Research progress on polyphenols modified fiber reinforced polymer composites
-
摘要:
目的 纤维增强聚合物基复合材料已被广泛应用于航空航天、汽车制造、特种设备生产等领域,复合材料的整体性能由多种因素决定,其中纤维和基体的结合强度至关重要,较低的界面结合将导致复合材料的整体力学性能降低。多酚是常见的植物次生代谢物,作为纤维与基体间的粘合剂能够有效改善纤维增强聚合物基复合材料力学性能并丰富其功能特性,避免改性过程中的高污染、高耗能、使人体暴露在危险化学环境下等问题,研究并使用生态友好的多酚对复合材料进行改性符合当下绿色、可持续化应用的发展要求。 方法 本文对目前纤维增强聚合物基复合材料改性所使用的多酚结构和特性进行了总结,同时介绍了多酚在纤维表面制备改性涂层的方法及改性纤维增强聚合物基复合材料的应用,最后对多酚改性的未来研究方向和重点进行了展望。 结果 多酚中含有大量疏水芳香环和酚羟基,目前研究并运用在纤维增强聚合物基复合材料改性方面的多酚化学物质,主要包括邻苯二酚、多巴胺、没食子酸和单宁酸。多酚在纤维表面制备改性涂层的方法包括:① 自聚合:指不依赖其余化学物质,仅通过自身被氧化的方式在纤维表面发生聚合形成涂层,并能通过二次修饰将其他改性材料结合在涂层上。② 共沉积:指在多酚自聚合过程中添加其他组分,使其他组分也能进入并富集在自聚合后的涂层中。共沉积改性方法可以通过改变共沉积组分的含量和分子结构来容易地调节涂层表面性质,为纤维表面快速稳定的制备多酚涂层提供了思路。多酚改性纤维增强聚合物基复合材料的应用主要分为四个方面:(1)改善力学性能:多酚聚合后良好的黏附性能,其改性能够增加纤维的表面粗糙度和提升基体的浸润性,极大的提升了纤维与基体间的结合强度,改善复合材料的力学性能。(2)抗紫外:多酚结构中含有的大量苯羟基和醌基团能够清除自由基及活性氧,可以降低紫外光对复合材料的光氧化作用,提高材料抗紫外稳定性。(3)阻燃:多酚可以清除燃烧过程中产生的自由基,并通过热解反应产生碳烟、碳及炭黑,隔绝气体和热源的接触,从而提高材料的阻燃性能。(4)抗水热老化:多酚改性改善了纤维与基体之间的机械互锁和界面相互作用,提升了其耐水热老化性能。 结论 多酚作为一种具有绿色发展前景的改性材料,其改性具有方法简单、反应条件温和、不损伤纤维表面且环境友好等特性。多酚改性能够赋予纤维增强聚合物基复合材料更多元化的功能,进一步拓展其应用范围。多酚改性仍有很大的发展空间,主要包括:(1)增强对多酚聚合沉积机制的探讨。(2)对多酚改性过程进行改良与优化。(3)进一步开发多酚改性的功能型复合材料。 Abstract: Polyphenols are compounds with abundant phenolic hydroxyl groups which can be widely found in natural plants. Polyphenols can interact with the various materials to form hydrogen bonds, metal coordination and π-π interactions. Over the past few years, polyphenols have been widely applied in material functional modifications. In this paper, the structures and properties of polyphenols, including dopamine, catechol, gallic acid and tannic acid were reviewed. Meanwhile, the modification methods of fiber surface and the applications of fiber reinforced polymer composites were introduced. Finally, a prospective analysis on the future research direction and focus of polyphenol modification studies were provided.-
Key words:
- fiber reinforced polymer composites /
- method of modification /
- dopamine /
- catechol /
- gallic acid /
- tannic acid
-
图 6 碳纤维增强复合材料(CFRP)断口表面的SEM图像: (a) 原始 CF/RPU 复合材料: (b) (CF-Ni)/RPU 复合材料; (c), (d) (CF-TA-Ni)/RPU 复合材料[67]
Figure 6. SEM images of the Carbon Fibre Reinforced Polymer (CFRP) fractured surface: (a) pristine CF/RPU composites; (b) (CF-Ni)/RPU composites; (c), (d) (CF-TA-Ni)/RPU composites[67]
RPU—Rigid polyurethane
表 1 多酚对纤维改性处理
Table 1. Fiber modification by polyphenols
Fiber Matrix Main compositions of coating Performances References Carbon fiber Epoxy GAGelatin IFSS:85.6 MPaSurface energy of $ {\gamma }^{P} $:75.41 $ {\rm{mN}}\cdot {{\rm{m}}}^{-1} $ [59] Polyester fiber None GAEthylenediamine (EDA) Water contact angle reduced by $ 57.2° $The tensile strength of the modified fiber paper (2.022 kN/m) were increased by 35.2% [60] Carbon fiber Polyimide (PI) PDAFe3+ mineralization (β-FeOOH) Tensile strength:202.5 MPaTensile modulus:7.445 GPaLow wear rates under different sliding speed (5 N, 200-500 r/min, 60 min) [61] Carbon fiber Nanosilica Epoxy PDA After the 3-week salt spray test, the ILSS value of the PDA-SiO2CFRP laminate is still 11% higher than that of the
unmodified CFRP.[62] Glass fiber None PDAAg nanoparticles Conductivity:$ 2.49\times {10}^{6}\;{\rm{S}}{\cdot {\rm{m}}}^{-1} $Great flexibility (could easily operate as a conductive wire for a LED light even under various bending angles) [52] UHMWPE fiber Rubber CLTEPANano zinc oxide (ZnO NPs) Water contact angle:$ 36.2° $Surface energy:$ 37.8\; {\rm{mJ}}/{{\rm{m}}}^{2} $Pull-out force:32.3 N [63] PET fiber Epoxy CLPEI Water contact angle:$ 58.9° $The fabric melting temperature and decomposition temperature increased from 253.78℃ and
394.08℃ to 255.01℃ and 398.21℃, respectively.[64] Polyamides fiber None TAThiophene Conductivity:$ 45 {\rm{k}}\Omega \cdot {\rm{c}}{{\rm{m}}}^{-1} $Electrothermal Performance (within 75 s, the temperature rises from 26.8 to 29.1℃ and basically reaches a robust level) [51] Wood fiber None TAFe (II) ions Surface area is increased 66.8% by TAThe complexes promote the pyrolysis of wood fibers at lower temperature (162℃) and generate more residual char (110%) [65] -
[1] 张孟华, 庞梓玄, 贾云祥, 等. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势[J]. 航空材料学报, 2021, 41(5):14-27. doi: 10.11868/j.issn.1005-5053.2021.000033ZHANG Menghua, PANG Zixuan, JIA Yunxiang, et al. Research progress and development trend of fiber-reinforced ceramic matrix composites[J]. Journal of Aeronautical Materials,2021,41(5):14-27(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000033 [2] 吴利华, 袁宇慧. 先进纤维增强复合材料在大型客机上的应用现状[J]. 兵器材料科学与工程, 2018, 41(3):100-103. doi: 10.14024/j.cnki.1004-244x.20180509.002WU Lihua, YUAN Yuhui. Applications of advanced fiber-reinforced composite materials in large commercial aircraft[J]. Ordnance Material Science and Engineering,2018,41(3):100-103(in Chinese). doi: 10.14024/j.cnki.1004-244x.20180509.002 [3] 孙少杰. 碳纤维复合材料(CFRP)在汽车轻量化中的应用[J]. 粘接, 2022, 49(7):76-79. doi: 10.3969/j.issn.1001-5922.2022.07.018SUN Shaojie. Application of carbon fiber reinforced polymer (CFRP) in automotive lightweight[J]. Adhesion,2022,49(7):76-79(in Chinese). doi: 10.3969/j.issn.1001-5922.2022.07.018 [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706. doi: 10.13801/j.cnki.fhclxb.20200824.005XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005 [5] 吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12):2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environmental effects on degradation of carbon fiber/epoxy matrix interface in civil engineering applications via molecular simulation[J]. Acta Materiae Compositae Sinica,2020,37(12):2941-2952(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.003 [6] 刘树博, 王子君, 张宏娜, 等. 聚四氟乙烯/芳纶纤维复合材料的制备工艺研究[J]. 化工新型材料, 2020, 48(12):48-51+56.LIU Shubo, WANG Zijun, ZHANG Hongna, et al. Study on the preparation technology of PTFE/AF composite[J]. New Chemical Materials,2020,48(12):48-51+56(in Chinese). [7] ZHOU Y, JIANG L, JIANG Z, et al. Surface hydrophilizing modification of polytetrafluoroethylene/glass fiber fabric through oxidant-induced polydopamine deposition[J]. Journal of Industrial Textiles,2019,50(3):364-379. [8] ALARA O R, ABDURAHMAN N H, UKAEGBU C I. Extraction of phenolic compounds: A review[J]. Curr Res Food Sci,2021,4:200-214. doi: 10.1016/j.crfs.2021.03.011 [9] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science,2013,341(6142):154-157. doi: 10.1126/science.1237265 [10] 周青青. 酚类化合物/金属离子对纺织品的超疏水改性及应用研究 [D]. 苏州大学, 2020.ZHOU Qingqing. Study on superhydrophobic modifacation of textiles by phenolic compounds and metal ions and its application [D]. Soochow University, 2020(in Chinese). [11] WANG Y, ZHANG J, ZHAO Y, et al. Innovations and challenges of polyphenol-based smart drug delivery systems[J]. Nano Research,2022,15(9):8156-8184. doi: 10.1007/s12274-022-4430-3 [12] SAMEC D, KARALIJA E, SOLA I, et al. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure[J]. Plants (Basel),2021,10(1):118. [13] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241 [14] DALSIN J L, MESSERSMITH P B. Bioinspired antifouling polymers[J]. Materials Today,2005,8(9):38-46. doi: 10.1016/S1369-7021(05)71079-8 [15] WAITE J H, QIN X X. Polyphosphoprotein from the adhesive pads of Mytilus edulis[J]. Biochemistry,2001,40(9):2887-2893. doi: 10.1021/bi002718x [16] WANG H, WU J, CAI C, et al. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries[J]. ACS Appl Mater Interfaces,2014,6(8):5602-5608. doi: 10.1021/am406052u [17] HONG S, WANG Y, PARK S Y, et al. Progressive fuzzy cation-pi assembly of biological catecholamines[J]. Science Advances,2018,4(9):7457. doi: 10.1126/sciadv.aat7457 [18] ZHANG C, XIANG L, ZHANG J, et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chemical Science,2022,13:1698-1705. doi: 10.1039/D1SC05512G [19] 郑秀霞, 祝冬, 贯东艳, 等. 没食子酸检测方法的研究进展[J]. 中国食物与营养, 2022, 28(7):26-29.ZHENG Xiuxia, ZHU Dong, GUAN Dongyan, et al. Research Progress of Gallic Acid Detection Method[J]. Food and Nutrition in China,2022,28(7):26-29(in Chinese). [20] KHALIL A, GERARDIN-CHARBONNIER C, CHAPUIS H, et al. Original Bio-Based Antioxidant Poly(meth)acrylate from Gallic Acid-Based Monomers[J]. ACS Sustainable Chemistry & Engineering,2021,9(34):11458-11468. [21] ZHAN K, KIM C, SUNG K, et al. Tunicate-Inspired Gallol Polymers for Underwater Adhesive: A Comparative Study of Catechol and Gallol[J]. Biomacromolecules,2017,18(9):2959-2966. doi: 10.1021/acs.biomac.7b00921 [22] FERRAZ DA COSTA D C, PEREIRA RANGEL L, QUARTI J, et al. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy[J]. Molecules,2020,25(15):3531. doi: 10.3390/molecules25153531 [23] 石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技, 2012, 33(4):410-412. doi: 10.13386/j.issn1002-0306.2012.04.073SHI Shanshan, HE Guoqing. Tannic acid and the progress of its application[J]. Science and Technology of Food Industry,2012,33(4):410-412(in Chinese). doi: 10.13386/j.issn1002-0306.2012.04.073 [24] BELMARES R, CONTRERAS-ESQUIVEL J C, RODRı́GUEZ-HERRERA R, et al. Microbial production of tannase: an enzyme with potential use in food industry[J]. LWT-Food Science and Technology,2004,37(8):857-864. doi: 10.1016/j.lwt.2004.04.002 [25] 李冬冬, 蔡超, 杨萌 赵 徐. 基于单宁酸的功能材料研究进展[J]. 高分子通报, 2017, 221(9):10-20. doi: 10.14028/j.cnki.1003-3726.2017.09.002LI Dongdong, CAI Chao, YANG Meng, et al. Progress in the Application of Tannic Acid to the Functional Materials[J]. Polymer Bulletin,2017,221(9):10-20(in Chinese). doi: 10.14028/j.cnki.1003-3726.2017.09.002 [26] WU D, LIU X, SHENG Y, et al. Polyhedral Oligomeric Silsesquioxane Encountering Tannic Acid: A Mild and Efficient Strategy for Interface Modification on Carbon Fiber Composites[J]. Langmuir,2022,38(27):8334-8341. doi: 10.1021/acs.langmuir.2c00866 [27] SALEH M N, TOMIĆ N Z, MARINKOVIĆ A, et al. The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded joints[J]. Polymer Testing,2021,96:107122. doi: 10.1016/j.polymertesting.2021.107122 [28] 汪维海, 陈宏, 黄志超, 等. 多酚-氨基硅烷改性超高分子量聚乙烯纤维的制备及其界面性能[J]. 现代纺织技术, 2022, 30(6):63-72.WANG Weihai, CHEN Hong, HUANG Zhichao, et al. Preparation and interfacial properties of UHMWPE fibers modified by polyphenol & amino silane[J]. Advanced Textile Technology,2022,30(6):63-72(in Chinese). [29] 高佳鑫, 马金阳, 王世成, 等. 单宁酸仿生修饰及多元胺可控接枝表面改性超高分子量聚乙烯纤维[J]. 高分子材料科学与工程, 2021, 37(8):131-137. doi: 10.16865/j.cnki.1000-7555.2021.0201GAO Jiaxin, MA Jinyang, WANG Shicheng, et al. Tannic acid bionic modification and polyamine controllable grafting surface modification of ultra-high molecular weight polyethylene fiber[J]. Polymer Materials Science & Engineering,2021,37(8):131-137(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0201 [30] BARRETT D G, SILEIKA T S, MESSERSMITH P B. Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings[J]. Chem Commun (Camb),2014,50(55):7265-7268. doi: 10.1039/C4CC02961E [31] 王磊. 橡胶基复合材料用高性能纤维的表面修饰及其粘合性能研究 [D], 2017.WANG Lei. Surface modifacation of high performance fibers used in rubber-based composites and their interfacial adhension properties [D]. Beijing University of Chemical Technology, 2017(in Chinese). [32] GUO Y, SUN Q, WU F G, et al. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery[J]. Adv Mater,2021,33(22):2007356. doi: 10.1002/adma.202007356 [33] ZHOU J, LIN Z, JU Y, et al. Polyphenol-Mediated Assembly for Particle Engineering[J]. Acc Chem Res,2020,53(7):1269-1278. doi: 10.1021/acs.accounts.0c00150 [34] JIN L, ZHANG M, SHANG L, et al. A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber[J]. Composites Science and Technology,2020,200:108382. doi: 10.1016/j.compscitech.2020.108382 [35] WU D, YAO Z, SUN X, et al. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites[J]. Chemical Engineering Journal,2022,429:132449. doi: 10.1016/j.cej.2021.132449 [36] AI X, CHENG J, HOU X, et al. Fabrication of robust silver plated conductive polyamide fibres based on tannic acid modification[J]. RSC Adv,2022,12(29):18585-18593. doi: 10.1039/D2RA03116G [37] YANG L W, HAN L L, REN J, et al. Coating process and stability of metal-polyphenol film[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2015,484:197-205. [38] WANG Z, XIE Y J, LI Y W, et al. Tunable, Metal-Loaded Polydopamine Nanoparticles Analyzed by Magnetometry[J]. Chemistry of Materials,2017,29(19):8195-8201. doi: 10.1021/acs.chemmater.7b02262 [39] LIU Y, FANG Y, LIU X, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion[J]. Composites Science and Technology,2017,151:164-173. doi: 10.1016/j.compscitech.2017.08.008 [40] ZHANG M, LIU L, JIN L, et al. Catechol-based co-deposited carbon fiber surfaces for enhancement of fiber/epoxy composites[J]. Polymer Composites,2020,41(9):3817-3829. doi: 10.1002/pc.25679 [41] 赵晗, 尚晴, 杨萌, 等. 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维[J]. 高分子学报, 2020, 51(3):287-294.ZHAO Han, SHANG Qing, YANG Meng, et al. Surface modification of ultra-high molecular weight polyethylene fiber by catechol-tetraethylenepentamine[J]. Acta Polymerica Sinica,2020,51(3):287-294(in Chinese). [42] 王世成, 高佳鑫, 冯霞. 单宁酸协同改性超高分子量聚乙烯纤维与环氧树脂复合材料[J]. 高分子材料科学与工程, 2021, 37(4):92-98. doi: 10.16865/j.cnki.1000-7555.2021.0113WANG Shicheng, GAO Jiaxin, FENG Xia. Tannic acid synergistically modified ultra-high molecular weight polyethylene fiber and epoxy resin composite[J]. Polymer Materials Science & Engineering,2021,37(4):92-98(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0113 [43] XUE S K, LI C C, LI J M, et al. A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane[J]. Journal of Membrane Science,2017,524:409-418. doi: 10.1016/j.memsci.2016.11.075 [44] GREWAL M S, YABU H. Biomimetic catechol-based adhesive polymers for dispersion of polytetrafluoroethylene (PTFE) nanoparticles in an aqueous medium[J]. Rsc Advances,2020,10(7):4058-4063. doi: 10.1039/C9RA10606E [45] XU H, NISHIDA J, MA W, et al. Competition between Oxidation and Coordination in Cross-Linking of Polystyrene Copolymer Containing Catechol Groups[J]. Acs Macro Letters,2012,1(4):457-460. doi: 10.1021/mz200217d [46] WANG Z-X, LAU C-H, ZHANG N-Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment[J]. Journal of Materials Chemistry A,2015,3(6):2650-2657. doi: 10.1039/C4TA05970K [47] CHEN L, ZHANG G, WU G, et al. Facile and environment-friendly mussel-inspired surface modification of PBO fibers via dopamine/3-aminopropyltrimethoxysilane co-deposition for advanced composite[J]. Polymer,2021,229:123999. doi: 10.1016/j.polymer.2021.123999 [48] ZHANG M, CHENG C, GUO C, et al. Co-depositing bio-inspired tannic acid-aminopropyltriethoxysilane coating onto carbon fiber for excellent interfacial adhesion of epoxy composites[J]. Composites Science and Technology,2021,204:108639. doi: 10.1016/j.compscitech.2020.108639 [49] WANG S, MA J, FENG X, et al. An effective surface modification of UHMWPE fiber for improving the interfacial adhesion of epoxy resin composites[J]. Polymer Composites,2020,41(4):1614-1623. doi: 10.1002/pc.25483 [50] EJIMA H, RICHARDSON J J, CARUSO F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today,2017,12:136-148. doi: 10.1016/j.nantod.2016.12.012 [51] AI X, XIE A, CHENG J, et al. Fabrication of Robust and High Resilient Polythiophene Conductive Polyamides Fibers Based on Tannic Acid Modification[J]. Industrial & Engineering Chemistry Research,2022,61(30):11025-11033. [52] LIU G, ZHOU N, XIONG Q. Preparation of highly conductive and flexible Ag-coated single fiberglass via dopamine functionalization and electroless depositing[J]. Journal of Materials Science:Materials in Electronics,2021,32(3):3661-3672. doi: 10.1007/s10854-020-05112-w [53] 陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展[J]. 高分子通报, 2018(7):42-49. doi: 10.14028/j.cnki.1003-3726.2018.07.005CHEN Lijuan, WANG Jun, YAN Yehan, et al. The progress of research and application of polydopamine coatings[J]. Polymer Bulletin,2018(7):42-49(in Chinese). doi: 10.14028/j.cnki.1003-3726.2018.07.005 [54] WANG L, ZHANG B, LI X, et al. Enhanced adhesion property of aramid fibers by polyphenol-metal iron complexation and silane grafting[J]. The Journal of Adhesion,2019,97(4):346-360. [55] SUN Z, GUO F-L, LI Y-Q, et al. Effects of carbon nanotube-polydopamine hybridization on the mechanical properties of short carbon fiber/polyetherimide composites[J]. Composites Part B:Engineering,2022,236:109848. doi: 10.1016/j.compositesb.2022.109848 [56] SHANMUGAM L, FENG X, YANG J. Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating[J]. Composites Science and Technology,2019,174:212-220. doi: 10.1016/j.compscitech.2019.03.001 [57] WU Q, YANG X, YE Z, et al. Dopamine-dependent graphene oxide modification and its effects on interfacial adhesion of carbon fiber composites[J]. Surfaces and Interfaces,2022,31:102086. doi: 10.1016/j.surfin.2022.102086 [58] ZENG L, LIU X, CHEN X, et al. π - π interaction between carbon fibre and epoxy resin for interface improvement in composites[J]. Composites Part B:Engineering,2021,220:108983. doi: 10.1016/j.compositesb.2021.108983 [59] ZHANG M, JIN L, ZHAI Y, et al. Bio-inspired gallic acid-gelatin coating: A novel strategy for eco-friendly interfacial modification of carbon fiber composites[J]. Composites Communications,2021,26:100790. doi: 10.1016/j.coco.2021.100790 [60] 庄思杰, 张静贤, 龙柱, 等. 没食子酸/乙二胺共沉积聚酯纤维的制备及其成纸性能[J]. 精细化工, 2021, 38(4):846-852.ZHUANG Sijie, ZHANG Jingxian, LONG Zhu, et al. Preparation of gallic acid/ethylenediamine co-deposited polyester fiber and its paper-forming properties[J]. Fine Chemicals,2021,38(4):846-852(in Chinese). [61] LIN Z, YANG J, JIA X, et al. Polydopamine/FeOOH-modified interface in carbon cloth/polyimide composites for improved mechanical/tribological properties[J]. Materials Chemistry and Physics,2020,243:122677. doi: 10.1016/j.matchemphys.2020.122677 [62] HAN W, ZHANG H-P, XU X, et al. Hybrid enhancements by polydopamine and nanosilica on carbon fibre reinforced polymer laminates under marine environment[J]. Composites Part A:Applied Science and Manufacturing,2018,112:283-289. doi: 10.1016/j.compositesa.2018.06.019 [63] FANG Z, TU Q, CHEN Z, et al. Study on catechol/tetraethylenepentamine and nano zinc oxide co-modifying ultrahigh molecular weight polyethylene fiber surface to improve interfacial adhesion[J]. Polymers for Advanced Technologies,2022,33(12):4072-4083. doi: 10.1002/pat.5838 [64] CHEN Y, WU X, WEI J, et al. Characterization and Application to Fiber Reinforced Composite of Catechol/polyethyleneimine Modified Polyester Fabrics by Mussel-inspiration[J]. Fibers and Polymers,2020,21(11):2625-2634. doi: 10.1007/s12221-020-1161-5 [65] HUANG Y, LIN Q, YU Y, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (II) ions[J]. Applied Surface Science,2020,510:145436. doi: 10.1016/j.apsusc.2020.145436 [66] HAN W, ZHANG H-P, TAVAKOLI J, et al. Polydopamine as sizing on carbon fiber surfaces for enhancement of epoxy laminated composites[J]. Composites Part A:Applied Science and Manufacturing,2018,107:626-632. doi: 10.1016/j.compositesa.2018.02.003 [67] LIU X, LI W, FENG M, et al. Strength and toughness of carbon fibers reinforced rigid polyurethane composites by adsorbing tannic acid and refining Ni grains on carbon fibers surface[J]. Polymers for Advanced Technologies,2020,32(1):326-334. [68] WOO R S C, ZHU H, LEUNG C K Y, et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties[J]. Composites Science and Technology,2008,68(9):2149-2155. doi: 10.1016/j.compscitech.2008.03.020 [69] 乔琨, 朱波, 高学平, 等. 紫外老化对碳纤维增强环氧树脂复合材料性能的影响[J]. 功能材料, 2012, 43(21):2989-2992. doi: 10.3969/j.issn.1001-9731.2012.21.026QIAO Kun, ZHU Bo, GAO Xueping, et al. Influence of artificial accelerating UV aging on carbon fiber reinforced epoxy composite[J]. Journal of Functional Materials,2012,43(21):2989-2992(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.21.026 [70] 付晨阳, 倪爱清, 王继辉, 等. 紫外老化对玻璃纤维增强环氧树脂基复合材料疲劳性能的影响[J]. 复合材料科学与工程, 2020(7):74-80. doi: 10.3969/j.issn.1003-0999.2020.07.011FU Chenyang, NI Aiqing, WANG Jihui, et al. Effects of UV aging on fatigue properties of glass fiber reinforced epoxy resin composites[J]. Composites Science and Engineering,2020(7):74-80(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.07.011 [71] 刘杰, 贾伯岩, 田霖, 等. 紫外老化对双酚A型环氧树脂综合性能影响[J]. 科学技术与工程, 2022, 22(20):8701-8707.LIU Jie, JIA Boyan, TIAN Lin, et al. Effect of UV aging on comprehensive properties of bisphenol a epoxy resin[J]. Science Technology and Engineering,2022,22(20):8701-8707(in Chinese). [72] YANG X, DUAN L, RAN X Q. Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber[J]. Polymer Bulletin,2017,74(3):641-656. doi: 10.1007/s00289-016-1735-y [73] CHEN L, LI Z, WU G, et al. In situ growth of TiO2 nanoparticles onto PBO fibers via a mussel-inspired strategy for enhancing interfacial properties and ultraviolet resistance[J]. Polymer Composites,2021,42(10):5065-5074. doi: 10.1002/pc.26205 [74] JIANG J, WANG S X, ZHANG S H, et al. Nano titanium dioxide/PAoQ-coated polybenzoxazol fibers for enhancing anti-ultraviolet performance[J]. Textile Research Journal,2018,88(19):2267-2275. doi: 10.1177/0040517517720501 [75] QIU S, SUN J, LI H, et al. A green way to simultaneously enhance the mechanical, flame retardant and anti-ultraviolet aging properties of polylactide composites by the incorporation of tannic acid derivatives[J]. Polymer Degradation and Stability,2022,196:109831. doi: 10.1016/j.polymdegradstab.2022.109831 [76] GE W, CAO S, SHEN F, et al. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels[J]. Carbohydrate Polymers,2019,224:115147. doi: 10.1016/j.carbpol.2019.115147 [77] ZHANG L, LI Z, WANG D-Y. Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review[J]. European Polymer Journal,2020,138:109973. doi: 10.1016/j.eurpolymj.2020.109973 [78] KIM Y-O, CHO J, KIM Y N, et al. Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic[J]. Composites Part B:Engineering,2020,197:108173. doi: 10.1016/j.compositesb.2020.108173 [79] YANG W, WU S, YANG W, et al. Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin[J]. Composites Part B:Engineering,2020,186:107828. doi: 10.1016/j.compositesb.2020.107828 [80] KIM Y-O, CHO J, YEO H, et al. Flame Retardant Epoxy Derived from Tannic Acid as Biobased Hardener[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):3858-3865. [81] ZHENG Y, WANG X, WU G. Facile Strategy of Improving Interfacial Strength of Silicone Resin Composites Through Self-Polymerized Polydopamine Followed via the Sol-Gel Growing of Silica Nanoparticles onto Carbon Fiber[J]. Polymers (Basel),2019,11(10):1639. doi: 10.3390/polym11101639 [82] CUI X, MA L, WU G. Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites[J]. Polymers (Basel),2020,12(3):712. doi: 10.3390/polym12030712 [83] CUI X, LIU J, MA L, et al. Grafting of the hierarchical natural tannic acid and polyethyleneimine onto carbon fiber for significantly improved surface/interface properties[J]. Polymers for Advanced Technologies,2020,31(12):3126-3133. doi: 10.1002/pat.5037 -

计量
- 文章访问数: 67
- HTML全文浏览量: 54
- 被引次数: 0