留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开孔位置对三维机织复合材料连接性能的影响

张一帆 史志伟 张茜 刘燕峰 张代军 陈利

张一帆, 史志伟, 张茜, 等. 开孔位置对三维机织复合材料连接性能的影响[J]. 复合材料学报, 2024, 41(9): 4888-4896. doi: 10.13801/j.cnki.fhclxb.20231219.001
引用本文: 张一帆, 史志伟, 张茜, 等. 开孔位置对三维机织复合材料连接性能的影响[J]. 复合材料学报, 2024, 41(9): 4888-4896. doi: 10.13801/j.cnki.fhclxb.20231219.001
ZHANG Yifan, SHI Zhiwei, ZHANG Qian, et al. Effect of opening position on the connection performance of 3D woven composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4888-4896. doi: 10.13801/j.cnki.fhclxb.20231219.001
Citation: ZHANG Yifan, SHI Zhiwei, ZHANG Qian, et al. Effect of opening position on the connection performance of 3D woven composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4888-4896. doi: 10.13801/j.cnki.fhclxb.20231219.001

开孔位置对三维机织复合材料连接性能的影响

doi: 10.13801/j.cnki.fhclxb.20231219.001
基金项目: 国家科技重大专项项目(2017-VII-0011-0177);航空发动机及燃气轮机基础科学中心项目(P2022-B-IV-014-001);天津市海河实验室项目(22HHXCJC00007);先进功能复合材料重点实验室基金(6142906210406)
详细信息
    通讯作者:

    陈利,博士,教授,博士生导师,研究方向为先进纺织复合材料 E-mail:chenli@tiangong.edu.cn

  • 中图分类号: TB332

Effect of opening position on the connection performance of 3D woven composite materials

Funds: National Science and Technology Major Project (2017-VII-0011-0177); Science Center for Gas Turbine Project (P2022-B-IV-014-001); Tianjin Haihe Laboratory Scientific Research Program (22HHXCJC00007); Science and Technology Foundation of Key Laboratory of Advanced Functional Composites (6142906210406)
  • 摘要: 为了揭示织物结构和开孔位置对三维机织复合材料开孔连接性能与失效机制的影响,设计并制备了3种不同结构的三维机织复合材料,对不同开孔位置连接结构的承载性能和损伤模式进行了研究。研究表明,端径比(E/D)对不同结构参数的复合材料的影响存在差异,当E/D从3减小到2时,3种结构复合材料极限挤压强度分别下降5.3%、9.9%和5.9%;E/D从2减小到1时,极限挤压强度分别下降73.3%、68.9%和69.8%。E/D从3减小到1时,复合材料的损伤模式由挤压损伤转变为界面脱粘及试样端部纱线脱粘,结构中各纱线层的损伤演化呈现明显角度特征。

     

  • 图  1  三维机织预制体结构及树脂传递模塑成型(RTM)示意图:(a) MW3D-I;(b) MW3D-II;(c) MW3D-III;(d) RTM工艺流程;(e) 下模;(f) 整体模具

    Figure  1.  Schematic diagram of 3D woven preforms and resin transfer moulding (RTM) process: (a) MW3D-I; (b) MW3D-II; (c) MW3D-III; (d) RTM process flow; (e) Lower plate; (f) RTM mold

    图  2  开孔试样示意图

    Figure  2.  Schematic diagram of open-hole specimen

    L—Length; W—Width; E—Edge; Φ, D—Aperture; H—Thinkness

    图  3  开孔连接试验夹具示意图

    Figure  3.  Schematic diagram of the test fixture for composites joints

    图  4  三维机织复合材料(3DWC)连接试验过程

    Figure  4.  Experimental process of 3D woven composites (3DWC) joints

    图  5  不同结构三维机织复合材料连接结构载荷-位移曲线

    Figure  5.  Load-displacement curves of 3DWCs joints with different fabric structures

    图  6  三维机织复合材料连接结构试样表面高度分布状态

    Figure  6.  Surface height distribution of 3DWCs joint specimens

    图  7  不同端径比三维机织复合材料连接结构载荷-位移曲线

    Figure  7.  Load-displacement curves of 3DWCs joints with different edge/diameter ratios

    图  8  三维机织复合材料开孔连接强度

    Figure  8.  Strength of 3DWC joints

    图  9  三维机织复合材料连接结构损伤形貌

    Figure  9.  Damage morphology of 3DWC joints

    图  10  MW3D-Ⅲ开孔损伤形态CT扫描图

    Figure  10.  CT scan of open hole damage morphology of MW3D-Ⅲ

    表  1  材料性能参数

    Table  1.   Parameters of material properties

    Yarn specification Density/(g·cm−3) Yarn linear density/tex Tensile strength/MPa Tensile modulus/GPa Breakage elongation/%
    TG800 HX-12K 1.8 500 5678 290 2.32
    TG800 HX-6K 1.8 250 5678 290 2.32
    TDE86 1.2 80 3.5
    下载: 导出CSV

    表  2  三维机织复合材料结构参数

    Table  2.   Structural parameter of 3D woven composites

    No.Fabric structureYarn linear density/texFabric density/(tows·cm−1)Thickness/
    mm
    Fiber volume
    frction/vol%
    Warp/
    Bias yarn
    WeftBinder yarnWarpWeftBias yarn
    MW3D-I[90°/0°/90°/0°/90°/
    0°/90°/0°/90°]
    100010002504444.2754.63
    MW3D-II[90°/45°/−45°/90°/
    −45°/45°/90°]
    100010002504443.8554.73
    MW3D-III[90°/45°/0°/−45°/90°/
    −45°/0°/45°/90°]
    100010002504444.7354.20
    下载: 导出CSV

    表  3  开孔连接试样尺寸

    Table  3.   Dimensions of composites joints

    No. Length
    L/mm
    Width
    W/mm
    E/mm Aperture
    D/mm
    W/D E/D
    A 135 36 18 6 6 3
    B 135 36 12 6 6 2
    C 135 36 6 6 6 1
    下载: 导出CSV

    表  4  三维机织复合材料开孔连接极限载荷

    Table  4.   Maximum loads of the 3D woven composites opening joint

    No. Load/kN
    A(E/D=3)/kN B(E/D=2)/kN C(E/D=1)/kN
    MW3D-I 12.59(±0.87) 11.19(±0.44) 3.89(±0.23)
    MW3D-II 11.23(±1.30) 10.84(±1.18) 4.33(±0.29)
    MW3D-III 15.61(±0.56) 15.24(±0.48) 5.38(±0.27)
    下载: 导出CSV
  • [1] GUO Q W, ZHANG Y F, GUO R Q, et al. Influences of weave parameters on the mechanical behavior and fracture mechanisms of multidirectional angle-interlock 3D woven composites[J]. Materials Today Communications, 2020, 23: 100886. doi: 10.1016/j.mtcomm.2019.100886
    [2] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001

    GUO Ruiqing, ZHANG Yifan, LYU Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2409-2417(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200110.001
    [3] ZHANG Y F, TONG J, GUO Q W, et al. Hierarchical multiscale analysis for 3D woven composite leaf spring landing gear[J]. Thin-Walled Structures, 2023, 189: 110913. doi: 10.1016/j.tws.2023.110913
    [4] LIU X, YANG Y, WANG Y, et al. Effects of hole perpendicularity error on mechanical performance of single-lap double-bolt composite joints[J]. International Journal of Polymer Science, 2017, 2017: 2790198.
    [5] MARA V, HAGHANI R, AL-EMRANI M. Improving the performance of bolted joints in composite structures using metal inserts[J]. Journal of Composite Materials, 2016, 50(21): 3001-3018. doi: 10.1177/0021998315615204
    [6] LOPEZ-CRUZ P, LALIBERTE J, LESSARD L. Investigation of bolted/bonded composite joint behaviour using design of experiments[J]. Composite Structures, 2017, 170: 192-201. doi: 10.1016/j.compstruct.2017.02.084
    [7] 山美娟, 赵丽滨. CFRP 复合材料螺栓连接失效载荷不确定性的评估方法[J]. 复合材料学报, 2021, 38(5): 1468-1475.

    SHAN Meijuan, ZHAO Libin. An evaluation method for uncertainty in failure load of CFRP composite bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1468-1475(in Chinese).
    [8] 山美娟, 赵丽滨. 基于可靠性的CFRP螺栓连接优化设计方法[J]. 北京航空航天大学学报, 2021, 47(11): 2249-2255. doi: 10.13700/j.bh.1001-5965.2020.0425

    SHAN Meijuan, ZHAO Libin. Reliability-based design optimization method of CFRP bolted joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2249-2255(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0425
    [9] LIU Y, ZHU J, CHEN Z, et al. Mechanical behavior of 2.5D (shallow bend-joint) and 3D orthogonal quartzf/silica composites by silicasol-infiltration-sintering[J]. Materials Science and Engineering: A, 2012, 532: 230-235. doi: 10.1016/j.msea.2011.10.084
    [10] ZHANG Y F, LI M H, GUO Q W, et al. Tensile failure of multiaxial 3D woven composites with an open-hole: An experimental and numerical study[J]. Composite Structures, 2022, 279: 114746. doi: 10.1016/j.compstruct.2021.114746
    [11] ABDULLAH M S, ABDULLAH A B, SAMAD Z. Structural integrity assessment of a composite joint: A review[J]. Hole-Making and Drilling Technology for Composites, 2019: 31-46.
    [12] 戴迪, 张威, 张俊杰, 等. 三维角联锁机织复合材料螺栓连接结构的拉伸性能及失效损伤[J]. 东华大学学报(自然科学版), 2020(4): 521-528.

    DAI Di, ZHANG Wei, ZHANG Junjie, et al. Tensile properties and failure damage of three-dimensional angle-interlock woven composites bolted joint structures[J]. Journal of Donghua University (Natural Science), 2020(4): 521-528(in Chinese).
    [13] 梁双强, 张成龙, 陈革, 等. 开孔三维编织复合材料强度预测及应力分析[J]. 西北工业大学学报, 2020, 38(4): 889-896. doi: 10.3969/j.issn.1000-2758.2020.04.025

    LIANG Shuangqiang, ZHANG Chenglong, CHEN Ge, et al. Open-hole 3D braided composites strength prediction and stress analysis[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 889-896(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.04.025
    [14] PALWANKAR M P. Evaluation of a modified fixture for testing composite bolted joints with countersunk fasteners under bearing loads[D]. San Diego, CA: San Diego State University, 2016.
    [15] ZHANG Y, ZHOU Z, PAN S, et al. Experimental characterization of failure behavior for three-dimensional woven carbon/carbon composites under pin-loading[J]. Ceramics International, 2021, 47(7): 9462-9470. doi: 10.1016/j.ceramint.2020.12.079
    [16] ASCIONE F, FEO L, MACERI F. An experimental investigation on the bearing failure load of glass fibre/epoxy laminates[J]. Composites Part B: Engineering, 2009, 40(3): 197-205. doi: 10.1016/j.compositesb.2008.11.005
    [17] AKTAS A, DIRIKOLU M H. The effect of stacking sequence of carbon epoxy composite laminates on pinned-joint strength[J]. Composite Structures, 2003, 62(1): 107-111. doi: 10.1016/S0263-8223(03)00096-5
    [18] PAKDIL M. Failure analysis of composite single bolted-joints subjected to bolt pretension[J]. Indian Journal of Engineering and Materials Sciences, 2009, 16(2): 79-85.
    [19] PARK H J. Effects of stacking sequence and clamping force on the bearing strengths of mechanically fastened joints in composite laminates[J]. Composite Structures, 2001, 53(2): 213-221. doi: 10.1016/S0263-8223(01)00005-8
    [20] 孙晓伦, 陈利, 张一帆, 等. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(8): 74-79. doi: 10.13475/j.fzxb.20210505207

    SUN Xiaolun, CHEN Li, ZHANG Yifan, et al. Tensile properties of 3D woven composites with holes[J]. Journal of Textile Research, 2022, 43(8): 74-79(in Chinese). doi: 10.13475/j.fzxb.20210505207
    [21] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Behavior of three-dimensional woven carbon composites in single-bolt bearing[J]. Composite Structures, 2015, 127: 175-184. doi: 10.1016/j.compstruct.2015.03.022
    [22] HU J, ZHANG K, XU Y, et al. Modeling on bearing behavior and damage evolution of single-lap bolted composite interference-fit joints[J]. Composite Structures, 2019, 212: 452-464. doi: 10.1016/j.compstruct.2019.01.044
    [23] LIU F R, YAO W T, ZHAO L B, et al. An improved 2D finite element model for bolt load distribution analysis of composite multi-bolt single-lap joints[J]. Composite Structures, 2020, 253: 112770.
    [24] GUO Q, ZHANG Y, LI D, et al. Experimental characterization of the compressive properties and failure mechanism of novel multiaxial 3D woven composites[J]. Composites Communications, 2021, 28: 100905.
    [25] American Society for Testing Materials. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M-17 [S]. West Conshohocken: American Society for Testing Materials International, 2017.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  85
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-08
  • 录用日期:  2023-12-11
  • 网络出版日期:  2023-12-20
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回