留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多酚改性纤维增强聚合物基复合材料研究进展

方策 宋立健 丁玉梅 谭晶 杨卫民 程礼盛

方策, 宋立健, 丁玉梅, 等. 多酚改性纤维增强聚合物基复合材料研究进展[J]. 复合材料学报, 2023, 40(10): 5529-5541. doi: 10.13801/j.cnki.fhclxb.20230413.001
引用本文: 方策, 宋立健, 丁玉梅, 等. 多酚改性纤维增强聚合物基复合材料研究进展[J]. 复合材料学报, 2023, 40(10): 5529-5541. doi: 10.13801/j.cnki.fhclxb.20230413.001
FANG Ce, SONG Lijian, DING Yumei, et al. Research progress on polyphenols modified fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5529-5541. doi: 10.13801/j.cnki.fhclxb.20230413.001
Citation: FANG Ce, SONG Lijian, DING Yumei, et al. Research progress on polyphenols modified fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5529-5541. doi: 10.13801/j.cnki.fhclxb.20230413.001

多酚改性纤维增强聚合物基复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20230413.001
基金项目: 国家自然科学基金 (52073012)
详细信息
    通讯作者:

    程礼盛,博士,副教授,硕士生导师,研究方向为高分子材料先进制造 E-mail: chengls@mail.buct.edu.cn

  • 中图分类号: TB332

Research progress on polyphenols modified fiber reinforced polymer composites

Funds: National Natural Science Foundation of China (52073012)
  • 摘要: 多酚是一种含有多个酚羟基的化合物,广泛存在于天然植物中。多酚中含有大量疏水芳香环和酚羟基,与材料之间能够实现氢键、金属配位和π-π相互作用等多种类型的相互作用,被广泛应用于材料功能化改性中。本文综述了多巴胺、邻苯二酚、没食子酸及单宁酸4种多酚在纤维增强聚合物基复合材料改性方面的研究进展,其中主要包括不同多酚的结构及特性、对纤维表面的改性方法及在纤维增强聚合物基复合材料中的应用;最后,结合目前多酚的应用和限制,对多酚改性研究的未来研究方向和研究重点进行了展望。

     

  • 图  1  多酚结构:(a) 邻苯二酚(CL);(b) 多巴胺(DA);(c) 没食子酸(GA);(d) 单宁酸(TA)

    Figure  1.  Structure of polyphenols: (a) Catechol (CL); (b) Dopamine (DA); (c) Gallic acid (GA); (d) Tannic acid (TA)

    图  2  多酚与其他材料之间的相互作用[33]

    Figure  2.  Various interactions between polyphenols with different materials[33]

    图  3  在碳纤维(CF)上制作“砖混”结构示意图[43]

    Figure  3.  Schematic illustration of fabrication of brick-and-mortar wall on the carbon fiber (CF)[43]

    PDA—Polydopamine; PNi—Polydopamine-Ni(OH)2

    图  4  (a) CF共沉积处理工艺示意图;(b) 不同复合材料的界面剪切强度(IFSS);(c) CF复合材料的界面增强机制 [57]

    Figure  4.  (a) Schematic illustration of co-deposition treatment procedure of CF; (b) Interfacial shear strength (IFSS) of different composites; (c) Interfacial enhancement mechanism of CF composites[57]

    APTES—Aminopropyltriethoxysilane

    图  5  超高分子量聚乙烯(UHMWPE)纤维的TA表面改性工艺图[61]

    Figure  5.  Scheme diagram of TA surface modification to ultra high molecular weight polyethylene (UHMWPE) fiber[61]

    图  6  碳纤维增强复合材料(CFRP)断口表面的SEM图像:(a) 原始 CF/RPU 复合材料;(b) (CF-Ni)/RPU 复合材料;((c), (d)) (CF-TA-Ni)/RPU 复合材料[67]

    Figure  6.  SEM images of the carbon fibre reinforced polymer (CFRP) fractured surface: (a) Pristine CF/RPU composites; (b) (CF-Ni)/RPU composites; ((c), (d)) (CF-TA-Ni)/RPU composites[67]

    RPU—Rigid polyurethane

    图  7  (a) TA混合物2 h内颜色变化;(b) 混合物的紫外吸收光谱[76]

    Figure  7.  (a) Color change of TA mixed solution before and after 2 h; (b) UV absorption spectra for the mixtures[76]

    DPPH—2, 2-diphenyl-1-picrylhydrazyl; BA—Boric acid; MEL—Melamine

    图  8  垂直燃烧试验中对CFRP施加火焰10 s点燃后不同时间的代表性图像[80]

    Figure  8.  Images during vertical burning test at different time of flame applied for 10 s to CFRP samples for ignition[80]

    DGEBA—Diglycidyl ether bisphenol A

    表  1  多酚对纤维改性处理

    Table  1.   Fiber modification by polyphenols

    FiberMatrixMain compositions of coatingPerformanceRef.
    Carbon fiberEpoxyGA, gelatinIFSS: 85.6 MPa; Surface energy of the substrate (γP): 75.41 mN/m[34]
    Polyester fiberNoneGA, EDAWater contact angle reduced by 57.2°; The tensile strength of the modified fiber paper (2.022 kN/m) were increased by 35.2%[35]
    Carbon fiberPIPDA, Fe3+ minerali-
    zation (β-FeOOH)
    Tensile strength: 202.5 MPa; Tensile modulus: 7.445 GPa; Low wear rates under different sliding speed (5 N, 200-500 r/min, 60 min)[36]
    Carbon fiberNanosilica epoxyPDAAfter the 3-week salt spray test, the ILSS value of the PDA-SiO2 CFRP laminate is still 11% higher than that of the unmodified CFRP[37]
    Glass fiberNonePDA, Ag NPsConductivity: 2.49×106 S/m; Great flexibility (Could easily operate as a conductive wire for a LED light even under various bending angles)[38]
    UHMWPE fiberRubberCL, TEPA, ZnO NPsWater contact angle: 36.2°; Surface energy: 37.8 mJ/m2; Pull-out force: 32.3 N[39]
    PET fiberEpoxyCL, PEIWater contact angle: 58.9°; The fabric melting temperature and decomposition temperature increased from 253.78℃ and
    394.08℃ to 255.01℃ and 398.21℃, respectively
    [40]
    Polyamides fiberNoneTA/Thiophene Conductivity: 45 kΩ/cm; Electrothermal performance (Within 75 s, the temperature rises from 26.8 to 29.1℃ and basically reaches a robust level)[41]
    Wood fiberNoneTA, Fe(II) ionsSurface area is increased 66.8% by TA; The complexes promote the pyrolysis of wood fibers at lower temperature (162℃) and generate more residual char (110%)[42]
    Notes: UHMWPE—Ultra high molecular weight polyethylene; PET—Polyethylene glycol terephthalate; EDA—Ethylenediamine; PI—Polyimide; PDA—Polydopamine; GA—Gallic acid; CL—Catechol; TEPA—Tetraethylenepentamine; PEI—Polyethyleneimine; TA—Tannic acid; IFSS—Interfacial shear strength; NPs—Nanoparticles; ILSS—Interlaminar shear strength; CFRP—Carbon fibre reinforced polymer.
    下载: 导出CSV
  • [1] 张孟华, 庞梓玄, 贾云祥, 等. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势[J]. 航空材料学报, 2021, 41(5):14-27. doi: 10.11868/j.issn.1005-5053.2021.000033

    ZHANG Menghua, PANG Zixuan, JIA Yunxiang, et al. Research progress and development trend of fiber-reinforced ceramic matrix composites[J]. Journal of Aeronautical Materials,2021,41(5):14-27(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000033
    [2] 吴利华, 袁宇慧. 先进纤维增强复合材料在大型客机上的应用现状[J]. 兵器材料科学与工程, 2018, 41(3):100-103. doi: 10.14024/j.cnki.1004-244x.20180509.002

    WU Lihua, YUAN Yuhui. Applications of advanced fiber-reinforced composite materials in large commercial aircraft[J]. Ordnance Material Science and Engineering,2018,41(3):100-103(in Chinese). doi: 10.14024/j.cnki.1004-244x.20180509.002
    [3] 孙少杰. 碳纤维复合材料(CFRP)在汽车轻量化中的应用[J]. 粘接, 2022, 49(7):76-79. doi: 10.3969/j.issn.1001-5922.2022.07.018

    SUN Shaojie. Application of carbon fiber reinforced polymer (CFRP) in automotive lightweight[J]. Adhesion,2022,49(7):76-79(in Chinese). doi: 10.3969/j.issn.1001-5922.2022.07.018
    [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706. doi: 10.13801/j.cnki.fhclxb.20200824.005

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005
    [5] 吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12):2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003

    WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environmental effects on degradation of carbon fiber/epoxy matrix interface in civil engineering applications via molecular simulation[J]. Acta Materiae Compositae Sinica,2020,37(12):2941-2952(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.003
    [6] 刘树博, 王子君, 张宏娜, 等. 聚四氟乙烯/芳纶纤维复合材料的制备工艺研究[J]. 化工新型材料, 2020, 48(12):48-51, 56.

    LIU Shubo, WANG Zijun, ZHANG Hongna, et al. Study on the preparation technology of PTFE/AF composite[J]. New Chemical Materials,2020,48(12):48-51, 56(in Chinese).
    [7] ZHOU Y, JIANG L, JIANG Z, et al. Surface hydrophilizing modification of polytetrafluoroethylene/glass fiber fabric through oxidant-induced polydopamine deposition[J]. Journal of Industrial Textiles,2019,50(3):364-379.
    [8] ALARA O R, ABDURAHMAN N H, UKAEGBU C I. Extraction of phenolic compounds: A review[J]. Current Research in Food Science,2021,4:200-214. doi: 10.1016/j.crfs.2021.03.011
    [9] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science,2013,341(6142):154-157. doi: 10.1126/science.1237265
    [10] 周青青. 酚类化合物/金属离子对纺织品的超疏水改性及应用研究[D]. 苏州: 苏州大学, 2020.

    ZHOU Qingqing. Study on superhydrophobic modifacation of textiles by phenolic compounds and metal ions and its application[D]. Soochow: Soochow University, 2020(in Chinese).
    [11] WANG Y, ZHANG J, ZHAO Y, et al. Innovations and challenges of polyphenol-based smart drug delivery systems[J]. Nano Research,2022,15(9):8156-8184. doi: 10.1007/s12274-022-4430-3
    [12] SAMEC D, KARALIJA E, SOLA I, et al. The role of polyphenols in abiotic stress response: The influence of molecular structure[J]. Plants (Basel),2021,10(1):118.
    [13] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241
    [14] DALSIN J L, MESSERSMITH P B. Bioinspired antifouling polymers[J]. Materials Today,2005,8(9):38-46. doi: 10.1016/S1369-7021(05)71079-8
    [15] WAITE J H, QIN X X. Polyphosphoprotein from the adhesive pads of Mytilus edulis[J]. Biochemistry,2001,40(9):2887-2893. doi: 10.1021/bi002718x
    [16] WANG H, WU J, CAI C, et al. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(8):5602-5608. doi: 10.1021/am406052u
    [17] HONG S, WANG Y, PARK S Y, et al. Progressive fuzzy cation-π assembly of biological catecholamines[J]. Science Advances,2018,4(9):7457. doi: 10.1126/sciadv.aat7457
    [18] ZHANG C, XIANG L, ZHANG J, et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chemical Science,2022,13:1698-1705. doi: 10.1039/D1SC05512G
    [19] 郑秀霞, 祝冬, 贯东艳, 等. 没食子酸检测方法的研究进展[J]. 中国食物与营养, 2022, 28(7):26-29.

    ZHENG Xiuxia, ZHU Dong, GUAN Dongyan, et al. Research progress of gallic acid detection method[J]. Food and Nutrition in China,2022,28(7):26-29(in Chinese).
    [20] KHALIL A, GERARDIN-CHARBONNIER C, CHAPUIS H, et al. Original bio-based antioxidant poly(meth)acrylate from gallic acid-based monomers[J]. ACS Sustainable Che-mistry & Engineering,2021,9(34):11458-11468.
    [21] ZHAN K, KIM C, SUNG K, et al. Tunicate-inspired gallol polymers for underwater adhesive: A comparative study of catechol and gallol[J]. Biomacromolecules,2017,18(9):2959-2966. doi: 10.1021/acs.biomac.7b00921
    [22] FERRAZ DA COSTA D C, PEREIRA RANGEL L, QUARTI J, et al. Bioactive compounds and metabolites from grapes and red wine in breast cancer chemoprevention and therapy[J]. Molecules,2020,25(15):3531. doi: 10.3390/molecules25153531
    [23] 石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技, 2012, 33(4):410-412. doi: 10.13386/j.issn1002-0306.2012.04.073

    SHI Shanshan, HE Guoqing. Tannic acid and the progress of its application[J]. Science and Technology of Food Industry,2012,33(4):410-412(in Chinese). doi: 10.13386/j.issn1002-0306.2012.04.073
    [24] BELMARES R, CONTRERAS-ESQUIVEL J C, RODRÍGUEZ-HERRERA R, et al. Microbial production of tannase: An enzyme with potential use in food industry[J]. LWT-Food Science and Technology,2004,37(8):857-864. doi: 10.1016/j.lwt.2004.04.002
    [25] 李冬冬, 蔡超, 杨萌, 等. 基于单宁酸的功能材料研究进展[J]. 高分子通报, 2017, 221(9):10-20. doi: 10.14028/j.cnki.1003-3726.2017.09.002

    LI Dongdong, CAI Chao, YANG Meng, et al. Progress in the application of tannic acid to the functional materials[J]. Polymer Bulletin,2017,221(9):10-20(in Chinese). doi: 10.14028/j.cnki.1003-3726.2017.09.002
    [26] WU D, LIU X, SHENG Y, et al. Polyhedral oligomeric silsesquioxane encountering tannic acid: A mild and efficient strategy for interface modification on carbon fiber composites[J]. Langmuir,2022,38(27):8334-8341. doi: 10.1021/acs.langmuir.2c00866
    [27] SALEH M N, TOMIĆ N Z, MARINKOVIĆ A, et al. The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded joints[J]. Polymer Testing,2021,96:107122. doi: 10.1016/j.polymertesting.2021.107122
    [28] 汪维海, 陈宏, 黄志超, 等. 多酚-氨基硅烷改性超高分子量聚乙烯纤维的制备及其界面性能[J]. 现代纺织技术, 2022, 30(6):63-72.

    WANG Weihai, CHEN Hong, HUANG Zhichao, et al. Preparation and interfacial properties of UHMWPE fibers modified by polyphenol & amino silane[J]. Advanced Textile Technology,2022,30(6):63-72(in Chinese).
    [29] 高佳鑫, 马金阳, 王世成, 等. 单宁酸仿生修饰及多元胺可控接枝表面改性超高分子量聚乙烯纤维[J]. 高分子材料科学与工程, 2021, 37(8):131-137. doi: 10.16865/j.cnki.1000-7555.2021.0201

    GAO Jiaxin, MA Jinyang, WANG Shicheng, et al. Tannic acid bionic modification and polyamine controllable grafting surface modification of ultra-high molecular weight polyethylene fiber[J]. Polymer Materials Science & Engineering,2021,37(8):131-137(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0201
    [30] BARRETT D G, SILEIKA T S, MESSERSMITH P B. Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings[J]. Chem Commun (Camb),2014,50(55):7265-7268. doi: 10.1039/C4CC02961E
    [31] 王磊. 橡胶基复合材料用高性能纤维的表面修饰及其粘合性能研究[D]. 北京: 北京化工大学, 2017.

    WANG Lei. Surface modifacation of high performance fibers used in rubber-based composites and their interfacial adhension properties[D]. Beijing: Beijing University of Chemical Technology, 2017(in Chinese).
    [32] GUO Y, SUN Q, WU F G, et al. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery[J]. Advanced Materials,2021,33(22):2007356. doi: 10.1002/adma.202007356
    [33] ZHOU J, LIN Z, JU Y, et al. Polyphenol-mediated assembly for particle engineering[J]. Accounts of Chemical Research,2020,53(7):1269-1278. doi: 10.1021/acs.accounts.0c00150
    [34] ZHANG M, JIN L, ZHAI Y, et al. Bio-inspired gallic acid-gelatin coating: A novel strategy for eco-friendly interfacial modification of carbon fiber composites[J]. Composites Communications,2021,26:100790. doi: 10.1016/j.coco.2021.100790
    [35] 庄思杰, 张静贤, 龙柱, 等. 没食子酸/乙二胺共沉积聚酯纤维的制备及其成纸性能[J]. 精细化工, 2021, 38(4):846-852.

    ZHUANG Sijie, ZHANG Jingxian, LONG Zhu, et al. Preparation of gallic acid/ethylenediamine co-deposited polyester fiber and its paper-forming properties[J]. Fine Chemicals,2021,38(4):846-852(in Chinese).
    [36] LIN Z, YANG J, JIA X, et al. Polydopamine/FeOOH-modified interface in carbon cloth/polyimide composites for improved mechanical/tribological properties[J]. Materials Chemistry and Physics,2020,243:122677. doi: 10.1016/j.matchemphys.2020.122677
    [37] HAN W, ZHANG H P, XU X, et al. Hybrid enhancements by polydopamine and nanosilica on carbon fibre reinforced polymer laminates under marine environment[J]. Composites Part A: Applied Science and Manufacturing,2018,112:283-289. doi: 10.1016/j.compositesa.2018.06.019
    [38] LIU G, ZHOU N, XIONG Q. Preparation of highly conductive and flexible Ag-coated single fiberglass via dopamine functionalization and electroless depositing[J]. Journal of Materials Science: Materials in Electronics,2021,32(3):3661-3672. doi: 10.1007/s10854-020-05112-w
    [39] FANG Z, TU Q, CHEN Z, et al. Study on catechol/tetraethylenepentamine and nano zinc oxide co-modifying ultrahigh molecular weight polyethylene fiber surface to improve interfacial adhesion[J]. Polymers for Advanced Technologies,2022,33(12):4072-4083. doi: 10.1002/pat.5838
    [40] CHEN Y, WU X, WEI J, et al. Characterization and application to fiber reinforced composite of catechol/polyethyleneimine modified polyester fabrics by mussel-inspiration[J]. Fibers and Polymers,2020,21(11):2625-2634. doi: 10.1007/s12221-020-1161-5
    [41] AI X, XIE A, CHENG J, et al. Fabrication of robust and high resilient polythiophene conductive polyamides fibers based on tannic acid modification[J]. Industrial & Engineering Chemistry Research,2022,61(30):11025-11033.
    [42] HUANG Y, LIN Q, YU Y, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe(II) ions[J]. Applied Surface Science,2020,510:145436. doi: 10.1016/j.apsusc.2020.145436
    [43] JIN L, ZHANG M, SHANG L, et al. A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber[J]. Composites Science and Technology,2020,200:108382. doi: 10.1016/j.compscitech.2020.108382
    [44] WU D, YAO Z, SUN X, et al. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites[J]. Chemical Engineering Journal,2022,429:132449. doi: 10.1016/j.cej.2021.132449
    [45] AI X, CHENG J, HOU X, et al. Fabrication of robust silver plated conductive polyamide fibres based on tannic acid modification[J]. RSC Advances,2022,12(29):18585-18593. doi: 10.1039/D2RA03116G
    [46] YANG L W, HAN L L, REN J, et al. Coating process and stability of metal-polyphenol film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2015,484:197-205.
    [47] WANG Z, XIE Y J, LI Y W, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry[J]. Chemistry of Materials,2017,29(19):8195-8201. doi: 10.1021/acs.chemmater.7b02262
    [48] LIU Y, FANG Y, LIU X, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion[J]. Composites Science and Technology,2017,151:164-173. doi: 10.1016/j.compscitech.2017.08.008
    [49] ZHANG M, LIU L, JIN L, et al. Catechol-based co-deposited carbon fiber surfaces for enhancement of fiber/epoxy composites[J]. Polymer Composites,2020,41(9):3817-3829. doi: 10.1002/pc.25679
    [50] 赵晗, 尚晴, 杨萌, 等. 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维[J]. 高分子学报, 2020, 51(3):287-294.

    ZHAO Han, SHANG Qing, YANG Meng, et al. Surface modification of ultra-high molecular weight polyethylene fiber by catechol-tetraethylenepentamine[J]. Acta Polymerica Sinica,2020,51(3):287-294(in Chinese).
    [51] 王世成, 高佳鑫, 冯霞. 单宁酸协同改性超高分子量聚乙烯纤维与环氧树脂复合材料[J]. 高分子材料科学与工程, 2021, 37(4):92-98. doi: 10.16865/j.cnki.1000-7555.2021.0113

    WANG Shicheng, GAO Jiaxin, FENG Xia. Tannic acid synergistically modified ultra-high molecular weight polyethylene fiber and epoxy resin composite[J]. Polymer Materials Science & Engineering,2021,37(4):92-98(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0113
    [52] XUE S K, LI C C, LI J M, et al. A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane[J]. Journal of Membrane Science,2017,524:409-418. doi: 10.1016/j.memsci.2016.11.075
    [53] GREWAL M S, YABU H. Biomimetic catechol-based adhesive polymers for dispersion of polytetrafluoroethylene (PTFE) nanoparticles in an aqueous medium[J]. RSC Advances,2020,10(7):4058-4063. doi: 10.1039/C9RA10606E
    [54] XU H, NISHIDA J, MA W, et al. Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups[J]. ACS Macro Letters,2012,1(4):457-460. doi: 10.1021/mz200217d
    [55] WANG Z X, LAU C H, ZHANG N Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment[J]. Journal of Materials Chemistry A,2015,3(6):2650-2657. doi: 10.1039/C4TA05970K
    [56] CHEN L, ZHANG G, WU G, et al. Facile and environment-friendly mussel-inspired surface modification of PBO fibers via dopamine/3-aminopropyltrimethoxysilane co-deposition for advanced composite[J]. Polymer,2021,229:123999. doi: 10.1016/j.polymer.2021.123999
    [57] ZHANG M, CHENG C, GUO C, et al. Co-depositing bio-inspired tannic acid-aminopropyltriethoxysilane coating onto carbon fiber for excellent interfacial adhesion of epoxy composites[J]. Composites Science and Technology,2021,204:108639. doi: 10.1016/j.compscitech.2020.108639
    [58] EJIMA H, RICHARDSON J J, CARUSO F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today,2017,12:136-148. doi: 10.1016/j.nantod.2016.12.012
    [59] 陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展[J]. 高分子通报, 2018(7):42-49. doi: 10.14028/j.cnki.1003-3726.2018.07.005

    CHEN Lijuan, WANG Jun, YAN Yehan, et al. The progress of research and application of polydopamine coatings[J]. Polymer Bulletin,2018(7):42-49(in Chinese). doi: 10.14028/j.cnki.1003-3726.2018.07.005
    [60] WANG L, ZHANG B, LI X, et al. Enhanced adhesion property of aramid fibers by polyphenol-metal iron complexation and silane grafting[J]. The Journal of Adhesion,2019,97(4):346-360.
    [61] WANG S, MA J, FENG X, et al. An effective surface modification of UHMWPE fiber for improving the interfacial adhesion of epoxy resin composites[J]. Polymer Composites,2020,41(4):1614-1623. doi: 10.1002/pc.25483
    [62] SUN Z, GUO F L, LI Y Q, et al. Effects of carbon nanotube-polydopamine hybridization on the mechanical properties of short carbon fiber/polyetherimide composites[J]. Composites Part B: Engineering,2022,236:109848. doi: 10.1016/j.compositesb.2022.109848
    [63] SHANMUGAM L, FENG X, YANG J. Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating[J]. Composites Science and Technology,2019,174:212-220. doi: 10.1016/j.compscitech.2019.03.001
    [64] WU Q, YANG X, YE Z, et al. Dopamine-dependent graphene oxide modification and its effects on interfacial adhesion of carbon fiber composites[J]. Surfaces and Interfaces,2022,31:102086. doi: 10.1016/j.surfin.2022.102086
    [65] ZENG L, LIU X, CHEN X, et al. π-π interaction between carbon fibre and epoxy resin for interface improvement in composites[J]. Composites Part B: Engineering,2021,220:108983. doi: 10.1016/j.compositesb.2021.108983
    [66] HAN W, ZHANG H P, TAVAKOLI J, et al. Polydopamine as sizing on carbon fiber surfaces for enhancement of epoxy laminated composites[J]. Composites Part A: Applied Science and Manufacturing,2018,107:626-632. doi: 10.1016/j.compositesa.2018.02.003
    [67] LIU X, LI W, FENG M, et al. Strength and toughness of carbon fibers reinforced rigid polyurethane composites by adsorbing tannic acid and refining Ni grains on carbon fibers surface[J]. Polymers for Advanced Technologies,2020,32(1):326-334.
    [68] WOO R S C, ZHU H, LEUNG C K Y, et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties[J]. Composites Science and Technology,2008,68(9):2149-2155. doi: 10.1016/j.compscitech.2008.03.020
    [69] 乔琨, 朱波, 高学平, 等. 紫外老化对碳纤维增强环氧树脂复合材料性能的影响[J]. 功能材料, 2012, 43(21):2989-2992. doi: 10.3969/j.issn.1001-9731.2012.21.026

    QIAO Kun, ZHU Bo, GAO Xueping, et al. Influence of artificial accelerating UV aging on carbon fiber reinforced epoxy composite[J]. Journal of Functional Materials,2012,43(21):2989-2992(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.21.026
    [70] 付晨阳, 倪爱清, 王继辉, 等. 紫外老化对玻璃纤维增强环氧树脂基复合材料疲劳性能的影响[J]. 复合材料科学与工程, 2020(7):74-80. doi: 10.3969/j.issn.1003-0999.2020.07.011

    FU Chenyang, NI Aiqing, WANG Jihui, et al. Effects of UV aging on fatigue properties of glass fiber reinforced epoxy resin composites[J]. Composites Science and Engineering,2020(7):74-80(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.07.011
    [71] 刘杰, 贾伯岩, 田霖, 等. 紫外老化对双酚A型环氧树脂综合性能影响[J]. 科学技术与工程, 2022, 22(20):8701-8707.

    LIU Jie, JIA Boyan, TIAN Lin, et al. Effect of UV aging on comprehensive properties of bisphenol a epoxy resin[J]. Science Technology and Engineering,2022,22(20):8701-8707(in Chinese).
    [72] YANG X, DUAN L, RAN X Q. Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber[J]. Polymer Bulletin,2017,74(3):641-656. doi: 10.1007/s00289-016-1735-y
    [73] CHEN L, LI Z, WU G, et al. In situ growth of TiO2 nanoparticles onto PBO fibers via a mussel-inspired strategy for enhancing interfacial properties and ultraviolet resistance[J]. Polymer Composites,2021,42(10):5065-5074. doi: 10.1002/pc.26205
    [74] JIANG J, WANG S X, ZHANG S H, et al. Nano titanium dioxide/PAoQ-coated polybenzoxazol fibers for enhancing anti-ultraviolet performance[J]. Textile Research Journal,2018,88(19):2267-2275. doi: 10.1177/0040517517720501
    [75] GE W, CAO S, SHEN F, et al. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels[J]. Carbohydrate Polymers,2019,224:115147. doi: 10.1016/j.carbpol.2019.115147
    [76] QIU S, SUN J, LI H, et al. A green way to simultaneously enhance the mechanical, flame retardant and anti-ultraviolet aging properties of polylactide composites by the incorporation of tannic acid derivatives[J]. Polymer Degradation and Stability,2022,196:109831. doi: 10.1016/j.polymdegradstab.2022.109831
    [77] ZHANG L, LI Z, WANG D Y. Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review[J]. European Polymer Journal,2020,138:109973. doi: 10.1016/j.eurpolymj.2020.109973
    [78] YANG W, WU S, YANG W, et al. Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin[J]. Composites Part B: Engineering,2020,186:107828. doi: 10.1016/j.compositesb.2020.107828
    [79] KIM Y O, CHO J, YEO H, et al. Flame retardant epoxy derived from tannic acid as biobased hardener[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):3858-3865.
    [80] KIM Y O, CHO J, KIM Y N, et al. Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic[J]. Composites Part B: Engineering,2020,197:108173. doi: 10.1016/j.compositesb.2020.108173
    [81] ZHENG Y, WANG X, WU G. Facile strategy of improving interfacial strength of silicone resin composites through self-polymerized polydopamine followed via the sol-gel growing of silica nanoparticles onto carbon fiber[J]. Polymers (Basel),2019,11(10):1639. doi: 10.3390/polym11101639
    [82] CUI X, MA L, WU G. Mussel-inspired co-deposition of polydopamine/silica nanoparticles onto carbon fiber for improved interfacial strength and hydrothermal aging resistance of composites[J]. Polymers (Basel),2020,12(3):712. doi: 10.3390/polym12030712
    [83] CUI X, LIU J, MA L, et al. Grafting of the hierarchical natural tannic acid and polyethyleneimine onto carbon fiber for significantly improved surface/interface properties[J]. Polymers for Advanced Technologies,2020,31(12):3126-3133. doi: 10.1002/pat.5037
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  288
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-23
  • 录用日期:  2023-04-05
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回