Performance and residual strength of metal-faced composite corrugated sandwich structure under multiple impacts
-
摘要: 金属面复合材料波纹夹层结构结合了金属耐冲击和复合材料高比强度/比刚度的优点,是一种优异的新型结构形式,在服役过程中夹层结构会遭受多次冲击工况,而其多次冲击损伤模式及损伤后剩余强度规律目前尚未明确。为此通过多次冲击试验和CT无损扫描分析方法,对其在低速冲击动力学响应、内部失效模式、载荷-位移特性以及能量吸收特征进行了深入研究,并在此基础上,通过对冲击后的试件开展平面压缩试验,对多次冲击后的剩余压缩强度及失效模式进行了分析。结果表明:首次冲击造成了大部分的伤害,随着冲击次数的提高将导致夹层结构的吸能性降低,抗冲击性下降。多次冲击中,夹层结构的损伤模式以芯材的基体开裂、分层和纤维断裂为主,大能量的多次冲击总是造成更大的损伤。此外,随着冲击次数的增多,损伤累积接近饱和,剩余压缩强度趋近阈值。Abstract: The metallic-faced composite corrugated sandwich structure, which combines the impact resistance of metals with the high specific strength and stiffness of composites, represents an exemplary form of innovative construction. During its service life, the sandwich structure is subjected to multiple impact conditions, yet the patterns of damage from repeated impacts and the post-damage residual strength are not yet clearly understood. To address this, a comprehensive study was conducted through a series of impact tests and CT non-destructive scanning analyses, delving into the dynamic response to low-velocity impacts, internal failure modes, load-displacement characteristics, and energy absorption features. Furthermore, based on these findings, plane compression tests were carried out on impacted specimens to analyze the residual compressive strength and failure modes after multiple impacts. The findings indicate that the initial impact inflicts the most damage, and with increasing impact frequency, the energy-absorbing capacity and impact resistance of the sandwich structure diminish. In multiple impacts, the predominant damage modes in the sandwich structure include matrix cracking, delamination, and fiber breakage in the core material, with higher energy impacts invariably causing more extensive damage. Moreover, as the number of impacts increases, the accumulation of damage approaches saturation, and the residual compressive strength trends towards a threshold value.
-
Key words:
- metal-faced /
- composite materials /
- sandwich structure /
- multiple impacts /
- impact damage /
- residual strength
-
图 10 金属面复合材料波纹夹层结构10 J不同冲击次数下:(a) 1~5次冲击力-时间曲线;(b) 1~5次冲击力-位移曲线;(c) 6~10次冲击力-时间曲线;(d) 6~10次冲击力-位移曲线
Figure 10. Metal-faced composite corrugated sandwich structure under different impact times of 10 J: (a) Force-time curves for 1st to 5th impacts; (b) Force-displacement curves for 1st to 5th impacts; (c) Force-time curves for 6th to 10th impacts; (d) Force-displacement curves for 6th to 10th impacts
表 1 金属面复合材料波纹夹层结构不同能量级别冲击后剩余压缩强度系数
Table 1. Residual compressive strength coefficient of metal-faced composite corrugated sandwich structure after impact at different energy levels
Specimen ID E/J Fmax/kN σd/MPa θ F-C0N0 0 80.81 5.387 1.000 F-C10N1 10 70.14 4.676 0.868 F-C20N1 20 56.13 3.742 0.695 F-C40N1 40 48.52 3.235 0.601 F-C60N1 60 45.42 3.028 0.562 Notes: E—Impact energy; Fmax—Maximum load force; σd—Residual compressive strength; θ—Residual compressive strength coefficient. 表 2 金属面复合材料波纹夹层结构10 J多次冲击后剩余压缩强度系数
Table 2. Residual compressive strength coefficient of metal-faced composite corrugated sandwich structure after 10 J multiple impacts
Specimen ID E/J Fmax/kN σd/MPa θ F-C0N0 0 80.81 5.387 1.000 F-C10N1 10 70.14 4.676 0.868 F-C10N2 10 63.86 4.257 0.791 F-C10N4 10 53.74 3.583 0.665 F-C10N6 10 49.99 3.333 0.619 F-C10N8 10 46.66 3.111 0.578 F-C10N10 10 46.79 3.119 0.579 表 3 金属面复合材料波纹夹层结构20 J多次冲击后剩余压缩强度系数
Table 3. Residual compressive strength coefficient of metal-faced composite corrugated sandwich structure after 20 J multiple impacts
Specimen ID E/J Fmax/kN σd/MPa θ F-C0N0 0 80.81 5.387 1.000 F-C20N1 20 56.13 3.742 0.695 F-C20N2 20 50.35 3.357 0.623 F-C20N3 20 49.56 3.304 0.613 F-C20N4 20 48.22 3.215 0.597 F-C20N5 20 44.57 2.971 0.552 -
[1] ONG M, SILVA A. Effects of low-velocity-impact on facesheet-core debonding of natural-core composite sandwich structures—A review of experimental research[J]. Journal of Composites Science, 2024, 8(1): 23. doi: 10.3390/jcs8010023 [2] 周磊, 姚凯, 李会民, 等. 复合材料双向波纹夹层结构力学性能[J]. 复合材料学报, 2021, 38(11): 3661-3671.ZHOU Lei, YAO Kai, LI Huimin, et al. Mechanical properties of composite bi-directional corrugated sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3661-3671(in Chinese). [3] SINGH P, SHEIKH J, BEHERA B K. Metal-faced sandwich composite panels: A review[J]. Thin-Walled Structures, 2024, 195: 111376. doi: 10.1016/j.tws.2023.111376 [4] SADIGHI M, ALDERLIESTEN R. Impact fatigue, multiple and repeated low-velocity impacts on FRP composites: A review[J]. Composite Structures, 2022, 297: 115962. doi: 10.1016/j.compstruct.2022.115962 [5] BALCI O, ÇOBAN O, BORA M Ö, et al. Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures[J]. Materials Science and Engineering: A, 2017, 682: 23-30. doi: 10.1016/j.msea.2016.11.030 [6] ABO SABAH S H, KUEH A B H, AL-FASIH M Y. Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration[J]. Construction and Building Materials, 2018, 169: 193-204. doi: 10.1016/j.conbuildmat.2018.02.201 [7] OZDEMIR O, OZTOPRAK N, KANDAS H. Single and repeated impact behaviors of bio-sandwich structures consisting of thermoplastic face sheets and different balsa core thicknesses[J]. Composites Part B: Engineering, 2018, 149: 49-57. doi: 10.1016/j.compositesb.2018.05.016 [8] GUO K, ZHU L, LI Y, et al. Numerical study on mechanical behavior of foam core sandwich plates under repeated impact loadings[J]. Composite Structures, 2019, 224: 111030. doi: 10.1016/j.compstruct.2019.111030 [9] HUO X, SUN G, ZHANG H, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core[J]. Composite Structures, 2019, 223: 110835. doi: 10.1016/j.compstruct.2019.04.007 [10] DAI X, YUAN T, ZU Z, et al. Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts[J]. Materials Today Communications, 2020, 25: 101309. doi: 10.1016/j.mtcomm.2020.101309 [11] QIN Y, XIONG C, ZHU X, et al. Failure mechanism and impact resistance of a novel all-composite double-corrugated sandwich plate under low-velocity impact[J]. Case Studies in Construction Materials, 2024, 20: e02724. doi: 10.1016/j.cscm.2023.e02724 [12] ZHU X, XIONG C, YIN J, et al. Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates[J]. Composite Structures, 2023, 308: 116690. doi: 10.1016/j.compstruct.2023.116690 [13] PAN X, CHEN L, DENG J, et al. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core[J]. Composite Structures, 2023, 324: 117574. doi: 10.1016/j.compstruct.2023.117574 [14] ZENG Y, LIU J, ZHAO Y. Experimental research on the repeated impacts behavior of aluminum corrugated-core sandwich structures[J]. Shock and Vibration, 2022, 2022(1): 4644029. [15] 杨文栋, 徐世伟, 齐业雄. 复合材料夹芯板低速冲击研究进展[J]. 复合材料科学与工程, 2022(5): 120-128.YANG Wendong, XU Shiwei, QI Yexiong. A review of sandwich panel on core structural design subjected to low-velocity impact[J]. Composites Science and Engineering, 2022(5): 120-128(in Chinese). [16] ZANGANA S, EPAARACHCHI J, FERDOUS W, et al. Behaviour of continuous fibre composite sandwich core under low-velocity impact[J]. Thin-Walled Structures, 2021, 158: 107157. doi: 10.1016/j.tws.2020.107157 [17] RONG Y, LIU J, LUO W, et al. Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels[J]. Composites Part B: Engineering, 2018, 152: 324-335. doi: 10.1016/j.compositesb.2018.08.130 [18] 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 40(9): 5359-5370.YU Mingming, ZHU Xueli, LIU Xueqiang, et al. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5359-5370(in Chinese). [19] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—15[S]. West Conshohocken: ASTM International, 2015. [20] ASTM International. Standard practice for damage resistance testing of sandwich constructions: ASTM D7766/D7766M—11[S]. West Conshohocken: ASTM International, 2011. [21] ASTM International. Standard test method for compressive residual strength properties of damaged sandwich composite panels: ASTM D8287/D8287M—22[S]. West Conshohocken: ASTM International, 2022. [22] ASTM International. Standard test method for flatwise compressive properties of sandwich cores: ASTM C365/C365M—16[S]. West Conshohocken: ASTM International, 2016. [23] SUN J, HUANG L, DAI Y. Dynamic response and damage accumulation of laminated composites under repeated low-velocity impacts[J]. Materials, 2023, 16(2): 778. doi: 10.3390/ma16020778 [24] REZASEFAT M, DA SILVA A A X, AMICO S C, et al. Repeated impact behaviour of inter-ply hybrid aramid/S2-glass epoxy laminates[J]. Thin-Walled Structures, 2023, 186: 110680. doi: 10.1016/j.tws.2023.110680 [25] LIAO B, ZHOU J, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences, 2020, 182: 105783. doi: 10.1016/j.ijmecsci.2020.105783 [26] REZASEFAT M, GONZALEZ-JIMENEZ A, GIGLIO M, et al. Numerical study on the dynamic progressive failure due to low-velocity repeated impacts in thin CFRP laminated composite plates[J]. Thin-Walled Structures, 2021, 167: 108220. doi: 10.1016/j.tws.2021.108220 [27] YAO L, SUN G, HE W, et al. Investigation on impact behavior of FMLs under multiple impacts with the same total energy: Experimental characterization and numerical simulation[J]. Composite Structures, 2019, 226: 111218. doi: 10.1016/j.compstruct.2019.111218