Loading [MathJax]/jax/output/SVG/jax.js

厚/薄铺层混杂复合材料低速冲击损伤特征

郑凯东, 陈宏达, 蔡伟, 曹东风, 胡海晓, 李瑞奇, 李书欣

郑凯东, 陈宏达, 蔡伟, 等. 厚/薄铺层混杂复合材料低速冲击损伤特征[J]. 复合材料学报, 2025, 42(5): 2595-2606. DOI: 10.13801/j.cnki.fhclxb.20240730.002
引用本文: 郑凯东, 陈宏达, 蔡伟, 等. 厚/薄铺层混杂复合材料低速冲击损伤特征[J]. 复合材料学报, 2025, 42(5): 2595-2606. DOI: 10.13801/j.cnki.fhclxb.20240730.002
ZHENG Kaidong, CHEN Hongda, CAI Wei, et al. Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin-plies[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2595-2606. DOI: 10.13801/j.cnki.fhclxb.20240730.002
Citation: ZHENG Kaidong, CHEN Hongda, CAI Wei, et al. Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin-plies[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2595-2606. DOI: 10.13801/j.cnki.fhclxb.20240730.002

厚/薄铺层混杂复合材料低速冲击损伤特征

基金项目: 国家自然科学基金(52273080);湖北省自然科学基金(20231j0223)
详细信息
    通讯作者:

    曹东风,博士,副研究员,博士生导师,研究方向为先进复合材料计算力学 E-mail: cao_dongf@whut.edu.cn

    李书欣,博士,教授,博士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: lishuxin@whut.edu.cn

  • 中图分类号: TB330.1

Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin-plies

Funds: National Natural Science Foundation of China (52273080); Natural Science Foundation of Hubei Province (20231j0223)
  • 摘要:

    厚薄层层级混杂设计时采用多个薄铺层替代单个厚铺层,增加了界面的复杂性。为了研究低速冲击(Low-velocity impact,LVI)下复合材料结构的厚薄层混杂效应,以准各向同性铺层为基准设计了两种厚薄层混杂层合板,开展了基准层合板和混杂层合板的LVI试验研究;采用超声C扫设备和热揭层方法对含冲击损伤的层合板分别进行了无损和有损检测,基于检测结果对冲击损伤进行了定性和定量的评估;随后,对冲击后压缩(Compression after impact,CAI)性能和破坏模式进行了分析。试验结果表明:厚薄层混杂设计利用了薄铺层复合材料的损伤抑制特点,提高了复合材料结构的冲击损伤阻抗,减少了分层损伤投影面积和界面分层总面积,缩短了最大单一分层与中性层之间的距离,显著地提高了复合材料结构的CAI强度。该试验研究可为厚薄层混杂结构的优化设计和安全评估提供指导。

     

    Abstract:

    The ply level hybridization design employs multiple thin layers instead of a single thick layer, resulting in an increased complexity of the interface. To investigate the hybrid effect between thick and thin plies of laminated composites subjected to low-velocity impact loading, two hybrid laminates were designed based on the quasi-isotropic stacking sequence. The low-velocity impact (LVI) tests including the baseline laminate and hybrid laminates were carried out. The ultrasonic C-scan and de-ply technology were respectively used to make a non-destructive and destructive detection on laminates with impact damages. Impact damages were qualitatively and quantitatively evaluated based on the detection results. Subsequently, the performances and failure modes of compression after impact (CAI) were analyzed. Experimental results show that hybrid design of thick- and thin- plies makes full use of the damage suppression characteristics of thin-ply composite, improves the impact damage resistance of composite structures, reduces the projected delamination area and total interface delamination area, shortens the distance between the largest single delamination and the neutral layer, and significantly improves the CAI strength of composite structures. The outputs of this experimental research serves as an indication for the optimal design and safety evaluation of hybrid structures.

     

  • 聚对苯二甲酸乙二醇酯(PET)是全球用量最大的高分子材料之一,其纤维制品俗称涤纶,是全球第一大化纤品种[1]。但PET属于易燃材料,且其燃烧时还伴有严重的熔滴现象,极易导致火灾蔓延和二次伤害,这为PET的应用带来了极大的安全隐患,也使其在军事、工业等诸多领域的应用受到限制[2]。目前PET阻燃改性的主流方法是引入含磷阻燃剂,但含磷聚酯的阻燃性主要是通过熔体滴落带走燃烧区域的热量和火焰来实现的[3-4],未能解决PET的熔滴问题。因此,同时赋予PET阻燃和抗熔滴特性是目前PET阻燃改性面临的一大难点。

    相关研究表明,提高聚合物高温下的熔体黏度和炭化能力是实现阻燃和抗滴落的关键[5-6]。但由于PET分子链的线性结构,其在高温下具有较低的熔融黏度,这一特性在赋予其可纺性的同时,也导致其在燃烧过程中表现出严重的熔滴行为,并难以形成连续的炭层[7]。在PET中引入可交联结构单元是提高熔体黏度的一个有效途径[6, 8]。例如,Wu等[9]合成了一种芳香族席夫碱5-(亚苄基-氨基)-间苯二甲酸二甲酯,并将其用作PET的共聚单体;研究结果显示,芳族席夫碱可以在PET的熔融温度和分解温度之间形成稳定的交联网络,并在燃烧中进一步转变为致密的炭层,因而使得PET共聚酯显示出优异的自熄和抗滴落行为。但尽管上述共聚酯表现出较为理想的阻燃性和抗滴落性能,问题仍然存在。除了工艺复杂、成本高、工业化困难之外,共聚法往往会破坏分子链的规整性,从而损害PET的力学性能和可纺性。

    近年来,碳基阻燃剂作为一种新型阻燃剂表现出巨大的发展潜力。研究表明,碳纳米管[10]、富勒烯[11]、纳米炭黑[12]、石墨烯[13]、碳微球[14]等碳基阻燃剂在改善聚合物的成炭质量、降低热释放速率、提高热稳定性等方面表现突出。与传统阻燃剂相比,往往少量碳基阻燃剂的引入即可显著提高聚合物的阻燃性,除此之外,引入碳基阻燃剂还能不同程度地改善聚合物的力学、热学以及电学等性能[15]。其中,碳纳米球(Carbon nanospheres,CNSs)具有无卤环保、粒径小、热稳定性高等优势,能满足PET高温加工和熔融纺丝的理论要求,但迄今为止,将碳基阻燃剂应用于PET的研究较少。

    基于此,本文以CNSs为基体,在其表面接枝芳香席夫碱4-苯亚甲基氨基苯酚(4-phenyl-methyleneamino-phenol,BA)制备了一种新型碳纳米球基复合阻燃剂(CNSs-BA),旨在将CNSs和BA的优势有机结合,使阻燃剂同时具备“智能自交联”特性,从而在燃烧时在PET基体中形成三维交联网络,进而改善熔滴。重点研究了CNSs-BA/PET复合材料的阻燃性及其阻燃机制。

    蒸馏水,使用XY-ZL-20型蒸馏水器自制。碳纳米球(CNSs),纯度99.99%,宁波金雷纳米材料科技有限公司;30%过氧化氢,优级纯,上海沃凯生物技术有限公司;硫酸,分析纯,华东医药股份有限公司;二氯甲烷(DCM),分析纯,华东医药股份有限公司;4-苯亚甲基氨基苯酚(BA),纯度98%,东京化成工业株式会社;4-二甲氨基吡啶(DMAP),纯度99%,阿拉丁试剂(上海)有限公司;无水乙醇,分析纯,嘉兴市甬宏化工有限公司;PET切片,半消光型SD500,中国石化仪征化纤股份有限公司。

    首先采用酸化法[16]制备羧基化碳纳米球(CNSs-COOH);在DCM中加入适量氯化钙,常温振荡12 h以去除其中的水分,使用时用吸管吸取上层液体用。在三口烧瓶中加入一定量的无水DCM (50~100 mL)作为反应溶剂。搅拌状态下加入3 g CNSs-COOH,再加入1 g BA和DMAP (作为碱性催化剂,DMAP的用量为BA用量的1/10),升温至30℃,之后在搅拌状态下反应2 h,反应完成后抽滤除去液体。将反应所得固体依次用乙醇和蒸馏水洗涤,100℃下干燥6 h后研磨均匀,即得CNSs-BA阻燃剂,CNSs-BA的制备示意图见图1

    图  1  碳纳米球(CNSs)-芳香席夫碱4-苯亚甲基氨基苯酚(BA)制备示意图
    Figure  1.  Schematic diagram of the preparation of carbon nanospheres (CNSs)-Schiff bases 4-phenyl-methyleneamino-phenol (BA)

    首先将纯PET切片和制备的CNSs-BA阻燃剂分别在120℃下真空干燥12 h后冷却至室温备用,然后分别按CNSs-BA占PET的质量分数为0.5wt%、1.0wt%、2.0wt%、3.0wt% 的比例将CNSs-BA与PET切片混合均匀后喂入BP-8188型转矩流变仪(东莞市宝品精密仪器有限公司)中,转矩流变仪各区的温度依次为150、255、273、275℃,转速为35~60 r/min,熔体依次经过熔融共混、挤出、切粒工序得到CNSs-BA/PET复合材料。

    CNSs-BA阻燃剂的测试与表征:用JSM-6510LA型场发射扫描电镜(SEM,日本电子株式会社)和EM420型透射电子显微镜(赛默飞世尔科技)观察阻燃剂的微观形貌,加速电压3 kV 和20 kV。用Perkin Elmer Frontier型傅里叶变换红外光谱仪(FTIR),溴化钾压片法分析测定阻燃剂表面性质和化学结构,光谱记录范围4000~400 cm−1。用Perkin Elmer TG4000型热重分析仪(TG),在N2气氛下测试阻燃剂的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。

    CNSs-BA/PET复合材料的测试与表征:用TM606 数显氧指数测试仪(青岛睿新杰仪器有限公司),按照GB/T 2406.2—2009[17]测试PET及其阻燃复合材料的极限氧指数(LOI),样条尺寸为120 mm×6.5 mm×3 mm。用CZF-5水平垂直燃烧仪(沧州冀路试验仪器有限公司),按照 GB/T 2408—2008[18]判定PET及其阻燃复合材料的UL-94垂直燃烧等级,样品尺寸为130 mm×13 mm×3 mm。用C-1087型锥形量热仪(英国FTT),按照ISO 5660-1: 2015[19]测试PET及其阻燃复合材料的燃烧热释放(HRR)等参数,样品尺寸:100 mm×100 mm×3 mm,辐射照度50 kW/m2。用Perkin Elmer TG4000型热重分析仪(TG),在N2气氛下测试PET及其阻燃复合材料(阻燃剂含量2wt%)的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。用Netzsch STA449F5型同步热分析仪(TG-DSC)研究PET及其阻燃复合材料(阻燃剂含量2.0wt%)的交联行为,氩气做保护气,空气气氛,气体流速20 mL/min,升温速率为10℃/min,测试温度范围为30~800℃。用气相Agilent 6980N色谱仪,Agilent 5975质谱仪,采用HP-5MS色谱柱对PET及其阻燃复合材料(阻燃剂含量2.0wt%)进行裂解-气相色谱-质谱联用(Py-GC-MS)测试。裂解条件:裂解温度750℃,时间20 s,升温速率200℃/s。色谱条件:柱温在50℃保持5 min,然后以10℃/min升温至260℃,在260℃保持10 min;进样温度220℃,传输温度280℃,He做载气,流量1.0 mL/min;裂解产物经色谱柱分离后进入质谱仪,电子能量为70 eV。

    残炭的测试与表征:采用SEM观察PET及其阻燃复合材料(阻燃剂含量2.0wt%)燃烧后残炭的形貌,并用其配套的EDS能谱设备对残炭进行元素分析。采用TG在N2气氛下测试残炭的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。

    图2为原CNSs (图2(a))和CNSs-BA (图2(b))的SEM、TEM和EDS能谱图。可知:CNSs和CNSs-BA二者均呈规则的球形颗粒状。不同的是,原始CNSs表面光滑,平均粒径约45 nm。而经BA接枝后,CNSs-BA的表面变得粗糙,平均粒径增大到50 nm左右,由EDS谱图可知:纯CNSs中的主要成分为C元素,与CNSs相比,CNSs-BA的表面增加了N元素,源自其表面接枝的BA中的氨基。

    图  2  CNSs (a)和CNSs-BA (b)的SEM图像和EDS能谱图
    Figure  2.  SEM and EDS images of CNSs (a) and CNSs-BA (b)

    图3是CNSs和CNSs-BA的红外图谱。对比CNSs和CNSs-BA的FTIR曲线可知,在CNSs-BA的红外曲线中,3330 cm−13380 cm−1处对应N—H的伸缩振动峰,2925 cm−12850 cm−1处为亚甲基的伸缩振动峰,1450 cm−1处的特征峰是芳环骨架的伸缩振动峰,1269 cm−1处的特征峰是酯基C(O)—O的伸缩振动峰,1045 cm−1处的特征峰是芳环上1, 4位取代的振动峰,以上特征峰源自CMSs表面接枝的BA。

    图  3  CNSs和CNSs-BA的红外图谱
    Figure  3.  Infrared spectra of CNSs和CNSs-BA

    图4为CNSs和CNSs-BA的TG曲线。可知:纯CNSs的初始分解温度(Tonset,定义为热失重5wt%时的温度)大于800℃,经BA接枝后Tonset降低到483.1℃,该温度远高于PET的加工温度和热分解温度。纯CNSs和CNSs-BA的最高热分解速率的温度(Tmax)分别为158.4℃和177.4℃,说明CNSs经BA接枝后热分解速率减慢。CNSs在30~800℃之间表现出3个较为明显的失重阶段,338.7℃之前对应CNSs中的少量结晶水和无定形碳的分解,338.7~544.1℃之间对应CNSs主体的热分解,544.1℃之后对应热分解产物的再分解。而CNSs-BA可划分为4个失重阶段:前两个阶段分别对应结晶水、无定形碳、小分子产物的分解以及CNSs-BA主体的分解,值得注意的是,544.1℃之后,CNSs-BA出现一个较为明显的失重峰,而CNSs的DTG曲线上并无该峰,该失重峰的出现证明CNSs表面接枝的BA在第二阶段(PET的熔融温度和分解温度之间)形成了一个较为稳定的交联网络结构,这将十分有助于燃烧时保护炭层的形成。

    图  4  CNSs和CNSs-BA的TG (a)和DTG (b)曲线
    Figure  4.  TG (a) and DTG (b) curves of CNSs and CNSs-BA
    Tonset—Initial weightlessness temperature; Tmax—Maximum weightlessness temperature

    表1是CNSs-BA/PET复合材料的LOI和UL-94垂直燃烧测试结果。可知,与CNSs/PET相比,CNSs-BA/PET复合材料的LOI进一步提高,二者LOI规律变化一致,即随着阻燃剂含量的增大,LOI先提高后降低,当CNSs-BA含量为2.0wt%时,CNSs-BA/PET的LOI指数达到最大值28.1%,此时与纯PET相比,CNSs-BA/PET的LOI提高了33.8%。UL-94垂直燃烧测试结果表明,CNSs-BA/PET复合材料的抗熔滴性能较CNSs/PET也有明显提高,两次施加火焰后的余焰时间明显缩短,当CNSs-BA的添加量超过2.0wt%时,CNSs-BA/PET复合材料的阻燃等级可达到V-0级。

    表  1  复合材料的极限氧指数(LOI)和UL-94垂直燃烧测试结果
    Table  1.  Limiting oxygen index (LOI) and UL-94 vertical burning test results of composites
    Sample Flame retardant content/wt% LOI/% UL-94 vertical combustion test results
    t1/s t2/s t3/s Ignite cotton? Rate
    PET 21.0 Burn out Yes NR
    CNSs/PET 0.5 23.2 2.6 2.5 0 Yes V-2
    1.0 25.0 2.4 2.4 0 Yes V-2
    2.0 26.2 2.4 2.8 0 Yes V-2
    3.0 24.6 3.1 2.2 0 Yes V-2
    CNSs-BA/PET 0.5 24.0 1.5 2.3 0 Yes V-2
    1.0 26.9 1.2 2.1 0 Yes V-2
    2.0 28.1 0.5 2.2 0 No V-0
    3.0 27.5 0.6 1.9 0 No V-0
    Notes: PET—Polyethylene terephthalate; t1—Afterglow time after the first application of flame; t2—Afterglow time after the second application of flame; t2—Afterglow time; NR—No rate.
    下载: 导出CSV 
    | 显示表格

    锥形量热仪测试结果见图5表2。热释放速率(HRR)是表征材料火灾危险性的主要依据。结合图5表2可知,纯PET被点燃后热释放速率急剧增大,其峰值热释放速率(pk-HRR)为810.45 kW/m2,总热释放(THR)为150.27 MJ/m2。与之相比,CNSs-BA/PET的THR与之接近,但HRR曲线却明显变平缓。值得注意的是,CNSs-BA/PET的HRR曲线表现出两个明显的热释放阶段,即在热释放速率达到峰值之后又出现了一个较为平缓的放热平台(当CNSs-BA含量为0.5wt%时表现为放热峰),这意味着CNSs-BA/PET在燃烧过程中的热释放受到抑制,这是由燃烧时炭层的形成或可燃气体减少导致的[20]。此外,表2表明,与CNSs/PET相比,CNSs-BA/PET复合材料的pk-HRR进一步降低。当CNSs-BA 含量为2.0wt%时,CNSs-BA/PET的pk-HRR最小,为435 kW/m2,该值与相同阻燃剂含量的CNSs/PET相比降低了7.6%,较纯PET降低了46.3%,说明CNSs经BA接枝后对PET的燃烧抑制作用进一步增强,阻燃效果进一步提高。

    图  5  CNSs-BA/PET的热释放速率(HRR) (a)和总热释放(THR) (b)曲线
    Figure  5.  Curves of heat release rate (HRR) (a) and total heat release (THR) (b) of CNSs-BA/PET
    表  2  复合材料的锥形量热仪测试数据
    Table  2.  Data of cone calorimeter test of composites
    Sample FR content/wt% TTI/s Time to pk-HRR/s pk-HRR/(kW·m−2) THR/(MJ·m−2)
    PET 0 47 104 810.45 150.27
    CNSs/PET 0.5 44 34 528.96 151.64
    1 34 34 503.44 148.03
    2 40 41 470.72 146.06
    3 30 29 501.49 143.19
    CNSs-BA/PET 0.5 35 39 485.54 146.54
    1 31 55 469.98 156.04
    2 34 39 435.00 146.54
    3 30 39 466.05 156.69
    Notes: TTI—Time to ignition; pk-HRR—Peak heat release rate; FR—Flame retardant.
    下载: 导出CSV 
    | 显示表格

    为了研究阻燃剂的引入对PET的热降解行为的影响,对PET、CNSs/PET和CNSs-BA/PET在氮气气氛下的TG-DTG曲线作了对比分析,并计算了CNSs/PET和CNSs-BA/PET在500℃时残炭量的理论值,如图6表3所示。由图6可知:在氮气气氛下,PET、CNSs/PET和CNSs-BA/PET三者的TG曲线和DTG曲线基本重合,说明加入少量(2.0wt%)的CNSs和CNSs-BA均不会对PET的无氧降解行为造成明显影响。由表4可知,PET、CNSs/PET和CNSs-BA/PET三者的TonsetTmax均较为接近,但三者在高温(500℃)下的残余质量有所不同。经计算发现CNSs/PET和CNSs-BA/PET二者在高温下残炭量的实际值(CR500℃,exp)均大于理论值(CR500℃,cal),这说明阻燃剂CNSs和CNSs-BA对PET均有促进成炭作用。其中,CNSs-BA/PET在500℃下残炭量的实际值与理论值的差值(∆CR500℃)大于CNSs/PET,这说明CNSs经BA接枝后对PET的促进成炭作用加强。聚合物在高温下形成的残炭越多,燃烧时发生热分解的部分就越少[21],这便是阻燃复合材料热释放速率降低的主要原因之一。

    图  6  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET的TG (a)和DTG (b)曲线
    Figure  6.  TG (a) and DTG (b) curves of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET
    表  3  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET在氮气气氛下的TG-DTG数据
    Table  3.  TG-DTG data of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET under nitrogen atmosphere
    Sample Tonset/℃ Tmax/℃ CR500℃/% CR500℃/%c
    exp.a/cal.b
    CNSs >800 96.88/—
    CNSs-BA 476.4 94.92/—
    PET 379.1 419.1 10.09/—
    CNSs/PET 380.1 421.4 13.97/11.52 2.45
    CNSs-BA/PET 382.0 420.1 15.68/11.79 3.89
    Notes: a CR500℃,exp. is the experimental value of char residue; b CR500℃,cal. is the calculated value of char residue; cCR500℃=CR500℃,exp.CR500℃,cal..
    下载: 导出CSV 
    | 显示表格
    表  4  PET、CNSs/PET和CNSs-BA/PET在空气气氛下的TG-DTG数据
    Table  4.  TG-DTG data of PET, CNSs/PET and CNSs-BA/PET under air atmosphere
    Sample Tonset/℃ Tmax-1/℃ Tmax-2/℃
    PET 397.3 433.4 585.1
    CNSs/PET 359.1 438.4 567.5
    CNSs-BA/PET 391.0 439.7 563.3
    Notes: Tmax-1—Maximum weightlessness temperature in the first stage; Tmax-2—Maximum weightlessness temperature of the second stage.
    下载: 导出CSV 
    | 显示表格

    对纯PET、CNSs/PET和CNSs-BA/PET锥形量热仪测试后的残炭做了SEM和TG分析以进一步研究阻燃机制。

    炭层的形貌结构和稳定性对于提高聚合物的阻燃性能至关重要,有效的炭层可通过阻止聚合物内部与可燃气体、氧气的接触来实现阻燃目的。图7为纯PET、CNSs/PET和CNSs-BA/PET炭层的SEM图像。可见,纯PET燃烧生成的炭层稀薄空且松散,表面存在大量气体逸出形成的气孔,显然这种形貌的炭层无法形成有效的屏障作用。与纯PET相比,CNSs/PET的炭层的致密性明显提高,气孔明显变小,意味着炭层有效性的提高。值得注意的是,与CNSs/PET相比,CNSs-BA/PET炭层的致密性和连续性得到了进一步改善,表面气孔也明显变少和变小,另外还存在大量鼓起的未破裂气泡,这种形貌的炭层在燃烧时一方面能有效地阻隔热量的传递,另一方面还能有效地阻隔PET燃烧降解生成的气态可燃物的逸出,起到隔热和隔氧的作用[22-23]。除此之外,CNSs-BA受热分解生成的CO2、氨气、氮气等难燃性气体能够稀释燃烧区域可燃气体的浓度,抑制燃烧的发展,这便是CNSs-BA/PET阻燃性提高的重要原因。

    图  7  PET (a)、CNSs/PET (b)和CNSs-BA/PET (c)残炭的SEM图像
    Figure  7.  SEM images of the char residues of PET (a), CNSs/PET (b)和CNSs-BA/PET (c)

    图8是PET、CNSs/PET和CNSs-BA/PET炭层的TG曲线。可知,纯PET炭层的Tonset较低,为215.08℃,其中100℃前失重为4.36wt%,这主要是由于纯PET的炭层结构松散、孔洞较多,容易吸收水分和储存小分子气体所致,其800℃时的残余质量为87.2wt%。在整个升温过程中,纯PET的炭层表现出3个失重阶段,第一个失重阶段发生在100℃之前,主要对应炭层中贮存的水分以及气态小分子的降解;第二个失重阶段发生在100~530℃之间,对应炭层主体部分的降解;第三个失重阶段发生在530℃之后,对应炭层热降解产物的再降解。与之相比,CNSs/PET炭层的Tonset提高到615.37℃,800℃时的残余质量提高到89.1wt%,这主要是由于CNSs/PET的炭层的致密性提高所致,其TG曲线基本保持了纯PET炭层的3个失重阶段。与PET和CNSs/PET的炭层相比,CNSs-BA/PET炭层的Tonset提高到800℃以上,意味着炭层在燃烧时能耐受更高的温度,从而更持久有效地起到凝聚相阻燃作用。值得注意的是,其炭层在热分解过程中只有一个较为明显的失重平台,并未像PET和的CNSs/PET的炭层一样经历3个失重阶段,说明阻燃剂CNSs-BA能使PET燃烧生成结构稳定的炭层,该炭层在燃烧过程中能耐受较高的火焰温度,从而对内部的基体起到持久有效的保护作用。

    图  8  残炭的TG曲线
    Figure  8.  TG curves of the char residues

    聚合物的交联直接影响其热性能、流变性、成炭性、熔滴和自熄行为,并有助于聚合物的芳香化或炭化[24]图9是PET、CNSs/PET和CNSs-BA/PET在热氧降解过程中的TG-DSC曲线,相关数据见表4。由图9可以看出,PET、CNSs/PET和CNSs-BA/PET在空气中均有两个失重阶段,说明PET及其复合材料发生的是两步降解反应[25]。第一个失重阶段是PET的主要失重阶段,发生在360~470℃之间。第二个失重阶段发生在470~590℃之间,该阶段对应第一个降解阶段生成的降解产物的进一步降解。值得注意的是,纯PET的Tonset为397.3℃,而PET的燃点通常在420℃左右,这说明PET在燃烧之前,首先会发生一定程度的降解并生成一些可燃性的气体或挥发性产物,以此来维持燃烧的进行。与纯PET相比,在第一个失重阶段,CNSs/PET和CNSs-BA/PET的热失重曲线稍向低温方向移动,但二者在第一个降解阶段结束时的剩余质量却大于PET,且该阶段的最大失重率所对应温度(Tmax-1)大于PET,说明阻燃剂的存在使PET的主体降解提前,但在该阶段却重组生成了热稳定性较高的物质。DSC曲线表明,CNSs-BA/PET在熔融峰和分解峰之间出现了明显的放热峰,该峰是PET的交联峰[26],而在PET和CNSs/PET的DSC曲线上交联峰却不明显,这说明CNSs经BA接枝改性后促进了PET的交联,这是由于阻燃剂表面接枝的芳香族席夫碱(BA)可以在PET的熔融温度和分解温度之间形成稳定的交联网络。

    图  9  PET、CNSs/PET和CNSs-BA/PET的TG-DSC曲线
    Figure  9.  TG-DSC curves of PET, CNSs/PET and CNSs-BA/PET

    裂解-气相色谱-质谱联用(Py-GC-MS)是目前研究聚合物高温裂解产物的常用方法[27]。为了研究阻燃剂的引入对PET的热裂解行为及其高温裂解产物的影响,对PET、CNSs/PET和CNSs-BA/PET做了Py-GC-MS分析,三者的高温裂解产物对比见表5。可知,与纯PET的裂解产物相比,CNSs/PET和CNSs-BA/PET的裂解产物中都包含更多的杂环、稠环、共轭芳环类化合物,这些裂解产物具有较高的热稳定性,是难燃性的保护炭层形成的物质基础[28]。而CNSs-BA/PET的裂解产物中出现了诸如二甲基胺、偶氮苯等含氮产物,这是由于阻燃剂CNSs-BA表面接枝的苯亚甲基氨基苯酚所致。另外,与PET和CNSs/PET相比,CNSs-BA/PET的裂解产物中菲、萘、苊、芴等稠环芳烃类以及联苯类产物明显增多,佐证了CNSs-BA促进了PET降解过程中的交联,该交联一方面通过增大熔体黏度改善了熔滴现象,另一方面提高了炭层的致密性和热稳定性,这就是CNSs-BA/PET阻燃性和抗熔滴性提高的主要原因。

    表  5  PET、CNSs/PET和CNSs-BA/PET裂解产物
    Table  5.  Pyrolysis products of PET, CNSs/PET and CNSs-BA/PET
    Pyrolysis products which found only in PET Tetrahydropyran; 2,2-dimethylpropanal; 4,8,12-trimethyl-tridecanoic acid methyl ester; 2,2-dimethoxybutane; 2-methyl-1,5-hexadien-3-yne; 1,6-heptadiyne; p-xylene; Decane; Methyl benzoate; Dodecylethyl ketone; 1-(3-methylphenyl)benzyl(2-methyl-1-methylenepropylidene); 4-methylphenyl-1-pentyn-3-ol phenol; Dimethyl 1,3-benzenedicarboxylate; Vinylmethyl terephthalate; Diphenylacetylene; Biphenyl-4-ylacetophenone; 1-(5,5-dimethyl-1,3-dioxocyclohexan-2-ylidene)-2-(N-ethylbenzothiazol-2-ylidene)-ethanes; Phthalic acid 4-formylphenyl ester; o-tertiaryl tricyclic [8.2.2.2(4,7)]hexadeca-2,4,6,8,10,12,13,15-octene; 4-(diethylaminomethyl)-2,5-dimethylphenol
    Pyrolysis products which found only in CNSs/PET Phenol; 1,2-dihydro-indene; 1-(4-methylphenyl)-ethanone; Stilbene; 1H-cyclopropyl[l]phenanthrene; Dihydro-p-terphenyl; 1-naphthol; Fluorene-9-methanol; 2-ethyl-1,1'-biphenyl; 1,1-diphenylethene; 4-(2-benzoyl-5-phenyl-3-thienyl)-1,2-dihydrophenanthrene; 2-phenylnaphthalenyl benzoate; 1,1-dihydro-2-phenylnaphthalenyl benzoate; 3-chlorobenzylnonyl; 1-(2,5-dimethylphenyl)ethanone; 1-(2,5-dimethylphenethyl) ethanone; Dimethyl-1H-indene; Diethylmalonic acid; 3-chlorobenzylnonyl ester
    Pyrolysis products which found only in CNSs-BA/PET 1,5-hexadiyne; Dimethylamine; Nitrous oxide; 1,1'-(1,4-phenylene)bis-acetophenone; 2-methylindene; Azobenzene; Benzene; (1-methyl-2-cyclopropen-1-yl)-2-methylindene; Stilbene; Ethylketone; 1-(3,4-dimethylphenyl); 1-(4-methylphenyl); 1-ethenyl-4-methylbenzene; Dibenzofuran; 2-naphthol; 4-hydroxy-1,2,3,4-tetrahydrophenanthrene; 9,10-dihydrophenanthrene; Benzopropiophenone; Fluorene; 4-vinylbiphenyl; 1,2,3,4-tetrahydrofil; 9,10-dihydrofil; 4-vinylbiphenyl; 1,4-vinylbiphenyl; Phenylacetone; 1,3,5-cycloheptatriene; 2-phenylnaphthalene; 1-acrylbenzene; 2-methylnaphthalene; 4-(2-benzoyl-5-phenyl-3-thienyl)-methylbenzoic acid; 1,3-dimethyl-1H-indene; Tricyclohexen-8-ol; Hexaethylcyclohexane; 9-phenyl-9-fluorenol; Ethylene oxide; Methoxyphenyltricyclohexadecen-5-ylmethanol; 4-benzylbiphenyl; Tritylbenzene; 9-phenylanthracene; 3-(1-phenylethoxy)-3H-isobenzofuran-1-one; 4-phenyl-3,4-dihydroisoquinoline; Oxetane; 2-phenyl; 3-phenylethynyl; Tetraphenyl; 1-[4-(2-phenylethenyl)phenyl]-ethanone; Acenaphthene; 1,2,3,5-tetraisopropyl-cyclohexane; 6,9-dimethoxy-phenazine-1-carboxylic acid; [1,1'-biphenyl]-4-yl-phenylmethanone; 1,1':4',1''-3'-methyltriphenylene
    Pyrolysis products which found both in PET and CNSs/PET Acetophenone; Benzoic acid; Biphenyl; 2-methyl-1,1'-biphenyl; 1,1'-(1,4-phenylene)bisacetophenone; p-terphenyl
    Pyrolysis products which found both in PET and CNSs-BA/PET Styrene; Acetophenone; Benzoic acid; Biphenyl; 2-ethyl-1,1'-biphenyl; Benzophenone; 9H-fluoren-9-one; p-terphenyl
    Pyrolysis products which found both in CNSs/PET and CNSs-BA/PET Benzene; Biphenyl; Acetophenone; Naphthalene; Toluene; Phenanthrene; Indene; 6,6-diphenylfulvene; p-terphenyl; Methylstyrene; Biphenylacetophenone; 4-ethylbiphenyl; Diphenylmethane
    Pyrolysis products found in PET, CNS/PET and CNSs-BA/PET Acetophenone; Benzoic acid; Biphenyl; p-terphenyl
    下载: 导出CSV 
    | 显示表格

    图10为PET阻燃复合材料的抗拉强度和断裂伸长率图。可知,随着阻燃剂含量的增加,CNSs/PET和CNSs-BA/PET复合材料的抗拉强度和断裂伸长率均呈下降趋势。尤其是当阻燃剂含量超过2.0wt%时,PET复合材料的抗拉强度和断裂伸长率大幅度下降。这是由于高含量的阻燃剂在PET基体中形成了较大的团聚体,破坏了基体的连续性,阻碍了应力的传递所致,后续研究中应重点关注材料力学性能的改善。

    图  10  PET复合材料的抗拉强度(a)和断裂伸长率(b)
    Figure  10.  Tensile strength (a) and elongation at break (b) of PET composites

    (1)为同时改善聚对苯二甲酸乙二醇酯(PET)的阻燃性和抗熔滴性,在碳纳米球表面接枝4-苯亚甲基氨基苯酚制备了一种新型碳基复合阻燃剂(CNSs-BA)。CNSs-BA为粒径约50 nm的球形颗粒,热稳定性良好。

    (2) CNSs-BA的引入可显著提高PET的阻燃性和抗熔滴性。当CNSs-BA添加量为2.0wt%时,CNSs-BA/PET复合材料的极限氧指数(LOI)从PET的21.0%提高至28.1%,阻燃等级达到V-0级,热释放速率峰值降低了46.3%。

    (3) CNSs-BA/PET表现出典型的凝聚相阻燃机制。CNSs-BA的引入能促进PET成炭,CNSs-BA/PET的高温残炭量(CR500℃)比PET提高了55.4%,且成炭量的实际值大于理论值。与纯PET的炭层相比,CNSs-BA/PET燃烧生成的炭层的致密性、连续性以及热稳定性都显著提高。这是由于CNSs-BA的引入促进了PET的高温交联,使其高温降解生成了更多的难燃性焦炭物质。

    (4)本文为碳基阻燃剂的发展提供了重要理论补充,对开发无卤、阻燃、抗熔滴的PET材料具有一定的指导意义。

  • 图  1   成型与无损检测设备

    Figure  1.   Molding and non-destructive testing equipment

    图  2   试验装置:(a)落锤冲击试验设备;(b)夹紧系统;(c)夹紧系统示意图

    Figure  2.   Testing set-up: (a) Drop-weight impact test equipment; (b) Clamping system; (c) Illustration of clamping system

    图  3   冲击后压缩(CAI)试验装置:(a)万能试验机;(b)抗屈曲的CAI夹具;(c)抗屈曲的CAI夹具示意图

    Figure  3.   Compression after impact (CAI) test equipment: (a) Universal testing machine; (b) CAI fixture with anti-buckling ribs; (c) Schematic illustration of the CAI fixture with anti-buckling ribs

    图  4   碳纤维增强树脂基复合材料(CFRP)层合板的接触力-时间曲线

    Figure  4.   Contact force-time curves of carbon fiber reinforced polymer (CFRP) laminates

    图  5   CFRP层合板的接触力-位移曲线

    Figure  5.   Contact force-displacement curves of CFRP laminates

    图  6   CFRP层合板的能量-时间曲线

    Figure  6.   Energy-time curves of CFRP laminates

    图  7   CFRP层合板冲击损伤阈值和最大接触力

    Figure  7.   Damage threshold load and the maximum load of CFRP laminates

    图  8   CFRP层合板投影分层轮廓的超声C扫检测结果

    Figure  8.   Projected damage profile of CFRP laminates obtained from C-scan inspection

    图  9   基准层合板A1的逐层损伤图像

    Figure  9.   Layer-by-layer damage images of the baseline laminate A1

    图  10   混杂层合板A2的逐层损伤图像

    Figure  10.   Layer-by-layer damage images of the hybrid laminate A2

    图  11   混杂层合板A3的逐层损伤图像

    Figure  11.   Layer-by-layer damage images of the hybrid laminate A3

    图  12   界面双扇形分层形成机制示意图

    Figure  12.   Schematic of delamination formation mechanism at interfaces

    图  13   CFRP层合板界面分层损伤面积

    Figure  13.   Area of interface delamination of CFRP laminates

    图  14   CFRP层合板的CAI强度

    Figure  14.   CAI strengths of CFRP laminated composites

    图  15   CFRP层合板压缩破坏模式

    Figure  15.   Compression failure mode of CFRP laminated composites

    表  1   基本材料参数

    Table  1   Basic material performance parameters

    Property Value
    Longitudinal modulus, E11/GPa 127
    Transverse modulus, E22=E33/GPa 9.9
    Shear modulus, G12=G13=G23/GPa 4.8
    Major Possion's ratio, v12=v13 0.3
    Through-thickness Possion's ratio, v2B 0.45
    下载: 导出CSV

    表  2   铺层次序与等效弯曲刚度

    Table  2   Stacking sequences and equivalent bending stiffness

    Laminate Stacking sequences D/(N·m) dv/%
    A1 [45/0/−45/90]3s 502.45 0
    A2 [(45/−45)/0/(45/−45)/90]3s 495.69 −1.35
    A3 [45/0/−45/0/90]3s 477.58 −4.95
    Note: dv—Deviation of equivalent flexural stiffness of hybrid laminates A2 and A3 compared with baseline laminate A1.
    下载: 导出CSV
  • [1] 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948.

    CAO Junchao, SUN Jianbo, CAO Yong, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948(in Chinese).

    [2] 张志远, 李伟, 蒋鹏, 等. 碳纤维复合材料层合板低速冲击损伤特性研究[J]. 兵器材料科学与工程, 2021, 44(4): 34-39.

    ZHANG Zhiyuan, LI Wei, JIANG Peng, et al. Damage characteristics of carbon fiber composite laminates under low-velocity impact[J]. Ordnance Material Science and Engineering, 2021, 44(4): 34-39(in Chinese).

    [3] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4): 1-4. DOI: 10.3969/j.issn.1007-9815.2010.04.001

    SHEN Zhen. Application of carbon fiber composites in aircraft structures[J]. Hi-Tech Fiber & Application, 2010, 35(4): 1-4(in Chinese). DOI: 10.3969/j.issn.1007-9815.2010.04.001

    [4] 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(11): 2833-2843.

    WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy resin composite laminates containing impact damage: Experimental study[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843 (in Chinese).

    [5] 钟小丹, 李朝阳, 李念, 等. 复合材料层合板自由边缘冲击失效机制[J]. 复合材料学报, 2023, 40(10): 5932-5946.

    ZHONG Xiaodan, LI Zhaoyang, LI Nian, et al. Failure mechanisms of composite laminate subjected to edge-on impact[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5932-5946(in Chinese).

    [6]

    CAO D, HU H, WANG Y, et al. Experimental and numerical studies on influence of impact damage and simple bolt repair on compressive failure of composite laminates[J]. Composite Structures, 2021, 4: 114491.

    [7] 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 40(9): 5359-5370.

    YU Mingming, ZHU Xueli, LIU Xueqiang, et al. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5359-5370(in Chinese).

    [8]

    LEI Z X, MA J, SUN W K, et al. Low-velocity impact and compression-after-impact behaviors of twill woven carbon fiber/glass fiber hybrid composite laminates with flame retardant epoxy resin[J]. Composite Structures, 2023, 321: 117253. DOI: 10.1016/j.compstruct.2023.117253

    [9] 朱笑, 袁丽华. 基于红外热成像的CFRP复合材料低速冲击损伤表征[J]. 复合材料学报, 2022, 39(8): 4164-4171.

    ZHU Xiao, YUAN Lihua. Low-velocity impact damage characterization of CFRP composite based on infrared thermography[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4164-4171(in Chinese).

    [10] 何明昌, 黄春芳, 郑青, 等. 薄铺层层合复合材料研究进展[J]. 玻璃钢/复合材料, 2016, 7(8): 92-98.

    HE Mingchang, HUANG Chunfang, ZHENG Qing, et al. Progress of research on thin-ply laminated composites[J]. FRP/CM, 2016, 7(8): 92-98(in Chinese).

    [11]

    AMACHER R, CUGNONI J, BOTSIS J, et al. Thin ply composites: Experimental characterization and modeling of size-effects[J]. Composites Science and Technology, 2014, 101: 121-132. DOI: 10.1016/j.compscitech.2014.06.027

    [12]

    HUANG C, JU S, HE M, et al. Identification of failure modes of composite thin-ply laminates containing circular hole under tension by acoustic emission signals[J]. Composite Structures, 2018, 206: 70-79. DOI: 10.1016/j.compstruct.2018.08.019

    [13]

    LOVEJOY A E, SCOTTI S, MILLER S, et al. Characterization of IM7/8552 thin-ply and hybrid thin-ply composites [C]. AIAA Scitech 2019 Forum. 2019.

    [14]

    SIHN S, KIM R, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science and Technology, 2007, 67(6): 996-1008. DOI: 10.1016/j.compscitech.2006.06.008

    [15]

    ZHENG K, HU H, CAO D, et al. Experimental and numerical studies on the tensile behaviors of thin-ply and thick-ply open-hole laminates[J]. Thin-Walled Structures, 2023, 186: 110649. DOI: 10.1016/j.tws.2023.110649

    [16]

    ARTEIRO A, FURTADO C, CATALANOTTI G, et al. Thin-ply polymer composite materials: A review[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105777. DOI: 10.1016/j.compositesa.2020.105777

    [17]

    YOKOZEKI T, AOKI Y, OGASAWARA T. Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates[J]. Composite Structures, 2008, 82(3): 382-389. DOI: 10.1016/j.compstruct.2007.01.015

    [18]

    YOKOZEKI T, KURODA A, YOSHIMURA A, et al. Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings[J]. Composite Structures, 2010, 93(1): 49-57. DOI: 10.1016/j.compstruct.2010.06.016

    [19]

    WAGIH A, MAIMÍ P, GONZÁLEZ E V, et al. Damage sequence in thin-ply composite laminates under out-of-plane loading[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 66-77. DOI: 10.1016/j.compositesa.2016.04.010

    [20]

    SASIKUMAR A, TRIAS D, COSTA J, et al. Impact and compression after impact response in thin laminates of spread-tow woven and non-crimp fabrics[J]. Composite Structures, 2019, 215: 432-445. DOI: 10.1016/j.compstruct.2019.02.054

    [21]

    GARCÍA-RODRÍGUEZ S M, COSTA J, BARDERA A, et al. A 3D tomographic investigation to elucidate the low-velocity impact resistance, tolerance and damage sequence of thin non-crimp fabric laminates: Effect of ply-thickness[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 53-65. DOI: 10.1016/j.compositesa.2018.07.013

    [22]

    SASIKUMAR A, TRIAS D, COSTA J, et al. Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 232-243. DOI: 10.1016/j.compositesa.2019.03.022

    [23]

    ARTEIRO A, CATALANOTTI G, XAVIER J, et al. A strategy to improve the structural performance of non-crimp fabric thin-ply laminates[J]. Composite Structures, 2018, 188: 438-449. DOI: 10.1016/j.compstruct.2017.11.072

    [24]

    SEBAEY T A, GONZÁLEZ E V, LOPES C S, et al. Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering[J]. Composite Structures, 2013, 106: 96-103. DOI: 10.1016/j.compstruct.2013.05.052

    [25]

    FURTADO C, ARTEIRO A, CATALANOTTI G, et al. Selective ply-level hybridisation for improved notched response of composite laminates[J]. Composite Structures, 2016, 145: 1-14. DOI: 10.1016/j.compstruct.2016.02.050

    [26]

    SEBAEY T A, MAHDI E. Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 86: 31-38. DOI: 10.1016/j.compositesa.2016.03.027

    [27]

    SASIKUMAR A, TRIAS D, COSTA J, et al. Mitigating the weak impact response of thin-ply based thin laminates through an unsymmetrical laminate design incorporating intermediate grade plies[J]. Composite Structures, 2019, 220: 93-104. DOI: 10.1016/j.compstruct.2019.03.069

    [28]

    SASIKUMAR A, COSTA J, TRIAS D, et al. A virtual testing based search for optimum compression after impact strength in thin laminates using ply-thickness hybridization and unsymmetrical designs[J]. Composites Science and Technology, 2020, 196: 108188. DOI: 10.1016/j.compscitech.2020.108188

    [29]

    OLSSON R. Analytical prediction of damage due to large mass impact on thin ply composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 184-191. DOI: 10.1016/j.compositesa.2015.02.005

    [30]

    ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: D7136/D7136M–20 A [S]. West Conshohocken, PA: ASTM International, 2020.

    [31]

    ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: D7137/D7137M–17 A [S]. West Conshohocken, PA: ASTM International, 2017.

    [32]

    CAMANHO P P, DÁVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 165-176. DOI: 10.1016/j.compositesa.2005.04.023

    [33]

    CZÉL G, REV T, JALALVAND M, et al. Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 104: 151-164. DOI: 10.1016/j.compositesa.2017.10.028

    [34]

    KOHLER S, CUGNONI J, AMACHER R, et al. Transverse cracking in the bulk and at the free edge of thin-ply composites: Experiments and multiscale modelling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105468. DOI: 10.1016/j.compositesa.2019.05.036

    [35]

    CATALANOTTI G. Prediction of in situ strengths in composites: Some considerations[J]. Composite Structures, 2019, 207: 889-893. DOI: 10.1016/j.compstruct.2018.09.075

    [36]

    ABISSET E, DAGHIA F, SUN X C, et al. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 1 – Experiments[J]. Composite Structures, 2016, 136: 712-726. DOI: 10.1016/j.compstruct.2015.09.061

    [37]

    MOROKOV E, LEVIN V, CHERNOV A, et al. High resolution ply-by-ply ultrasound imaging of impact damage in thick CFRP laminates by high-frequency acoustic microscopy[J]. Composite Structures, 2021, 256: 113102. DOI: 10.1016/j.compstruct.2020.113102

    [38]

    BULL D J, SPEARING S M, SINCLAIR I. Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography[J]. Composites Science and Technology, 2014, 97: 106-114. DOI: 10.1016/j.compscitech.2014.04.008

    [39]

    LIN S, WAAS A M. The effect of stacking sequence on the LVI damage of laminated composites: Experiments and analysis[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106377. DOI: 10.1016/j.compositesa.2021.106377

    [40] 傅惠民, 杨雨松, 张勇波. 含分层损伤国产碳纤维CCF300与T300碳纤维复合材料层合板压缩失效模式[J]. 航空动力学报, 2011, 26(11): 2416-2421.

    FU Huimin, YANG Yusong, ZHANG Yongbo. Failure mode research on CCF300 and T300 carbon fiber composite laminates with delamination under compressive strength[J]. Journal of Aerospace Power, 2011, 26(11): 2416-2421(in Chinese).

  • 目的 

    与厚铺层复合材料相比,薄铺层复合材料具有明显的损伤抑制能力,在诸多力学性能方面表现更为优异。然而,冲击载荷下薄铺层复合材料容易出现过早的纤维断裂,严重限制其在工程中的广泛应用。厚薄层混杂设计可以在结构内部产生有益的应力分布,改善结构的损伤响应,成为了科技前沿的热点。厚薄层层级混杂设计时采用多个薄铺层替代单个厚铺层,增加了界面的复杂性。为了研究低速冲击(Low-velocity Impact,LVI)下复合材料结构的厚薄层混杂效应,以准各向同性铺层为基准设计了两种厚薄层混杂层合板,开展基准层合板和混杂层合板的LVI动力学响应与损伤特性、以及冲击后压缩(Compression after Impact,CAI)性能对比研究。

    方法 

    首先,开展了基准层合板和混杂层合板的LVI试验研究,分析了冲击载荷下基准层合板和混杂层合板的冲击动力学响应和损伤阻抗特征,采用超声C扫设备和热揭层方法对含冲击损伤的层合板分别进行了无损和有损检测,基于检测结果对基准层合板和混杂层合板的冲击损伤特性进行了定性和定量的分析;随后,开展了基准层合板和混杂层合板的CAI试验研究,对比分析了CAI载荷下基准层合板和混杂层合板的剩余力学性能和破坏模式。

    结果 

    (1)冲击载荷下基准层合板和混杂层合板接触力相关曲线上均存在明显的多峰特征。与基准层合板A1相比,混杂层合板A2和A3的接触力-时间曲线峰值的整体波动幅度较大;(2)与基准层合板A1相比,混杂层合板A2和A3具有较高的冲击损伤阈值和最大接触力峰值,展现出较高的冲击损伤阻抗;(3)超声C扫检测结果表明,基准层合板A1的投影分层面积为3415 mm。与基准层合板A1相比,混杂层合板A2和A3的投影分层面积分别减小了16.5%和32.9%;(4)热揭层检测结果表明,与基准层合板A1相比,混杂层合板A2的纯薄铺层45°/-45°界面和混杂层合板A3的厚薄层-45°/0°混杂界面的分层损伤明显被抑制。与基准层合板A1相比,混杂层合板A2和A3的最大分层面积分别减少了27.8%和25.6%,且最大分层更靠近中性层。另外,尽管混杂层合板A2和A3的分层界面数量明显增加,但分层损伤的总面积与基准层合板A1相比变化不明显;(5)在CAI性能方面,与基准层合板A1相比,混杂层合板A2和A3的CAI强度分别提高了19.5%和30.9%。在破坏模式方面,基准层合板和混杂层合板存在明显差异,主要表现为基准层合板A1中未观察到贯穿试件宽度的裂纹,而混杂层合板A2和A3中均存在一条贯穿试件宽度的裂纹,且该裂纹穿过冲击点。

    结论 

    厚薄层混杂设计可充分地利用了薄铺层复合材料的损伤抑制特点,以达到提高了复合材料结构的冲击损伤阻抗和CAI强度的目的。该试验研究可为厚薄层混杂结构的抗冲击优化设计和安全评估提供指导。

  • 与厚铺层复合材料相比,薄铺层复合材料具有明显的损伤抑制能力,在诸多力学性能方面表现更为优异。然而,冲击载荷下薄铺层复合材料容易出现过早的纤维断裂,严重限制其在工程中的广泛应用。厚薄层混杂设计可以在结构内部产生有益的应力分布,改善结构的损伤响应,成为了科技前沿的热点。

    本文以准各向同性铺层为基准,设计了两种厚薄层混杂层合板,开展了基准层合板和混杂层合板的LVI试验,采用超声C扫设备和热揭层方法对含冲击损伤的层合板分别进行了无损和有损检测,基于检测结果对冲击损伤进行了定性和定量的评估。试验结果表明:厚薄层混杂设计充分利用了薄铺层复合材料的损伤抑制特点,提高了复合材料结构的冲击损伤阻抗,减少了分层损伤投影面积和界面分层总面积,缩短了最大单一分层与中性层之间的距离,显著提高了复合材料结构的冲击后压缩(Compression after Impact,CAI)强度。该试验研究可为抗冲击损伤的厚薄层混杂结构的优化设计和安全评估提供指导。

    冲击损伤阈值和最大接触力

    The damage threshold load and the maximum load

    层合板CAI强度

    CAI strengths of laminated composites

图(15)  /  表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  115
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-02
  • 修回日期:  2024-07-02
  • 录用日期:  2024-07-17
  • 网络出版日期:  2024-08-01
  • 发布日期:  2024-07-29
  • 刊出日期:  2025-05-14

目录

/

返回文章
返回