧化镍/石墨烯多孔核壳纤维的制备机制及应用[48];(d)碳纳米管–藻酸盐纤维的制造与微流控纺丝装置[49]
PU—Polyurethane; CNTs—Carbon nanotubes; PS-G3 PAMAM—Polystyrene-generation 3 polyamidoamine; FSMSC—Fiber-shaped micro-supercapacitor; VA-Ni(OH)2 NSs—Vertically aligned Ni(OH)2 nanosheets; VA-NiO NSs—Vertically aligned NiO nanosheets; P-GF—Porous graphene fiber
Figure 6. (a) Schematic diagram of biomimetic multi-component carbon nanotube microfibers for supercapacitors[46]; (b) Liquid metal (LM)-integrated microfiber preparation device and process and diagrams of hollow and LM-integrated microfibers generated[47]; (c) Preparation mechanism and application of nickel oxide/graphene porous core-shell fibers[48]; (d) Fabrication of carbon nanotubule-alginate fibers and microfluidic spinning devices[49]
图 7 (a) Janus双层水凝胶纤维制备及SEM图像[50];(b)通过流动辅助动态双重交联策略制备全纤维素分级海绵气凝胶纤维(CGFs)[51];(c)同轴层流微流控纺丝装置示意图及水凝胶纤维横截面的SEM图像[52]
SA—Sodium alginate; AM—Acrylamide; BIS—N, N′-methylenebisacrylamide; KPS—Potassium peroxodisulfate; TEMED—N, N, N′, N′-tetramethylethylenediamine; d—Diameter
Figure 7. (a) Preparation and SEM images of Janus double-layer hydrogel fiber[50]; (b) Customization of all-cellulose graded sponge-aerogel fibers (CGFs) through a flow-assisted dynamic dual-cross-linking strategy[51]; (c) Schematic of the coaxial laminar flow microfluidic spinning device and SEM image of the cross-section of the hydrogel fiber[52]
图 8 (a) 制备海藻酸钙纺锤结纤维的示意图[53];(b)水包气微流控方法制造的具有仿生纺锤结微纤维[54];(c)制造纺锤结微纤维的毛细管微流控系统的示意图及捕雾和热触发水收集性能[55]
CCD—Charge coupled device
Figure 8. (a) Schematic of preparation of calcium alginate fusion-bonded fibers[53]; (b) Bionic spindle junction microfibers manufactured by water vapor microfluidic method[54]; (c) Schematic drawings of capillary microfluidic systems for the manufacture of fusion-junction microfibers and their fog-trapping and heat-triggered water collection properties[55]
图 9 (a)制备螺旋纤维的同轴毛细管微流控装置及应用[57];(b)微流控制造的用于柔性电子的仿生微弹簧的示意图及对各种人体运动的电导率响应[58];(c)用于生成聚合物螺旋微纤维的毛细管微流控装置的示意图[59];(d)具有套筒层的微流控装置和螺旋微纤维制造示意图[60]
d—Diameter; l—Length; A—Amplitude; λ—Wavelength; CCS—Carboxylated chitosan; PVA—Polyvinyl alcohol; EVOH—Ethylene-vinyl alcohol copolymer; PUU3-12—Amphiphilic linear polyurethane-urea; α, β, γ—Angle; R0—Initial resistance of the sensor; R—Resistance during stretching
Figure 9. (a) Coaxial capillary microfluidic device for helical fiber preparation and its application[57]; (b) Schematic diagram of bionic micro-springs for flexible electrons built by microflow control and conductivity response to various human movements[58]; (c) Schematic diagram of a capillary microfluidic device for generating polymer helical microfibers[59]; (d) Schematic diagram of microfluidic device with sleeve layer and spiral microfiber manufacturing[60]
-
[1] ILLATH K, KAR S, GUPTA P, et al. Microfluidic nanomaterials: From synthesis to biomedical applications[J]. Biomaterials,2022,280:121247. doi: 10.1016/j.biomaterials.2021.121247 [2] AYKAR S S, ALIMORADI N, TAGHAVIMEHR M, et al. Microfluidic seeding of cells on the inner surface of alginate hollow microfibers[J]. Advanced Healthcare Materials,2022,11(11):2102701. [3] JIAO J, WANG F, HUANG J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal,2021,426:131826. doi: 10.1016/j.cej.2021.131826 [4] GUO J, YU Y, CAI L, et al. Microfluidics for flexible electronics[J]. Materials Today,2021,44:105-135. doi: 10.1016/j.mattod.2020.08.017 [5] FILIPPI M, BUCHNER T, YASA O, et al. Microfluidic tissue engineering and bio-actuation[J]. Advanced Materials,2022,34(23):2108427. [6] LI Z, ZHANG X, OUYANG J, et al. Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis[J]. Bioactive Materials,2021,6(11):4053-4064. doi: 10.1016/j.bioactmat.2021.04.014 [7] NOVIANA E, OZER T, CARRELL C S, et al. Microfluidic paper-based analytical devices: From design to applications[J]. Chemical Reviews,2021,121(19):11835-11885. doi: 10.1021/acs.chemrev.0c01335 [8] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured fibers via electrospinning[J]. Advanced Materials,2001,13(1):70-72. doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H [9] YU Y, WEI W, WANG Y, et al. Simple spinning of heterogeneous hollow microfibers on chip[J]. Advanced Materials,2016,28(31):6649-6655. doi: 10.1002/adma.201601504 [10] LYU H, LIU J, QIU S, et al. Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance[J]. Journal of Materials Chemistry A,2016,4(25):9881-9889. doi: 10.1039/C6TA02083F [11] PINTO T V, FERNANDES D M, GUEDES A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology[J]. Chemical Engineering Journal,2018,350:856-866. doi: 10.1016/j.cej.2018.05.155 [12] KIM Y S, LU J, SHIH B, et al. Scalable manufacturing of solderable and stretchable physiologic sensing systems[J]. Advanced Materials,2017,29(39):1701312. doi: 10.1002/adma.201701312 [13] JEONG W, KIM J, KIM S, et al. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes[J]. Lab Chip,2004,4(6):576-580. doi: 10.1039/B411249K [14] YU Y, SHANG L, GUO J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols,2018,13(11):2557-2579. doi: 10.1038/s41596-018-0051-4 [15] AMINIAN M, BERNARDI F, CAMASSA R, et al. How boundaries shape chemical delivery in microfluidics[J]. Science,2016,354(6317):1252-1256. doi: 10.1126/science.aag0532 [16] VERA D, GARCÍA-DÍAZ M, TORRAS N, et al. Engineering tissue barrier models on hydrogel microfluidic platforms[J]. ACS Applied Materials Interfaces,2021,13(12):13920-13933. [17] SOLLIER E, MURRAY C, MAODDI P, et al. Rapid prototyping polymers for microfluidic devices and high pressure injections[J]. Lab on a Chip,2011,11(22):3752-3765. doi: 10.1039/c1lc20514e [18] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature,2006,442(7101):368-373. doi: 10.1038/nature05058 [19] REYES D R, IOSSIFIDIS D, AUROUX P A, et al. Micro total analysis systems. 1. Introduction, theory and technology[J]. Analytical Chemistry,2002,74(12):2623-2636. doi: 10.1021/ac0202435 [20] MCDONALD J C, WHITESIDES G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts of Chemical Research,2002,35(7):491-499. doi: 10.1021/ar010110q [21] REN K, ZHOU J, WU H. Materials for microfluidic chip fabrication[J]. Accounts of Chemical Research,2013,46(11):2396-2406. doi: 10.1021/ar300314s [22] KARA A, VASSILIADOU A, ONGOREN B, et al. Engineering 3D printed microfluidic chips for the fabrication of nanomedicines[J]. Pharmaceutics,2021,13(12):2134. doi: 10.3390/pharmaceutics13122134 [23] ACHILLE C, PARRA-CABRERA C, DOCHY R, et al. Microfluidic devices: 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics[J]. Advanced Materials,2021,33(25):2170192. doi: 10.1002/adma.202170192 [24] SUGIOKA K, CHENG Y. Femtosecond laser processing for optofluidic fabrication[J]. Lab on a Chip,2012,12(19):3576-3589. doi: 10.1039/c2lc40366h [25] ABGRALL P, GUÉ A M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review[J]. Journal of Micromechanics and Microengineering,2007,17(5):R15-R49. doi: 10.1088/0960-1317/17/5/R01 [26] MCDONALD J C, DUFFY D C, ANDERSON J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis,2000,21(1):27-40. doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C [27] QIN X, LIU J, ZHANG Z, et al. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives[J]. TrAC Trends in Analytical Chemistry,2021,143:116371. doi: 10.1016/j.trac.2021.116371 [28] NUNES J K, TSAI S S H, WAN J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis[J]. Journal of Physics D-Applied Physics, 2013, 46(11): 114002. [29] CASADEVALL I, SOLVAS X, DEMELLO A. Droplet microfluidics: Recent developments and future applications[J]. Chemical Communications,2011,47(7):1936-1942. doi: 10.1039/C0CC02474K [30] DU X Y, LI Q, WU G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials,2019,31(52):1903733. doi: 10.1002/adma.201903733 [31] JUN Y, KANG E, CHAE S, et al. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering[J]. Lab Chip,2014,14(13):2145-2160. doi: 10.1039/C3LC51414E [32] DANIELE M A, RADOM K, LIGLER F S, et al. Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping[J]. RSC Advances,2014,4(45):23440-23446. doi: 10.1039/C4RA03667K [33] HU M, DENG R, SCHUMACHER K M, et al. Hydrodynamic spinning of hydrogel fibers[J]. Biomaterials,2010,31(5):863-869. doi: 10.1016/j.biomaterials.2009.10.002 [34] HOU L, JIANG H, LEE D. Bubble-filled silica microfibers from multiphasic flows for lightweight composite fabrication[J]. Chemical Engineering Journal,2016,288:539-545. doi: 10.1016/j.cej.2015.12.014 [35] WU F, JU X J, HE X H, et al. A novel synthetic microfiber with controllable size for cell encapsulation and culture[J]. Journal of Materials Chemistry B,2016,4(14):2455-2465. doi: 10.1039/C6TB00209A [36] LEE B R, LEE K H, KANG E, et al. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers[J]. Biomicrofluidics,2011,5(2):022208. doi: 10.1063/1.3576903 [37] LU M, SHARIFI F, HASHEMI N N, et al. Fluid-induced alignment of carbon nanofibers in polymer fibers[J]. Macromolecular Materials and Engineering,2017,302(7):1600544. doi: 10.1002/mame.201600544 [38] CHEN Q L, WU X, CHENG H, et al. Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors[J]. Nanoscale Advances,2019,1(9):3614-3620. doi: 10.1039/C9NA00181F [39] GUAN T, SHEN S, CHENG Z, et al. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors[J]. Chemical Engineering Journal,2022,440:135878. doi: 10.1016/j.cej.2022.135878 [40] PAN H, WANG D, PENG Q, et al. High-performance microsupercapacitors based on bioinspired graphene microfibers[J]. ACS Applied Materials & Interfaces,2018,10(12):10157-10164. [41] WU G, TAN P, WU X, et al. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes[J]. Advanced Functional Materials,2017,27(36):1702493. doi: 10.1002/adfm.201702493 [42] GUO J, YU Y, ZHANG D, et al. Morphological hydrogel microfibers with MXene encapsulation for electronic skin[J]. Research,2021,2021:7065907. [43] CHOI C H, YI H, HWANG S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip,2011,11(8):1477-1483. doi: 10.1039/c0lc00711k [44] TANG M J, WANG W, LI Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Industrial & Engineering Chemistry Research,2018,57(29):9430-9438. [45] GUO J, YU Y, WANG H, et al. Conductive polymer hydrogel microfibers from multiflow microfluidics[J]. Small,2019,15(15):1805162. doi: 10.1002/smll.201805162 [46] GUO J, YU Y, SUN L, et al. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor[J]. Chemical Engineering Journal,2020,397:125517. doi: 10.1016/j.cej.2020.125517 [47] YU Y, GUO J, MA B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics[J]. Science Bulletin,2020,65(20):1752-1759. doi: 10.1016/j.scib.2020.06.002 [48] MENG J, WU G, WU X, et al. Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage[J]. Advanced Science,2020,7(1):1901931. doi: 10.1002/advs.201901931 [49] ZHAO J, ZHU J, YU N, et al. Fabrication of oriented carbon nanotube-alginate microfibers using a microfluidic device[J]. Functional Materials Letters, 2019, 12(6): 1940002. [50] ZHOU M, GONG J, MA J. Continuous fabrication of near-infrared light responsive bilayer hydrogel fibers based on microfluidic spinning[J]. e-Polymers,2019,19(1):215-224. doi: 10.1515/epoly-2019-0022 [51] LI Q, YUAN Z, ZHANG C, et al. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure[J]. Nano Letters, 2022, 22(9): 3516-3524. [52] PENG L, LIU Y, HUANG J, et al. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers[J]. European Polymer Journal,2018,103:335-341. doi: 10.1016/j.eurpolymj.2018.04.019 [53] JI X, GUO S, ZENG C, et al. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device[J]. RSC Advances,2015,5(4):2517-2522. doi: 10.1039/C4RA10389K [54] TIAN Y, ZHU P, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nature Communications, 2017, 8(1): 1080. [55] SHANG L, FU F, CHENG Y, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J]. Small,2017,13(4):1600286. doi: 10.1002/smll.201600286 [56] SHANG L, WANG Y, YU Y, et al. Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics[J]. Journal of Materials Chemistry A,2017,5(29):15026-15030. doi: 10.1039/C7TA02924A [57] YU Y, FU F, SHANG L, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials,2017,29(18):1605765. doi: 10.1002/adma.201605765 [58] YU Y, GUO J, SUN L, et al. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics[J]. Research,2019,2019:1-9. [59] YANG H, GUO M. Bioinspired polymeric helical and superhelical microfibers via microfluidic spinning[J]. Macromolecular Rapid Communications,2019,40(12):1900111. doi: 10.1002/marc.201900111 [60] MA W, LIU D, LING S, et al. High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow[J]. ACS Applied Materials Interfaces,2021,13(49):59392-59399.