留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属面复合材料波纹夹层结构多次冲击性能及其剩余强度

夏鑫 孔祥韶 郑成 朱子涵

夏鑫, 孔祥韶, 郑成, 等. 金属面复合材料波纹夹层结构多次冲击性能及其剩余强度[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 夏鑫, 孔祥韶, 郑成, 等. 金属面复合材料波纹夹层结构多次冲击性能及其剩余强度[J]. 复合材料学报, 2024, 42(0): 1-17.
XIA Xin, KONG Xiangshao, ZHENG Cheng, et al. Performance and residual strength of metal-faced composite corrugated sandwich structure under multiple impacts[J]. Acta Materiae Compositae Sinica.
Citation: XIA Xin, KONG Xiangshao, ZHENG Cheng, et al. Performance and residual strength of metal-faced composite corrugated sandwich structure under multiple impacts[J]. Acta Materiae Compositae Sinica.

金属面复合材料波纹夹层结构多次冲击性能及其剩余强度

基金项目: 国家自然科学基金 (12202329);国家自然科学基金 (52171318)
详细信息
    通讯作者:

    郑成,博士研究生,研究员,博士生导师,研究方向为结构冲击动力学 E-mail:zhengchengyeep@whut.edu.cn

  • 中图分类号: TB332

Performance and residual strength of metal-faced composite corrugated sandwich structure under multiple impacts

Funds: National Natural Science Foundation of China (No.12202329); National Natural Science Foundation of China (No.52171318)
  • 摘要: 金属面复合材料波纹夹层结构结合了金属耐冲击和复合材料高比强度/比刚度的优点,是一种优异的新型结构形式,在服役过程中夹层结构会遭受多次冲击工况,而其多次冲击损伤模式及损伤后剩余强度规律目前尚未明确。为此通过多次冲击试验和CT无损扫描分析方法,对其在低速冲击动力学响应、内部失效模式、载荷-位移特性以及能量吸收特征进行了深入研究,并在此基础上,通过对冲击后的试件开展平面压缩试验,对多次冲击后的剩余压缩强度及失效模式进行了分析。结果表明:首次冲击造成了大部分的伤害,随着冲击次数的提高将导致夹层结构的吸能性降低,抗冲击性下降。多次冲击中,夹层结构的损伤模式以芯材的基体开裂、分层和纤维断裂为主,大能量的多次冲击总是造成更大的损伤。此外,随着冲击次数的增多,损伤累积接近饱和,剩余压缩强度趋近阈值。

     

  • 图  1  复合材料波纹夹层结构示意图

    Figure  1.  Diagram of the Composite Material Corrugated Sandwich Structure

    图  2  试件制备流程图

    Figure  2.  Flowchart illustrating the specimen preparation process

    图  3  金属面复合材料波纹夹层结构

    Figure  3.  metal-faced composite corrugated sandwich structure

    图  4  波纹夹层板安装布置图

    Figure  4.  Layout diagram for installation of the corrugated sandwich panel

    图  5  落锤冲击装置

    Figure  5.  Drop weight impact testing apparatus

    图  6  剩余强度压缩试验加载图

    Figure  6.  Loading diagram for residual strength compression test

    图  7  金属面复合材料波纹夹层结构不同冲击能量下:(a)冲击力-时间曲线 (b)冲击力-位移曲线

    Figure  7.  Metal-faced composite corrugated sandwich structures under different impact energies: (a) Impact force-time curve (b) Impact force-displacement curve

    图  8  金属面复合材料波纹夹层结构不同冲击能量下:(a)最大冲击力 (b)最大冲击位移

    Figure  8.  Metal-faced composite corrugated sandwich structures under different impact energies: (a) Maximum impact force (b) Maximum impact displacement

    图  9  金属面复合材料波纹夹层结构不同冲击能量下:(a)能量-时间曲线 (b)能量吸收比例

    Figure  9.  Metal-faced composite corrugated sandwich structures under different impact energies: (a) Energy-time curve (b) Energy absorption ratio

    图  10  金属面复合材料波纹夹层结构10 J不同冲击次数下:

    (a) 1-5次冲击力-时间曲线 (b) 1-5次冲击力-位移曲线(c) 6-10次冲击力-时间曲线 (d) 6-10次冲击力-位移曲线

    Figure  10.  Fig. Metal surface composite corrugated sandwich structure under different impact times of 10 J:

    (a) Force-time curves for 1 st to 5 th impacts (b) Force-displacement curves for 1 st to 5 th impacts (c) Force-time curves for 6 th to 10 th impacts (d) Force-displacement curves for 6 th to 10 th impacts

    图  11  金属面复合材料波纹夹层结构10 J不同冲击次数下:(a)最大冲击力 (b)最大冲击位移

    Figure  11.  Metal surface composite corrugated sandwich structure under different impact times of 10 J: (a) Maximum impact forces (b) Maximum impact displacements

    图  12  金属面复合材料波纹夹层结构10 J不同次数下:(a) 1-5次能量-时间曲线 (b) 6-10次能量-时间曲线 (c) 能量吸收比例

    Figure  12.  Metal surface composite corrugated sandwich structure under different impact times of 10 J: (a) Energy-time curves for 1 st to 5 th impacts(b) Energy-time curves for 6 th to 10 th impacts (c) Energy absorption ratios

    图  13  金属面复合材料波纹夹层结构20 J不同冲击次数下:(a)冲击力-时间曲线 (b)冲击力-位移曲线

    Figure  13.  Metal surface composite corrugated sandwich structure under different impact times of 20 J: (a) Force-time curves (b) Force-displacement curves

    图  14  金属面复合材料波纹夹层结构20 J不同冲击次数下:(a)最大冲击力 (b)最大冲击位移

    Figure  14.  Metal surface composite corrugated sandwich structure under different impact times of 20 J: (a) Maximum impact forces (b) Maximum impact displacements

    图  15  金属面复合材料波纹夹层结构20 J不同冲击次数下:(a)能量-时间曲线 (b)能量吸收比例

    Figure  15.  Metal surface composite corrugated sandwich structure under different impact times of 20 J: (a) Energy-time curves (b) Energy absorption ratios

    图  16  金属面复合材料波纹夹层结构不同能级单次冲击CT损伤图

    Figure  16.  CT images of damage in the Metal surface composite corrugated sandwich structure under different single impact energy levels

    图  17  金属面复合材料波纹夹层结构10 J多次冲击损伤图

    Figure  17.  Damage images in the Metal surface composite corrugated sandwich structure after multiple impacts at an energy level of 10 J

    图  18  金属面复合材料波纹夹层结构20 J多次冲击损伤图

    Figure  18.  Damage images in the Metal surface composite corrugated sandwich structure after multiple impacts at an energy level of 20 J

    图  19  金属面复合材料波纹夹层结构平面压缩下失效模式

    Figure  19.  Failure modes of the Metal surface composite corrugated sandwich structure under planar compression

    图  20  金属面复合材料波纹夹层结构不同能级单次冲击后压缩力-位移曲线

    Figure  20.  Compression force-displacement curves of metal surface composite corrugated sandwich structures after single impact at different energy levels

    图  21  金属面复合材料波纹夹层结构不同冲击能量下剩余压缩强度系数

    Figure  21.  Residual compressive strength coefficient of metal surface composite corrugated sandwich structure under different impact energies

    图  22  金属面复合材料波纹夹层结构10 J多次冲击后压缩力-位移曲线

    Figure  22.  Compression force-displacement curve of metal surface composite corrugated sandwich structure after 10 J multiple impacts

    图  23  金属面复合材料波纹夹层结构10 J不同冲击次数下剩余压缩强度系数

    Figure  23.  Residual compressive strength coefficient of metal surface composite corrugated sandwich structure under different impact times of 10 J

    图  24  金属面复合材料波纹夹层结构20 J多次冲击后压缩力-位移曲线

    Figure  24.  Compression force-displacement curve of metal surface composite corrugated sandwich structure after 20 J multiple impacts

    图  25  金属面复合材料波纹夹层结构20 J不同冲击次数下剩余压缩强度系数

    Figure  25.  Residual compressive strength coefficient of metal surface composite corrugated sandwich structure under different impact times of 20 J

    表  1  金属面复合材料波纹夹层结构不同能量级别冲击后剩余压缩强度系数

    Table  1.   Residual compressive strength coefficient of metal surface composite corrugated sandwich structure after impact at different energy levels

    Specimen ID E/J Fmax/kN σd/MPa θ
    F-C0 N0 0 80.81 5.387 1
    F-C10 N1 10 70.14 4.676 0.868
    F-C20 N1 20 56.13 3.742 0.695
    F-C40 N1 40 48.52 3.235 0.601
    F-C60 N1 60 45.42 3.028 0.562
    Notes:E are the Impact Energy; Fmax are the Maximum Load Force; σd are the Residual Compressive Strength; θ are the Residual Compressive Strength Coefficient.
    下载: 导出CSV

    表  2  金属面复合材料波纹夹层结构10 J多次冲击后剩余压缩强度系数

    Table  2.   Residual compressive strength coefficient of metal surface composite corrugated sandwich structure after 10 J multiple impacts

    Specimen ID E/J Fmax/kN σd/MPa θ
    F-C0 N0 0 80.81 5.387 1
    F-C10 N1 10 70.14 4.676 0.868
    F-C10 N2 10 63.86 4.257 0.791
    F-C10 N4 10 53.74 3.583 0.665
    F-C10 N6 10 49.99 3.333 0.619
    F-C10 N8 10 46.66 3.111 0.578
    F-C10 N10 10 46.79 3.119 0.579
    下载: 导出CSV

    表  3  金属面复合材料波纹夹层结构20 J多次冲击后剩余压缩强度系数

    Table  3.   Residual compressive strength coefficient of metal surface composite corrugated sandwich structure after 20 J multiple impacts

    Specimen ID E/J Fmax/kN σd/MPa θ
    F-C0 N0 0 80.81 5.387 1
    F-C20 N1 20 56.13 3.742 0.695
    F-C20 N2 20 50.35 3.357 0.623
    F-C20 N3 20 49.56 3.304 0.613
    F-C20 N4 20 48.22 3.215 0.597
    F-C20 N5 20 44.57 2.971 0.552
    下载: 导出CSV
  • [1] ONG M, SILVA A. Effects of Low-Velocity-Impact on Facesheet-Core Debonding of Natural-Core Composite Sandwich Structures—A Review of Experimental Research[J]. Journal of Composites Science, 2024, 8(1): 23. doi: 10.3390/jcs8010023
    [2] 周磊, 姚凯, 李会民, 等. 复合材料双向波纹夹层结构力学性能[J]. 复合材料学报, 2021, 38(11): 3661-3671.

    ZHOU Lei, YAO Kai, LI Huimin, et al. Mechanical properties of composite bi-directional corrugated sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3661-3671(in Chinese).
    [3] SINGH P, SHEIKH J, BEHERA B K. Metal-faced sandwich composite panels: A review[J]. Thin-Walled Structures, 2024, 195: 111376. doi: 10.1016/j.tws.2023.111376
    [4] SADIGHI M, ALDERLIESTEN R. Impact fatigue, multiple and repeated low-velocity impacts on FRP composites: A review[J]. Composite Structures, 2022, 297: 115962. doi: 10.1016/j.compstruct.2022.115962
    [5] BALCI O, ÇOBAN O, BORA M Ö, et al. Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures[J]. Materials Science and Engineering: A, 2017, 682: 23-30. doi: 10.1016/j.msea.2016.11.030
    [6] ABO SABAH S H, KUEH A B H, AL-FASIH M Y. Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration[J]. Construction and Building Materials, 2018, 169: 193-204. doi: 10.1016/j.conbuildmat.2018.02.201
    [7] OZDEMIR O, OZTOPRAK N, KANDAS H. Single and repeated impact behaviors of bio-sandwich structures consisting of thermoplastic face sheets and different balsa core thicknesses[J]. Composites Part B: Engineering, 2018, 149: 49-57. doi: 10.1016/j.compositesb.2018.05.016
    [8] GUO K, ZHU L, LI Y, et al. Numerical study on mechanical behavior of foam core sandwich plates under repeated impact loadings[J]. Composite Structures, 2019, 224: 111030. doi: 10.1016/j.compstruct.2019.111030
    [9] HUO X, SUN G, ZHANG H, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core[J]. Composite Structures, 2019, 223: 110835. doi: 10.1016/j.compstruct.2019.04.007
    [10] DAI X, YUAN T, ZU Z, et al. Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts[J]. Materials Today Communications, 2020, 25: 101309. doi: 10.1016/j.mtcomm.2020.101309
    [11] QIN Y, XIONG C, ZHU X, et al. Failure mechanism and impact resistance of a novel all-composite double-corrugated sandwich plate under low-velocity impact[J]. Case Studies in Construction Materials, 2024, 20: e02724. doi: 10.1016/j.cscm.2023.e02724
    [12] ZHU X, XIONG C, YIN J, et al. Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates[J]. Composite Structures, 2023, 308: 116690. doi: 10.1016/j.compstruct.2023.116690
    [13] PAN X, CHEN L, DENG J, et al. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core[J]. Composite Structures, 2023, 324: 117574. doi: 10.1016/j.compstruct.2023.117574
    [14] ZENG Y, LIU J, ZHAO Y. Experimental Research on the Repeated Impacts Behavior of Aluminum Corrugated-Core Sandwich Structures[J]. Shock and Vibration, 2022, 2022: 1-14.
    [15] 杨文栋, 徐世伟, 齐业雄. 复合材料夹芯板低速冲击研究进展[J]. 复合材料科学与工程, 2022, (5): 120-128.

    YANG Wen-dong, XU Shi-wei, QI Ye-xiong. A review of sandwich panel on core structural design subjected to low-velocity impact[J]. Composites Science and Engineering, 2022, (5): 120-128(in Chinese).
    [16] ZANGANA S, EPAARACHCHI J, FERDOUS W, et al. Behaviour of continuous fibre composite sandwich core under low-velocity impact[J]. Thin-Walled Structures, 2021, 158: 107157. doi: 10.1016/j.tws.2020.107157
    [17] RONG Y, LIU J, LUO W, et al. Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels[J]. Composites Part B: Engineering, 2018, 152: 324-335. doi: 10.1016/j.compositesb.2018.08.130
    [18] 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 40(9): 5359-5370.

    YU Mingming, ZHU Xueli, LIU Xueqiang, et al. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5359-5370(in Chinese).
    [19] D30 Committee. Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event[S]. ASTM International.
    [20] D30 Committee. Practice for Damage Resistance Testing of Sandwich Constructions[S]. ASTM International.
    [21] D30 Committee. Standard Test Method for Compressive Residual Strength Properties of Damaged Sandwich Composite Panels[S]. ASTM International.
    [22] D30 Committee. Test Method for Flatwise Compressive Properties of Sandwich Cores[S]. ASTM International.
    [23] SUN J, HUANG L, DAI Y. Dynamic Response and Damage Accumulation of Laminated Composites under Repeated Low-Velocity Impacts[J]. Materials, 2023, 16(2): 778. doi: 10.3390/ma16020778
    [24] REZASEFAT M, DA SILVA A A X, AMICO S C, et al. Repeated impact behaviour of inter-ply hybrid aramid/S2-glass epoxy laminates[J]. Thin-Walled Structures, 2023, 186: 110680. doi: 10.1016/j.tws.2023.110680
    [25] LIAO B, ZHOU J, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences, 2020, 182: 105783. doi: 10.1016/j.ijmecsci.2020.105783
    [26] REZASEFAT M, GONZALEZ-JIMENEZ A, GIGLIO M, et al. Numerical study on the dynamic progressive failure due to low-velocity repeated impacts in thin CFRP laminated composite plates[J]. Thin-Walled Structures, 2021, 167: 108220. doi: 10.1016/j.tws.2021.108220
    [27] YAO L, SUN G, HE W, et al. Investigation on impact behavior of FMLs under multiple impacts with the same total energy: Experimental characterization and numerical simulation[J]. Composite Structures, 2019, 226: 111218. doi: 10.1016/j.compstruct.2019.111218
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-04-11
  • 录用日期:  2024-04-12
  • 网络出版日期:  2024-05-06

目录

    /

    返回文章
    返回