留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoO3-Cu2O/CN三相复合光催化剂的制备及其降解四环素性能

崔春丽 郝振华 舒永春

崔春丽, 郝振华, 舒永春. MoO3-Cu2O/CN三相复合光催化剂的制备及其降解四环素性能[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 崔春丽, 郝振华, 舒永春. MoO3-Cu2O/CN三相复合光催化剂的制备及其降解四环素性能[J]. 复合材料学报, 2024, 42(0): 1-14.
CUI Chunli, HAO Zhenhua, SHU Yongchun. Preparation and tetracycline degradation performance of MoO3-Cu2O/CN ternary photocatalyst[J]. Acta Materiae Compositae Sinica.
Citation: CUI Chunli, HAO Zhenhua, SHU Yongchun. Preparation and tetracycline degradation performance of MoO3-Cu2O/CN ternary photocatalyst[J]. Acta Materiae Compositae Sinica.

MoO3-Cu2O/CN三相复合光催化剂的制备及其降解四环素性能

基金项目: 中原关键实验室项目 (GJJSGFYQ202302和GJJSGFZD202303)
详细信息
    通讯作者:

    郝振华,博士,副教授,硕士生导师,研究方向等离子球化;特种粉体材料;金属3D打印 E-mail: zh_hao@zzu.edu.cn

  • 中图分类号: TB331

Preparation and tetracycline degradation performance of MoO3-Cu2O/CN ternary photocatalyst

Funds: Project of Zhongyuan Critical Metals Laboratory (GJJSGFZD202303 and GJJSGFYQ202302).
  • 摘要: 本文通过水热法先在g-C3N4(CN)上原位生长MoO3,继而在其表面电沉积Cu2O构建了MoO3-Cu2O/CN三相复合光催化剂。采用XRD、SEM、TEM、XPS和FTIR等手段对催化剂进行表征,证明了复合光催化剂的成功制备。以四环素为目标污染物,探究了所制备光催化剂对四环素的降解效果及光催化剂的作用机制。结果表明,在可见光下,1.5 MoO3-Cu2O-100/CN复合材料对四环素的降解效果最佳,150 min时降解率为97.75%,分别是CN(45.28%)和1.5 MoO3/CN(63.24%)的2.2和1.5倍。采用自由基捕获实验及电子顺磁共振光谱(EPR)对机制进行了探究,证实了羟基自由基(·OH)和超氧自由基(·O2)是光催化过程的主要活性物质。综合各项测试计算 CN、MoO3 和Cu2O 的价带和导带位置,表明三相复合光催化剂形成了双Z型异质结。同时光催化活性的提高主要归因于双Z机制的构建,拓宽了可见光吸收范围,保留了氧化还原能力较高的空穴电子,降低了光生电子与空穴的复合率。稳定性实验结果表明制备的催化剂在经过四次循环后,对四环素的降解率仍达到90%以上,具有优异的稳定性,可循环使用。

     

  • 图  1  MoO3-Cu2O/ g-C3N4(CN)光催化剂的制备过程示意图

    Figure  1.  Schematic diagram of the preparation of MoO3-Cu2O/ g-C3N4 (CN) photocatalysts

    图  2  CN、1.5MoO3/CN和1.5MoO3-Cu2O-100/CN催化剂的 (a) XRD图谱和 (b) FT-IR图

    Figure  2.  (a) XRD patterns and (b) FTIR spectra of CN, 1.5MoO3/CN and 1.5MoO3-Cu2O-100/CN catalysts

    图  3  (a) CN,(b) MoO3,(c) 1.5MoO3/CN和 (d) 1.5MoO3-Cu2O-100/CN的SEM图像

    Figure  3.  SEM images of (a) CN, (b) MoO3, (c) 1.5MoO3/CN and (d) 1.5MoO3-Cu2O -100/CN

    图  4  (a) 1.5MoO3-Cu2O-100/CN的TEM图像, (b) 1.5MoO3-Cu2O-100/CN的STEM-EDX图像以及(c) 显示了C、N、O、Mo和Cu的元素分布图

    Figure  4.  (a) 1.5MoO3-Cu2O-100/CN; (b) TEM images of 1.5MoO3-Cu2O-100/CN and (c) STEM-EDX images of 1.5MoO3-Cu2O-100/CN showing the element distribution mappings of C, N, O, Mo and Cu

    图  5  1.5MoO3-Cu2O-100/CN催化剂中 (a) C,(b) N,(c) O,(d) Mo和 (e) Cu元素的高分辨率XPS光谱

    Figure  5.  High-resolution XPS spectra of (a) C, (b) N, (c) O, (d) Mo and (e) Cu in 1.5MoO3-Cu2O-100/CN catalyst

    图  6  (a) CN、1.5MoO3/CN和1.5MoO3-Cu2O-100/CN的UV -Vis DRS图。由Tauc计算出的 (b) CN, 1.5MoO3/CN和1.5MoO3-Cu2O-100/CN的带隙

    Figure  6.  UV-Vis-DRS of (a) CN, 1.5MoO3/CN and 1.5MoO3-Cu2O-100/CN. Calculated band gap from the Tauc plot of (b) CN, 1.5MoO3/CN and1.5MoO3-Cu2O-100/CN

    图  7  (a) 不同光催化剂对四环素的 (a) 降解曲线, (b) 一级动力学曲线,(c) 降解速率常数 (k, min−1), (d) 不同MoO3含量的四环素光降解效率

    Figure  7.  (a) Tetracycline degradation curves, (b) first-order kinetics curves, and (c) degradation rate constants (k, min−1) of different photocatalysts,(d) Tetracycline photo-degradation efficiency of with different MoO3 contents

    图  8  (a) 初始四环素浓度;(b)溶液pH值对1.5MoO3-Cu2O-100/CN光催化剂降解四环素的影响

    Figure  8.  Effects of (a) initial tetracycline concentration; (b) solution pH on the degradation of tetracycline in the presence of 1.5MoO3-Cu2O-100/CN photocatalyst

    图  9  (a) 1.5MoO3-Cu2O-100/CN对四环素降解的四次稳定性循环测试和降解四环素前后的XRD图谱

    Figure  9.  (a) Four cycling tests of tetracyclinphotocatalytic degradation with 1.5MoO3-Cu2O-100/CN and (b) before and after photocatalytic degradation of tetracycline

    图  10  (a) 1. MoO3-Cu2O-100/CN在不同清除剂存在下对四环素的降解曲线, (b) DMPO-捕获·OH和 (c) ·O2与1.5MoO3-Cu2O-100/CN复合材料的EPR光谱

    Figure  10.  (a) Degradation curve of tetracycline by 1.5MoO3-Cu2O-100/CN in the presence of different scavengers, EPR spectra of (b) DMPO to capture ·OH and (c)·O2 with 1.5MoO3-Cu2O-100/CN composite

    图  11  CN、1.5MoO3/CN和1.5MoO3-Cu2O-100/CN样品的 (a) PL光谱,(b) 瞬态光电流响应和 (c) EIS谱图

    Figure  11.  (a) PL spectra, (b) transient photocurrent responses, (c) EIS of CN, 1.5MoO3/CN and 1.5MoO3-Cu2O-100/CN samples

    图  12  不同MoO3含量下样品的(a) 瞬态光电流响应和 (b) EIS谱图

    Figure  12.  (a) Transient photocurrent responses and (b) EIS of the samples with different MoO3 contents

    图  13  (a) MoO3和 (b) Cu2O样品的(αhν)2对hν的曲线;(c) CN, (d) MoO3和 (e) Cu2O的XPS价带谱

    Figure  13.  (αhν)2 vs radiation energy (hv) plots for (a) MoO3 and (b) Cu2O samples. Valence-band XPS spectrum of the sample (c) CN; (d) MoO3 and(e) Cu2O

    图  14  1.5MoO3-Cu2O-100/CN复合催化剂的反应机制

    Figure  14.  Possible reaction mechanism of 1.5MoO3-Cu2O-100/CN composite catalyst

    图  15  1.5MoO3-Cu2O-100/CN 催化剂降解四环素的路径示意图

    Figure  15.  Tetracycline degradation pathway by 1.5MoO3-Cu2O-100/CN catalyst

  • [1] LEON S, Li D, HAPGOOG K, et al. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater[J]. Applied Catalysis B Environmental, 2016, 198: 224-233. doi: 10.1016/j.apcatb.2016.05.043
    [2] 熊维, 李奥祥, 谢金玺, 等. 氮掺杂的硫化镉锌光催化降解水中抗生素[J]. 中国环境科学, 2024, 44(1): 499-509.

    XIONG Wei, LI Aoxiang, XIE Jinxi, et al. Photocatalytic degradation of antibiotics by Nitrogen-doped Zinc cadmium sulfide[J]. China Environmental Science 2024, 44(1): 499-509(in Chinese).
    [3] ZHI D, WANG J B, ZHOU Y Y, et al. Development of ozonation and reactive electrochemical membrane coupled process: enhanced tetracycline mineralization and toxicity reduction[J]. Chemical Engineering Journal, 2020, 283: 123149.
    [4] 尹 泽, 高博熠, 刘愿强, 等. 花状 g-C3N4/Pd/Bi2WO6光催化剂协同降解苯扎贝特机制研究[J]. 中国环境科学, 2024.

    YIN Ze, GAO Yibo, LIU Yuanqiang, et al. Study on Flower-like g-C3N4/Pd/Bi2WO6 Heterostructure and Its Synergistic Degradation Mechanism of Bezafibrate[J]. China Environmental Science, 2024(in Chinese).
    [5] WU Y, WANG H, TU W G, et al. Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x=1-5) layered crystals for visible light-driven catalytic hydrogen generation and carbon dioxide reduction[J]. Applied Catalysis B Environmental, 2019, 256: 117810. doi: 10.1016/j.apcatb.2019.117810
    [6] ZHANG J J, WANG H, YUAN X Z, et al. Tailored indium sulfide-based materials for solar-energy conversion and utilization[J]. Journal of Photochemistry and Photobiology C: Photochemistry, Review, 2019, 38: 1-26. doi: 10.1016/j.jphotochemrev.2018.11.001
    [7] LIU Q, GUO Y R, CHEN Z C, et al. Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Applied Catalysis B Environmental, 2016, 183: 231-241. doi: 10.1016/j.apcatb.2015.10.054
    [8] HE F, WANG Z X, LI Y X, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental, 2020, 269: 118828. doi: 10.1016/j.apcatb.2020.118828
    [9] 刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2 复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2): 628-636.

    LIU Quanfeng, PENG Weidong, ZHONG Chengwei, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 628-636(in Chinese).
    [10] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4 改性 g-C3N4 光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8): 3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3845-3851(in Chinese).
    [11] TANG M L, AO Y H, WANG C, et al. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide[J]. Applied Catalysis B Environmental, 2020, 268: 118395 doi: 10.1016/j.apcatb.2019.118395
    [12] ZHAO G S, DING J, ZHOU F Y, et al. Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway[J]. Chemical Engineering Journal, 2021, 384: 126704.
    [13] Alex K, Aarya Prabhakaran A, Jayakrishnan K, et al. Charge coupling enhanced photocatalytic activity of BaTiO3/MoO3 heterostructures[J]. ACS Applied Materials Interface, 2019, 11(43): 40114-40124. doi: 10.1021/acsami.9b14919
    [14] Adhikari S, Lee H, Kim D, et al. Efficient visible-light induced electron-transfer in Z-Scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123504. doi: 10.1016/j.cej.2019.123504
    [15] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-Scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011
    [16] HU F, ZOU Y Z, WANG L L, et al. Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition[J]. International Journal of Hydrogen Energy, 2016, 34: 15172-15180.
    [17] FATTAHIMOGHADDAM H, MAHVELATI-SHAMSABADI T, LEE B K, Effcient Photodegradation of Rhodamine B and Tetracycline over Robust and Green g-C3N4 Nanostructures: Supramolecular Design[J]. Journal of Hazardous Materials, 2021, 403: 123703–123736.
    [18] RAJENDRAN R, VIGNESH S, SASIREKA A, et al. Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure[J]. Colloid and Interface Science Communications, 2021, 44: 100480.
    [19] WANG F L, CHEN P, FENG Y P, Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B Environmental, 2017, 207, 103-113.
    [20] LI X D, FENG Y, LI M C, et al. Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance[J]. Advanced Functional Materials, 2015, 25: 6858-6866. doi: 10.1002/adfm.201502938
    [21] ADHIKARI S, KIM D-H. Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B[J]. Applied Surface Science, 2020, 511: 145595. doi: 10.1016/j.apsusc.2020.145595
    [22] HOSSAIN M, AI-GAASHANI R, HAMOUD H, et al. Controlled growth of Cu2O thin films by electrodeposition approach[J]. Materials Science Semicondductor Processing, 2017, 63: 203-211. doi: 10.1016/j.mssp.2017.02.012
    [23] 乔瑞泽, 侯斌, 林杰, 等. HCS@TiO2 光催化复合材料的制备及其染料降解性能[J]. 复合材料学报, 2024, 41(5): 2527-2538.

    QIAO Ruize, HOU Bin, LIN Jie, et al. Preparation and degradation dyestuffs performance of HCS@TiO2 photocatalytic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2527-2538(in Chinese).
    [24] XIONG J, LI X B, HUANG J T, et al. C3N4/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production[J]. Applied Catalysis B Environmental, 2020, 266: 118602. doi: 10.1016/j.apcatb.2020.118602
    [25] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1163-1172.

    SHEN Jiuying, LIU Bixia, ZHAO Yuxiang, Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1163-1172(in Chinese).
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-06-02
  • 录用日期:  2024-06-08
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回