留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同尺寸钙矾石的制备及其对胶砂力学性能的影响

曹卫华 陈烽 刘晓 姚燕 钱珊珊

曹卫华, 陈烽, 刘晓, 等. 不同尺寸钙矾石的制备及其对胶砂力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 曹卫华, 陈烽, 刘晓, 等. 不同尺寸钙矾石的制备及其对胶砂力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
CAO Weihua, CHEN Feng, LIU Xiao, et al. Preparation of ettringite with different aspect ratios and its effect on the mechanical properties of mortar[J]. Acta Materiae Compositae Sinica.
Citation: CAO Weihua, CHEN Feng, LIU Xiao, et al. Preparation of ettringite with different aspect ratios and its effect on the mechanical properties of mortar[J]. Acta Materiae Compositae Sinica.

不同尺寸钙矾石的制备及其对胶砂力学性能的影响

基金项目: 国家自然科学基金 (52372020)
详细信息
    通讯作者:

    钱珊珊,博士,高级工程师,硕士生导师,研究方向为高性能混凝土、混凝土外加剂、混凝土耐久性及相关材料的研究与开发 E-mail: qianshanshan4410@163.com

  • 中图分类号: TU528.042.2

Preparation of ettringite with different aspect ratios and its effect on the mechanical properties of mortar

Funds: National Natural Science Foundation of China (52372020)
  • 摘要: 为探究不同尺寸钙矾石对胶砂早强性能的影响,本文使用不同分散剂制得不同尺寸的钙矾石(AFt-0、AFt-1和AFt-2),通过红外光谱(IR)、X射线衍射(XRD)及电镜形貌(SEM)对制备的系列AFt进行表征,通过胶砂抗压强度、胶砂微观形貌、水泥水化热、水泥凝结时间等分析手段比较不同尺寸钙矾石对胶砂的力学性能、微观结构及水化作用的影响。结果表明:加入分散剂能控制钙矾石尺寸大小,同时提高钙矾石在溶液中的悬浮稳定性。不同尺寸钙矾石掺入胶砂后均能提高其早期抗压强度,而随着钙矾石尺寸减小,早期抗压强度提升幅度更大,其中掺入AFt-2的胶砂8 h抗压强度较同龄期空白样提高了225%,接近空白样1 d的抗压强度。从胶砂微观结构中也可以看出,掺入钙矾石尺寸越小,胶砂中钙矾石的早期形成量越多,这利于胶砂形成早期骨架体系。通过水化热分析也发现,随着钙矾石尺寸减小,水泥水化速度加快,水泥凝结时间缩短。

     

  • 图  1  分散剂的GPC(a)和1H NMR(b)谱图

    Figure  1.  GPC (a) and 1H NMR (b) spectra of dispersants

    图  2  钙矾石的FT-IR谱图

    Figure  2.  FT-IR spectrum of ettringite

    图  3  钙矾石的形貌

    Figure  3.  Morphology of ettringite

    图  4  钙矾石的XRD谱图

    Figure  4.  XRD spectrum of ettringite

    图  5  钙矾石的粒径分布

    Figure  5.  Crystal nucleus grain size distribution of ettringite

    图  6  钙矾石的抗离心稳定性

    Figure  6.  Centrifugal stability of ettringite

    图  7  不同尺寸钙矾石对胶砂抗压强度的影响

    Figure  7.  Influence of different sizes of ettringite on compressive strength of foundry sand

    图  8  不同尺寸钙矾石对胶砂微观形貌的影响

    Figure  8.  Influence of different sizes of ettringite on microscopic morphology of foundry sand

    图  9  不同尺寸钙矾石对水泥水化放热曲线的影响

    Figure  9.  Influence of different sizes of ettringite on heat release curve of foundry sand

    图  10  不同尺寸钙矾石对水泥凝结时间的影响

    Figure  10.  Influence of different sizes of ettringite on cement setting time

    图  11  水泥溶液体系中AFt-2的作用模型

    Figure  11.  Model of the role of AFt-2 in cementitious solution system

    表  1  水泥的主要化学组成

    Table  1.   Main chemical composition of cement

    CementSiO2CaOMgOFe2O3Al2O3SO3Na2OK2O
    Reference/wt%20.0663.322.463.025.282.690.060.76
    下载: 导出CSV

    表  2  分散剂组成及GPC数据

    Table  2.   Composition and GPC data of dispersants

    Dispersantn(AA):n(KH-570):n(TPEG2400)MnMwPDI
    PCE-14:0:125400427001.68
    PCE-24:1:135000690001.97
    Notes: GPC is gel permeation chromatography; AA is acrylic acid; KH-570 is γ-methacryloxypropyl trimethoxy silane; TPEG2400 is isobutene polyoxyethylene ether with a molecular weight of 2400; Mn is the number average molecular weight; Mw is the weight average molecular weight; PDI is the polymer dispersity index; PCE-1 and PCE-2 are dispersants prepared.
    下载: 导出CSV

    表  3  钙矾石合成原料

    Table  3.   Raw materials for the synthesis of ettringite

    SampleComposition of synthetic materials
    AFt-0Ca(NO3)2·4 H2OAl2(SO4)3·18 H2O-
    AFt-1Ca(NO3)2·4 H2OAl2(SO4)3·18 H2OPCE-1
    AFt-2Ca(NO3)2·4 H2OAl2(SO4)3·18 H2OPCE-2
    下载: 导出CSV
  • [1] SONGHEE L, NGOCCHIEN N, CHADON L, et al. Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete[J]. International Journal of Concrete Structures and Materials, 2016, (3): 10-23.
    [2] 孙振平, 罗琼, 蒋正武, 等. 早强型聚羧酸系减水剂的性能研究[J]. 低温建筑技术, 2010, 32(9): 5-7.

    SUN Zhenping, LUO Qiong, JIANG Zhengwu, et al. Performance study of early-strength polycarboxylate superplasticizer[J]. Cryogenic building Technology, 2010, 32(9): 5-7(in Chinese).
    [3] WANG H Q, ZHANG S G, WU B N. Experimental study on selection of early-strength agent for low-strength cementitious materials prepared with manganese tailings[J]. Environmental earth sciences, 2018, 77(6): 231-238. doi: 10.1007/s12665-018-7415-5
    [4] 郑新国, 郁培云, 谢永江, 等. C—S—H早强剂研究现状综述[J]. 混凝土, 2021, (10): 119-123.

    ZHENG Xinguo, YU Peiyun, XIE Yongjiang, et al. Review of the current research status of early-strength agents for C—S—H[J]. Concrete, 2021, (10): 119-123(in Chinese).
    [5] 唐芮枫, 崔素萍, 王子明, 等. 钙硅摩尔比对纳米水化硅酸钙晶种早强作用的影响及机理[J]. 硅酸盐学报, 2022, 50(6): 1626-1633.

    Tang Ruifeng, Cui Suping, Wang Ziming, et al. Influence and mechanism of calcium-to-silicon molar ratio on early-strength effect of nano-hydrated calcium silicate crystalline nucleus[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1626-1633(in Chinese).
    [6] Wyrzykowski M, Assmann A, Hesse C, et al. Microstructure development and autogenous shrinkage of mortars with C—S—H seeding and internal curing[J]. Cement and Concrete Research, 2020, 129-141.
    [7] 屠艳平, 程子扬, 邓丽, 等. 纳米SiO2对橡胶再生水泥胶砂性能的影响[J]. 武汉工程大学学报, 2022, 44(3): 341-345.

    Tu Yanping, Cheng Ziyang, Deng Li, et al. Influence of nano-SiO2 on the properties of rubber recycled cement mortar[J]. Journal of Wuhan University of Engineering, 2022, 44(3): 341-345(in Chinese).
    [8] 郭飞, 沙建芳, 徐海源, 等. 纳米材料对胶砂工作性的影响及机理研究[J]. 混凝土, 2018, (10): 79-81.

    Guo Fei, Sha Jianfang, Xu Haiyuan, et al. Study on the influence and mechanism of nano-materials on the workability of mortar[J]. Concrete, 2018, (10): 79-81(in Chinese).
    [9] 吕生华, 周庆芳, 孙婷, 等. GO纳米片层对水泥水化晶体及胶砂力学性能的影响[J]. 建筑材料学报, 2014, 17(5): 749-754.

    Lv Shenghua, Zhou Qingfang, Sun Ting, et al. Influence of GO nanosheets on hydration crystals and mechanical properties of cement mortar[J]. Journal of Building Materials, 2014, 17(5): 749-754(in Chinese).
    [10] 徐子芳, 王君, 张明旭. 纳米级SiO2改性水泥胶砂作用机理研究[J]. 硅酸盐通报, 2007, (1): 58-62.

    Xu Zifang, Wang Jun, Zhang Mingxu. Study on the action mechanism of nano-SiO2 modified cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2007, (1): 58-62(in Chinese).
    [11] 李妤茜, 乔秀臣. 外部因素对钙矾石晶体结构及形貌的影响综述[J]. 硅酸盐通报[J], 2023, 42(1): 31-47.

    LI Yuxi, QIAO Xiuchen. A comprehensive review of the influence of external factors on the crystal structure and morphology of ettringite[J]. Chinese Journal of Ceramics, 2023, 42(1): 31-47(in Chinese).
    [12] LI H Y, GUAN X M, ZHANG X Y, et al. Influence of superfine ettringite on the properties of sulphoaluminate cement-based grouting materials[J]. Construction and Building Materials, 2018, 166(30): 723-731.
    [13] Yu J C, Qian J S, Tang J Y, et al. Effect of ettringite seed crystals on the properties of calcium sulphoaluminate cement[J]. Construction and Building Materials, 2019, 207(20): 249-257.
    [14] 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. water requirement for standard consistency of cement, setting time, and stability test methods: GB/T 1346—2011 [S]. Beijing: China Standards Press, 2011(in Chinese).
    [15] 中国国家标准化管理委员会. 水泥胶砂强度测试方法: GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Method for testing the strength of cement mortar: GB/T 17671-2021 [S]. Beijing: China Standards Press, 2021(in Chinese).
    [16] 张金山. 钙矾石形貌调控及其机理研究[D]. 北京: 中国建筑材料科学研究总院, 2017.

    ZHANG Jinshan. Study on morphology regulation and mechanism of ettringite [D]. Beijing: China General Research Institute of Building Materials Science, 2017(in Chinese).
    [17] 曾桂生, 邹建平, 彭 强, 等. 硅烷类偶联剂KH-570对T-ZnOw的表面改性研究[J]. 功能材料, 2010, 41(3): 410-413.

    ZENG Guisheng, ZOU Jianping, PENG Qiang, et al. Research on the surface modification of T-ZnOw using silane coupling agent KH-570[J]. Functional Materials, 2010, 41(3): 410-413(in Chinese).
    [18] DONG S H, TAO L, QING H H et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: Structure, dynamics and interfacial interaction[J]. Computational Materials Science, 2018, 153-167.
    [19] MEIER M R. , RINKNBURGER A, PLANK J. Impact of different types of polycarboxylate superplasticisers on spontaneous crystallisation of ettringite[J]. Advances in Cement Research, 2016, (5): 28-38.
    [20] DALAS F, POURCHET S, RINALDI D, et al. Modification of the rate of formation and surface area of ettringite by polycarboxylate ether superplasticizers during early C3A-CaSO4 hydration[J]. Cement and Concrete Research, 2015, 69-78.
    [21] 王学川, 钱珊珊, 王子明, 等. 硅烷减水剂对水化硅酸钙晶核粒径调控[J]. 硅酸盐学报, 2022, 50(11): 2818-2825.

    WANG Xuechuan, QIAN Shanshan, WANG Ziming, et al. Control of the crystal nucleus particle size of hydrated calcium silicate by silane water reducer[J]. Chin Ceram Soc, 2022, 50(11): 2818-2825(in Chinese).
    [22] 雷凤珍, 雷蕾, 康阳阳, 等. 聚羧酸减水剂的酸醚比对水化硅酸钙晶种早强作用的影响[J]. 硅酸盐学报, 2023, 51(7): 1649-1659.

    LEI Fengzhen, LEI Lei, KANG Yangyang, et al. Effect of acid-ether ratio of polycarboxylate superplasticizer on early strength of hydration-seeded calcium silicate[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1649-1659(in Chinese).
    [23] 杜祥飞. 纳米SiO2团聚特性及其对水泥基材料性能的影响与机理[D]. 浙江工业大学, 2012.

    Du Xiangfei. Aggregation characteristics of nano-SiO2 and its effects and mechanism on the properties of cement-based materials [D]. Zhejiang University of Technology, 2012(in Chinese).
    [24] CHUN T C, LESLIE J, STRUBLE. Cement-Dispersant Incompatibility due to Ettringite Bridging[J]. International Journal of Applied Ceramic Technology/Functional Ceramics, 2011, 94(1): 200-208.
    [25] IGOR K, VYACHESLAV A. Effect of ettringite morphology on the properties of expanding cement systems[J]. E3S Web of Conferences, 2019, (4): 110-121.
    [26] 肖佳, 申闯, 王大富, 等. 纳米SiO2的分散性对水泥胶砂强度的影响[J]. 硅酸盐通报, 2017, 36(3): 984-990.

    Xiao Jia, Shen Chuang, Wang Dafu, et al. Influence of the dispersibility of nano-SiO2 on the strength of cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(3): 984-990(in Chinese).
    [27] LUCIA F, JOSEF K, FRANK W, et al. Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions[J]. Journal of Colloid and Interface Science, 2014, 419-427.
    [28] 赵展鹏. 钙矾石的形成及其对碱矿渣水泥砂浆收缩性能的影响[D]. 重庆: 重庆大学, 2021.

    ZHAO Zhanpeng. Formation of ettringite and its effect on shrinkage property of alkali slag cement mortar [D]. Chongqing: Chongqing University, 2021(in Chinese)
    [29] 吕 鹏, 翟建平, 聂 荣, 等. 环境扫描电镜用于硅酸盐水泥早期水化的研究[J]. 硅酸盐学报, 2004, (4): 530-536.

    LV Peng, ZHAI Jianping, NIE Rong, et al. Environmental scanning electron microscopy is employed for the investigation of early hydration of silicate cement[J]. Chin Ceram Soc, 2004, (4): 530-536(in Chinese).
    [30] YU J C, QIAN J S, TANG J Y, et al. Effect of ettringite seed crystals on the properties of calcium sulphoaluminate cement[J]. Construction and Building Materials, 2019, 207(20): 249-257.
    [31] CODY A, LEE H, CODY R. The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3 centre dot 26H2O[J]. Cement and Concrete Research, 2004, (5): 34-47.
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-05-29
  • 录用日期:  2024-06-06
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回