Effect of opening position on the connection performance of 3D woven composite materials
-
摘要: 为了揭示织物结构和开孔位置对三维机织复合材料开孔连接性能与失效机制的影响,设计并制备了3种不同结构的三维机织复合材料,对不同开孔位置连接结构的承载性能和损伤模式进行了研究。研究表明,端径比(E/D)对不同结构参数的复合材料的影响存在差异,当E/D从3减小到2时,3种结构复合材料极限挤压强度分别下降5.3%、9.9%和5.9%;E/D从2减小到1时,极限挤压强度分别下降73.3%、68.9%和69.8%。E/D从3减小到1时,复合材料的损伤模式由挤压损伤转变为界面脱粘及试样端部纱线脱粘,结构中各纱线层的损伤演化呈现明显角度特征。Abstract: To reveal the effect of opening position on pinned-joints mechanical properties and failure mechanism of 3D woven composites, three different 3D woven composite structures were designed and prepared, and the load-bearing performance and damage modes of these composites with different opening positions was discussed. The results show that there are differences in the effect of end-diameter ratio (E/D) on composites with different structural parameters. When the E/D decreases from 3 to 2, the ultimate compressive strength of three structural composites decreases by 5.3%, 9.9%, and 5.9%, respectively. When the E/D decreases from 2 to 1, the ultimate compressive strength decreases by 73.3%, 68.9%, and 69.8%, respectively. When the E/D changes from 3 to 1, the damage mode of the composites changes from extrusion damage to interfacial debonding, and the damage propagation of each yarn layer presents obvious angle features.
-
Key words:
- 3D woven composites /
- multiaxial /
- opening position /
- mechanical properties /
- failure mechanism
-
表 1 材料性能参数
Table 1. Parameters of material properties
Yarn specification Density/(g·cm−3) Yarn linear density/tex Tensile strength/MPa Tensile modulus/GPa Breakage elongation/% TG800 HX-12K 1.8 500 5678 290 2.32 TG800 HX-6K 1.8 250 5678 290 2.32 TDE86 1.2 – 80 3.5 – 表 2 三维机织复合材料结构参数
Table 2. Structural parameter of 3D woven composites
No. Fabric structure Yarn linear density/tex Fabric density/(tows·cm−1) Thickness/
mmFiber volume
frction/vol%Warp/
Bias yarnWeft Binder yarn Warp Weft Bias yarn MW3D-I [90°/0°/90°/0°/90°/
0°/90°/0°/90°]1000 1000 250 4 4 4 4.27 54.63 MW3D-II [90°/45°/−45°/90°/
−45°/45°/90°]1000 1000 250 4 4 4 3.85 54.73 MW3D-III [90°/45°/0°/−45°/90°/
−45°/0°/45°/90°]1000 1000 250 4 4 4 4.73 54.20 表 3 开孔连接试样尺寸
Table 3. Dimensions of composites joints
No. Length
L/mmWidth
W/mmE/mm Aperture
D/mmW/D E/D A 135 36 18 6 6 3 B 135 36 12 6 6 2 C 135 36 6 6 6 1 表 4 三维机织复合材料开孔连接极限载荷
Table 4. Maximum loads of the 3D woven composites opening joint
No. Load/kN A(E/D=3)/kN B(E/D=2)/kN C(E/D=1)/kN MW3D-I 12.59(±0.87) 11.19(±0.44) 3.89(±0.23) MW3D-II 11.23(±1.30) 10.84(±1.18) 4.33(±0.29) MW3D-III 15.61(±0.56) 15.24(±0.48) 5.38(±0.27) -
[1] GUO Q W, ZHANG Y F, GUO R Q, et al. Influences of weave parameters on the mechanical behavior and fracture mechanisms of multidirectional angle-interlock 3D woven composites[J]. Materials Today Communications, 2020, 23: 100886. doi: 10.1016/j.mtcomm.2019.100886 [2] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001GUO Ruiqing, ZHANG Yifan, LYU Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2409-2417(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200110.001 [3] ZHANG Y F, TONG J, GUO Q W, et al. Hierarchical multiscale analysis for 3D woven composite leaf spring landing gear[J]. Thin-Walled Structures, 2023, 189: 110913. doi: 10.1016/j.tws.2023.110913 [4] LIU X, YANG Y, WANG Y, et al. Effects of hole perpendicularity error on mechanical performance of single-lap double-bolt composite joints[J]. International Journal of Polymer Science, 2017, 2017: 2790198. [5] MARA V, HAGHANI R, AL-EMRANI M. Improving the performance of bolted joints in composite structures using metal inserts[J]. Journal of Composite Materials, 2016, 50(21): 3001-3018. doi: 10.1177/0021998315615204 [6] LOPEZ-CRUZ P, LALIBERTE J, LESSARD L. Investigation of bolted/bonded composite joint behaviour using design of experiments[J]. Composite Structures, 2017, 170: 192-201. doi: 10.1016/j.compstruct.2017.02.084 [7] 山美娟, 赵丽滨. CFRP 复合材料螺栓连接失效载荷不确定性的评估方法[J]. 复合材料学报, 2021, 38(5): 1468-1475.SHAN Meijuan, ZHAO Libin. An evaluation method for uncertainty in failure load of CFRP composite bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1468-1475(in Chinese). [8] 山美娟, 赵丽滨. 基于可靠性的CFRP螺栓连接优化设计方法[J]. 北京航空航天大学学报, 2021, 47(11): 2249-2255. doi: 10.13700/j.bh.1001-5965.2020.0425SHAN Meijuan, ZHAO Libin. Reliability-based design optimization method of CFRP bolted joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2249-2255(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0425 [9] LIU Y, ZHU J, CHEN Z, et al. Mechanical behavior of 2.5D (shallow bend-joint) and 3D orthogonal quartzf/silica composites by silicasol-infiltration-sintering[J]. Materials Science and Engineering: A, 2012, 532: 230-235. doi: 10.1016/j.msea.2011.10.084 [10] ZHANG Y F, LI M H, GUO Q W, et al. Tensile failure of multiaxial 3D woven composites with an open-hole: An experimental and numerical study[J]. Composite Structures, 2022, 279: 114746. doi: 10.1016/j.compstruct.2021.114746 [11] ABDULLAH M S, ABDULLAH A B, SAMAD Z. Structural integrity assessment of a composite joint: A review[J]. Hole-Making and Drilling Technology for Composites, 2019: 31-46. [12] 戴迪, 张威, 张俊杰, 等. 三维角联锁机织复合材料螺栓连接结构的拉伸性能及失效损伤[J]. 东华大学学报(自然科学版), 2020(4): 521-528.DAI Di, ZHANG Wei, ZHANG Junjie, et al. Tensile properties and failure damage of three-dimensional angle-interlock woven composites bolted joint structures[J]. Journal of Donghua University (Natural Science), 2020(4): 521-528(in Chinese). [13] 梁双强, 张成龙, 陈革, 等. 开孔三维编织复合材料强度预测及应力分析[J]. 西北工业大学学报, 2020, 38(4): 889-896. doi: 10.3969/j.issn.1000-2758.2020.04.025LIANG Shuangqiang, ZHANG Chenglong, CHEN Ge, et al. Open-hole 3D braided composites strength prediction and stress analysis[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 889-896(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.04.025 [14] PALWANKAR M P. Evaluation of a modified fixture for testing composite bolted joints with countersunk fasteners under bearing loads[D]. San Diego, CA: San Diego State University, 2016. [15] ZHANG Y, ZHOU Z, PAN S, et al. Experimental characterization of failure behavior for three-dimensional woven carbon/carbon composites under pin-loading[J]. Ceramics International, 2021, 47(7): 9462-9470. doi: 10.1016/j.ceramint.2020.12.079 [16] ASCIONE F, FEO L, MACERI F. An experimental investigation on the bearing failure load of glass fibre/epoxy laminates[J]. Composites Part B: Engineering, 2009, 40(3): 197-205. doi: 10.1016/j.compositesb.2008.11.005 [17] AKTAS A, DIRIKOLU M H. The effect of stacking sequence of carbon epoxy composite laminates on pinned-joint strength[J]. Composite Structures, 2003, 62(1): 107-111. doi: 10.1016/S0263-8223(03)00096-5 [18] PAKDIL M. Failure analysis of composite single bolted-joints subjected to bolt pretension[J]. Indian Journal of Engineering and Materials Sciences, 2009, 16(2): 79-85. [19] PARK H J. Effects of stacking sequence and clamping force on the bearing strengths of mechanically fastened joints in composite laminates[J]. Composite Structures, 2001, 53(2): 213-221. doi: 10.1016/S0263-8223(01)00005-8 [20] 孙晓伦, 陈利, 张一帆, 等. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(8): 74-79. doi: 10.13475/j.fzxb.20210505207SUN Xiaolun, CHEN Li, ZHANG Yifan, et al. Tensile properties of 3D woven composites with holes[J]. Journal of Textile Research, 2022, 43(8): 74-79(in Chinese). doi: 10.13475/j.fzxb.20210505207 [21] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Behavior of three-dimensional woven carbon composites in single-bolt bearing[J]. Composite Structures, 2015, 127: 175-184. doi: 10.1016/j.compstruct.2015.03.022 [22] HU J, ZHANG K, XU Y, et al. Modeling on bearing behavior and damage evolution of single-lap bolted composite interference-fit joints[J]. Composite Structures, 2019, 212: 452-464. doi: 10.1016/j.compstruct.2019.01.044 [23] LIU F R, YAO W T, ZHAO L B, et al. An improved 2D finite element model for bolt load distribution analysis of composite multi-bolt single-lap joints[J]. Composite Structures, 2020, 253: 112770. [24] GUO Q, ZHANG Y, LI D, et al. Experimental characterization of the compressive properties and failure mechanism of novel multiaxial 3D woven composites[J]. Composites Communications, 2021, 28: 100905. [25] American Society for Testing Materials. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M-17 [S]. West Conshohocken: American Society for Testing Materials International, 2017.