Gel polymer electrolytes for lithium sulfur batteries: Synthesis and advanced characterization techniques
-
摘要:
凝胶聚合物电解质(GPE)的应用为改善锂硫电池的安全性和抑制穿梭效应提供一种有希望的方案。凝胶聚合物电解质能够改善全固态电解质与双电极之间存在的高界面阻抗所带来的电荷转移受阻、锂沉积不均匀等问题,有效解决容量衰减快、循环稳定性差等缺陷。本文针对锂硫电池中制备凝胶聚合物电解质所采用的原位聚合和非原位聚合两种不同的工艺手段进行介绍,通过阐述不同合成工艺改进凝胶聚合物电解质基底的方法,重点分析不同工艺所带来的“收益”,并介绍了具有实时性和精准性的原位表征仪器在锂硫电池中的应用,指出原位先进表征技术对锂硫电池电极材料设计的指导作用,并供科研工作者开发研究更适宜产业化的凝胶聚合物电解质的合成工艺,展望未来锂硫电池凝胶聚合物电解质合成设计的发展方向。
Abstract:The application of gel-polymer electrolyte (GPE) provides a promising scheme for improving the safety of lithium-sulfur batteries and inhibiting the shuttle effect. The GPE can improve the charge transfer obstruction and uneven lithium deposition caused by the high interface impedance between the all-solid electrolyte and the double electrode, and effectively solve the defects such as fast capacity decay and poor cycle stability. In this paper, two different technological means, in-situ polymerization and non-in-situ polymerization, are introduced for the preparation of GPE in lithium-sulfur batteries. The methods of improving the GPE base by different synthetic processes are described, and the "benefits" brought by different processes are analyzed, and the application of real-time and accurate in-situ characterization instruments in lithium-sulfur batteries is introduced. It is pointed out that in situ advanced characterization technology can guide the electrode material design of lithium-sulfur battery and provide researchers with more suitable synthesis technology of GPE for industrialization.
-
高模量碳纤维增强环氧树脂基复合材料由于高强度、高比刚度、耐腐蚀性等方面的理想性能在各个领域得到了广泛的应用[1-4]。但高模碳纤维因表面经高温石墨化处理,缺陷减少,含碳量增加,导致纤维表面活性较低并且与树脂基体结合不够良好[5-6]。当高模碳纤维复合材料在湿热环境下使用时这一缺陷可能更加明显。基于水分子的扩散方式以及复合材料吸湿损伤模式,研究人员在不同湿热条件下探索了碳纤维复合材料在湿热环境下的界面性能,均有所下降[7-8]。Dzul-Cervantes等[9]使用聚砜改性环氧树脂基体,并使用硅烷偶联剂3-缩水甘油醚氧基丙基三甲氧基硅烷对碳纤维进行了表面处理,处理后界面剪切强度(IFSS)提高,并且经过25%以及95%相对湿度老化后,发现IFSS保持率良好。Yu等[10]采用三甲氧基硅烷以及碳纳米管对碳纤维表面进行处理,IFSS提升了26.3%,并且在120天的模拟海水浸泡试验后,IFSS下降缓慢。
另一种方法则是采用碳纳米材料例如碳纳米管(CNT)、氧化石墨烯(GO)等对复合材料的界面进行改性,进而提升复合材料性能[11-12]。但对这些纳米粒子进行氧化与功能化处理过程中耗费成本与时间,并且对纳米粒子本体结构造成了损害[13-14],改性后的复合材料在湿热环境下使用表现一般[15]。原因在于功能化纳米粒子表面带有—COOH、 —CONH、—NH2等官能团,水分子在扩散过程中对其更加敏感,这导致了复合材料湿热性能有所下降[16]。与此不同的是,纳米石墨烯片(GNP)作为一种二维结构的纳米粒子,应用在复合材料中可以提升其界面性能,同时降低复合材料在湿热环境下的吸湿率,提高其力学性能[17-18]。Ozge等[19]研究了不同纤维素纳米晶(CNC)/GNP比例改性的纤维,其增强的复合材料层间剪切强度(ILSS)由35.5 MPa提高到45.4 MPa。
基于此,以二维纳米结构、具有片层阻隔效应的GNP为研究对象,利用CNC自身结构特性对GNP进行分散获得电泳液,采用电泳沉积技术对高模量碳纤维(HMCF)进行沉积改性,实现特性表面的构筑。研究了不同构筑条件对纤维表面及其复合材料的界面性能以及高湿热条件下(80%相对湿度、90℃温度) HMCF复合材料吸湿率与界面性能的变化,并对GNP改性高模碳纤维增强复合材料的作用机制进行讨论。
1. 实验部分
1.1 原材料
高模量碳纤维(3 K),密度为1.83 g/cm3,北京化工大学高模量碳纤维研究室;纤维素纳米晶(CNC),长度约为200 nm,外径约为10 nm,上海麦克林生化科技股份有限公司;石墨烯纳米片(GNP),纯度大于99.5%,北京翰隆达科技发展有限公司;环氧树脂(E44),南通星辰合成材料有限公司;固化剂为三乙烯四胺(TETA),上海麦克林生化科技股份有限公司;去离子水为本实验室自制。
1.2 实验过程
1.2.1 GNP电泳液的制备
为了增加GNP在水中的分散性,先在200 mL去离子水加入0.05 g CNC粉末,搅拌15 min。之后缓慢加入0.1 g GNP,搅拌15 min,采用冰水浴超声法对溶液处理2 h,下一步离心处理10 min,得到GNP浓度0.5 mg/mL的电泳液。
1.2.2 GNP改性碳纤维的制备
将550℃脱胶处理的HMCF通过装有GNP的电泳槽,以碳纤维作阳极,不锈钢电泳槽作阴极,固定电压5、10、20 V对碳纤维进行GNP的沉积,随后进行固含量1.0%水性环氧乳液上浆,分别得到GNP改性碳纤维CF-5、CF-10、CF-20。未改性的HMCF为U-CF,见表1。
表 1 各样品缩写命名Table 1. Abbreviations used for various samples preparedSample code Details U-CF Untreated commercial carbon fibers (CF) CF-5 0.5 mg/mL graphene nanoplates solution 5 V voltage electrophoresis deposited modified fibers CF-10 0.5 mg/mL graphene nanoplates solution 10 V voltage electrophoresis deposited modified fibers CF-20 0.5 mg/mL graphene nanoplates solution 20 V voltage electrophoresis deposited modified fibers U-CF/EP Untreated commercial carbon fiber reinforced epoxy (EP) composites CF-5/EP 0.5 mg/mL graphene nanoplates solution 5 V voltage electrophoresis deposited modified fibers reinforced epoxy composites CF-10/EP 0.5 mg/mL graphene nanoplates solution 10 V voltage electrophoresis deposited modified fibers reinforced epoxy composites CF-20/EP 0.5 mg/mL graphene nanoplates solution 20 V voltage electrophoresis deposited modified fibers reinforced epoxy composites Aged U-CF/EP After 30 d of hygrothermal test (90℃, 80% relative humidity (RH)) untreated commercial carbon fibers reinforced epoxy composites Aged CF-5/EP After 30 d of hygrothermal test (90℃, 80% RH) 0.5 mg/mL graphene nanoplates solution 5 V voltage electrophoresis deposited modified fibers reinforced epoxy composites Aged CF-10/EP After 30 d of hygrothermal test (90℃, 80% RH) 0.5 mg/mL graphene nanoplates solution 10 V voltage electrophoresis deposited modified fibers reinforced epoxy composites Aged CF-20/EP After 30 d of hygrothermal test (90℃, 80% RH) 0.5 mg/mL graphene nanoplates solution 20 V voltage electrophoresis deposited modified fibers reinforced epoxy composites 1.2.3 HMCF/EP复合材料的制备
将脱模剂在不锈钢模具表面均匀涂抹,以10∶1的质量比将环氧树脂E44与固化剂TETA混合均匀,得到混合物。将40%体积占比的基体混合物均匀地涂至单向排列体积占比60%的HMCF束丝表面。将HMCF模压料放入加热好的不锈钢模具中,80℃固化2 h,得到复合材料试样U-CF/EP、CF-5/EP、CF-10/EP、CF-20/EP,见表1。
1.2.4 测试与表征
使用SEM (MAIA3,TESCAN,捷克)表征HMCF以及复合材料断面微观形貌,为了避免电荷聚集,对测试的粉末、纤维及块状复合材料进行了喷金处理。使用XPS (Scientific K-Alpha,Thermo,美国)对HMCF表面化学状态进行了分析表征。
参考GB/T 30969—2014[20]方法,使用Instron 3345型万能材料试验机测试复合材料(200 mm×6 mm×2 mm)的ILSS。压头加载速率为2 mm/min,每组至少获得5个有效值。最后根据下式计算ILSS,取平均值。
ILSS=34Fbh (1) 式中:ILSS为复合材料的层间剪切强度;F为样条最大破坏载荷(N);h为试样厚度(mm);b为试样宽度(mm)。
将不同的HMCF/EP复合材料放置在高低温交变湿热试验箱(上海一恒,BPHS型)中,设置温度90℃、相对湿度(RH) 80%的湿热条件环境,湿热时长为
1440 h,每24 h (12 h湿热+12 h室温高湿度80% RH)为一组吸湿率测试周期,测试30个周期(720 h);层间剪切强度测试选择湿热时长为0、240、480、720、1440 h复合材料试样。2. 结果与讨论
2.1 HMCF形貌
图1为不同处理情况下HMCF的表面形貌图。当GNP浓度固定为0.5 mg/mL时,电压在5 V及10 V处理情况下(图1(b)和图1(c)),纤维表面存在很多小尺寸颗粒的GNP粒子,分布较为均匀并且形成了微小凸起结构;电压在20 V的情况下(图1(d)),纤维表面就会出现粒子团聚的现象,表明电压增大会导致沉积粒子过多,电泳液中的GNP堆叠成块状与片状形貌。
2.2 HMCF表面化学状态
为了确定不同HMCF表面化学状态,对处理后不同纤维进行了XPS测试,不同HMCF的XPS广谱以及C1s峰拟合图如图2所示。
表2给出了不同HMCF的C1s特征峰结合能及相对含量信息。可以看到,经电泳沉积处理后HMCF表面C—O含量达到4.65wt%,有小幅提升,同时—COOH含量也有略微增长,达3.78wt%。主要是由于CNC侧端—OH引入,以及电泳沉积过程中碳纤维表面—COOH的形成[21]。
表 2 不同HMCF C1s特征峰结合能及相对含量Table 2. C1s characteristic peak binding energy and relative content of different HMCFFunctional group Binding energy/eV U-CF/wt% CF-5/wt% CF-10/wt% CF-20/wt% C—C 284.4 46.60 48.31 49.36 44.56 C—H 285.2 48.78 46.08 46.59 45.76 C—O 286.3 2.19 2.69 1.35 4.65 C=O 287.3 — — — — COOH 288.6 0.72 1.70 3.79 3.78 2.3 HMCF/EP复合材料界面性能
将不同改性纤维制成碳纤维增强复合材料,测试ILSS,结果如图3所示。在0~10 V电压的电场条件下改性的HMCF,其复合材料ILSS随电泳沉积电场电压增大而升高,经10 V电压电泳沉积GNP的HMCF,ILSS达到最高值75.6 MPa。此后,增大处理电压,所得HMCF复合材料的界面性能呈下降趋势。
为探究GNP电泳沉积不同处理电压处理的HMCF/EP复合材料受到切应力载荷时的界面失效的机制,采用SEM对复合材料样品的横截面形貌进行了扫描,结果如图4所示。
从图中看到,纤维与基体之间的间隙降低,断面表面树脂碎屑增加,表明电泳沉积方式将GNP引入HMCF表面增加了纤维与环氧树脂基体的物理作用。当处理电压为5 V时(图4(b)),基体间裂纹增多。当电压增大到10 V时横截面如图4(c)所示,树脂基体裂纹进一步增加,此时复合材料受载荷时应力传递较好。电压持续增大到20 V时横截面如图4(d)所示,纤维拔出情况增加,说明随着沉积电场电压增大,GNP粒子发生严重的团聚(图1(d)),从而影响了HMCF/EP界面结构,引起ILSS下降。
2.4 HMCF/EP复合材料湿热性能
在温度90℃、相对湿度80%的条件下,各复合材料湿热过程中吸湿率随时间变化如表3所示。
复合材料吸湿的初始阶段可以用菲克扩散定律描述[22]。在第二阶段吸湿速率下降,继续受到湿热因素的影响,采用两阶段扩散模型[23]进行了拟合。复合材料的吸湿率通过式(2)得到,扩散系数D通过式(3)得到,最后经式(4)拟合可得出参数k、M1∞。
Mt=Wt−W0W0 (2) D=π(h4M∞)2(Mt1−Mt2√t1−√t2)2 (3) Mt=M1∞(1+k√t){1−exp[−7.3(Dth2)0.75]} (4) 式中:Mt为t时刻复合材料的吸湿率;Wt为t时刻复合材料试样质量(g);W0为复合材料试样未湿热时质量(g);M∞为复材Fick饱和吸湿率;M1∞为复材Fick第一阶段饱和吸湿率;k为树脂弛豫常数(mm/h1/2);h为试样厚度(mm);D为扩散系数(mm/h)。
表 3 90℃、80% RH湿热条件下HMCF/EP的吸湿率Table 3. Moisture absorption of HMCF/EP at 90℃, 80% RHSample M5 d/% M10 d/% M15 d/% M20 d/% M25 d/% M30 d/% U-CF 0.08 0.16 0.21 0.24 0.25 0.26 CF-10/EP 0.07 0.15 0.19 0.21 0.22 0.24 CF-20/EP 0.08 0.17 0.22 0.22 0.24 0.25 Note: Mx d—Moisture absorption of composite material after x days. 通过运用第一与第二吸湿阶段的曲线切线相交所对应的纵坐标也同样可以获得M1∞[24]。图5为不同复合材料Fick扩散拟合曲线图。
从图中可以看出,复合材料吸湿率随湿热时间增加而增加。湿热初期,复合材料表面的空隙以及基体之间的缺陷及裂纹会加速水分子的扩散。随后基体吸湿接近饱和,逐渐出现树脂弛豫现象[25]。
表4给出了复合材料吸湿过程中的拟合参数。相比U-CF/EP的水分子扩散系数(15.7×10−4 mm/h),CF-10/EP与CF-20/EP的水分子扩散系数分别为14.8×10−4 mm/h与15.1×10−4 mm/h,表明HMCF经GNP表面改性后,界面处的GNP阻碍了水分子扩散。U-CF/EP的Fick第一阶段饱和吸湿率(M1∞)为0.12%,而电泳沉积改性纤维后复材的M1∞无明显变化。经GNP界面改性的纤维复合材料30天所达到的最大吸湿率(M30 d)与k均有所降低,进一步说明,GNP改性HMCF降低了复合材料的吸湿率。复合材料湿热过程中层间剪切强度随时间变化信息如表5所示。
表 4 80% RH、90℃湿热老化HMCF/EP吸湿拟合参数Table 4. Hygroscopic fitting parameters of HMCF/EP for hygrothermal at 90℃, 80% RHD/
(10−4 mm·h−1)M1∞/% M30 d/% k/
(10−2 mm·h−1/2)R2 CF-10/EP 14.82 0.12 0.24 4.43 0.96 CF-20/EP 15.13 0.14 0.25 3.89 0.95 U-CF/EP 15.69 0.12 0.26 5.19 0.97 Notes: D—Diffusion coefficient of water molecules in composites; M1∞—Saturated moisture absorption rate of the first stage of the composite Fick; M30 d—Moisture absorption of composite material after 30 d; k—Constant related to the relaxation of resin structure; R2—Coefficient of determination. 为研究湿热时间对复合材料界面结合的影响,选取代表性样品CF-10/EP,采用SEM手段分别对复合材料湿热不同时长的纵截面进行了表征,如图6所示。可以看出,CF-10/EP复合材料随湿热时间增加,其基体的裂纹数量从密集转为稀疏,裂纹的尺寸降低,说明随着湿热时间的增加,复合材料吸湿率逐步提高,基体产生了更多缺陷,降低了界面结合效果,减弱了复合材料受载荷时的应力传递效率。
表 5 80% RH、90℃下HMCF/EP老化过程中层间剪切强度Table 5. Interlaminar shear strength during HMCF/EP aging at 90℃, 80% RHSample ILSS0 d/
MPaILSS10 d/
MPaILSS20 d/
MPaILSS30 d/
MPaILSS60 d/
MPaU-CF/EP 69.5 68.6 65.4 64.4 61.3 CF-10/EP 75.6 73.2 69.3 69.5 67.8 CF-20/EP 72.2 68.9 68.1 66.7 65.5 Note: ILSSx d—Interlaminar shear strength of composite material after x days. 对U-CF/EP、Aged U-CF/EP、CF-10/EP、Aged CF-10/EP、CF-20/EP和Aged CF-20/EP纵断面进行观察,结果如图7所示。未经湿热试验的U-CF/EP (图7(a))、CF-10/EP (图7(b))与CF-20/EP (图7(c))基体的裂纹密度较高,说明纤维与基体结合较好,应力传递效果良好。经湿热30天后的纵断面,如图7(a1)~7(c1)所示,复合材料中均出现了孔洞,Aged U-CF/EP产生的孔洞主要分布在树脂基体中,尺寸较大,容易产生应力集中现象,此时树脂受湿热耦合作用影响较大。GNP改性复合材料缺陷出现在界面处,此时GNP周围树脂吸湿,缺陷密集且细小。
图 7 不同HMCF/EP复合材料轴向截面形态SEM图像:(a) U-CF/EP;(a1) Aged U-CF/EP;(b) CF-10/EP;(b1) Aged CF-10/EP;(c) CF-20/EP;(c1) Aged CF-20/EPFigure 7. SEM images of axial cross-section morphology of different HMCF/EP composites: (a) U-CF/EP; (a1) Aged U-CF/EP; (b) CF-10/EP; (b1) Aged CF-10/EP; (c) CF-20/EP; (c1) Aged CF-20/EP2.5 GNP改性HMCF的增强机制
HMCF/EP的ILSS与吸湿率结果表明,GNP引入纤维表面后,复合材料层间剪切强度提高,吸湿率下降,湿热结束后(80% RH、90℃,60 d)层间剪切性能达67.8 MPa。基于复合材料的界面受剪切失效机制,对GNP增强界面强度的机制进行了探讨。图8为U-CF/EP、CF-10/EP与CF-20/EP在界面处存在的GNP影响下剪切失效示意图。
由于U-CF表面相对光滑,粗糙度低,与树脂的相互作用不强,U-CF/EP (图8(a))在受切应力时表现出不好的界面性能,在湿热环境中吸湿率较高。采用GNP构筑HMCF特性表面时,适宜的改性条件会使得GNP在纤维表面分布较为均匀,GNP对树脂与纤维间产生机械啮合作用,加之CNC与电泳沉积引入的—OH与—COOH提高了纤维活性,进一步增强了界面结合。在受到剪切作用力时,界面处产生的细小微裂纹会沿不同方向传播(图8(b)),表现出材料界面性能有所提高。相容性更佳的界面协同均匀分散的GNP片层的阻隔作用,抑制了水分子进入与扩散,进而降低了复合材料的吸湿率。当电泳沉积电压较高时,HMCF表面GNP产生团聚、分散不均匀,导致复合材料界面处存在较多孔隙、裂纹(图8(c)),一方面降低了HMCF与树脂基体的结合性,层间剪切强度下降;另一方面在湿热环境中阻隔水分子的能力下降,复合材料吸湿率升高。
3. 结 论
(1)以电泳沉积技术在高模量碳纤维(HMCF)表面引入石墨烯纳米片(GNP)后,HMCF/环氧树脂(EP)复合材料层间剪切强度由69.5MPa提升到了75.6 MPa。
(2)与未改性HMCF/EP复合材料相比,GNP电泳沉积改性HMCF/EP复合材料在90℃、80%相对湿度(RH)湿热环境中存放30天,吸湿率由0.26%下降到0.24%,扩散系数从15.7×10−4 mm/h下降到14.8×10−4 mm/h。存放达60天后,ILSS仍保持在67.8 MPa,具有较好耐湿热性能。
(3) GNP在高模碳纤维复合材料界面均匀分布,增强了纤维与树脂间的机械啮合作用,提高了应力传递效率。同时GNP阻碍了水分子的扩散,减小了湿热耦合作用对复合材料的损伤。
-
图 2 (a) TOC晶体结构及聚偏氟乙烯-共六氟丙烯(PVFH)-TOC-聚乙二醇(PEG)电解质合成示意图[32];(b) PVDF-六氟丙烯(HFP)@氨化介孔Co3O4 (m-Co3O4(s)-NH2)的合成路线示意图[33];(c)聚环氧乙烷(PEO)-聚丙烯腈(PAN)-LLZO GPE在Li-S电池中的性能提升机制示意图[35];(d)聚合物凝胶形成机制示意图[36]
Figure 2. (a) Crystal structure of TOC and schematic illustration for the synthesis of the polyvinylidene fluoride-hexafluoropropylene (PVFH)-TOC-polyethylene glycol (PEG) electrolyte[32]; (b) Schematic illustration of the synthesis route of poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP)@ammoniated mesoporous Co3O4 (m-Co3O4(s)-NH2)[33]; (c) Schematic illustration for the performance improvement mechanisms of polyethylene oxide (PEO)-polyacrylonitrile (PAN)-LLZO GPE applied in the Li-S battery[35]; (d) Schematic diagram of formation mechanism for the polymer gel polymer[36]
TOC—Ti32O16(OCH2CH2O)32(RCOO)16(EGH)16 (R: t-CH3-CH2CH2CH2—; EGH: —OCH2CH2OH); APTES—3-aminopropyltriethoxysilane; LLZO—Li7La3Zr2O2
图 4 (a)倍率为0.1 C时Li-硫乙酰胺(TAA)/S/C电池的充放电循环曲线;(b) Li-TAA/S/C和Li-S/C电池的倍率性能;(c) Li-TAA/S/C和Li-S/C电池的循环性能(倍率为0.1 C)[38]
Figure 4. (a) Charge and discharge cycle curves of Li-thioacetamide (TAA)/S/C battery at 0.1 C rate; (b) Rate performance of Li-TAA/S/C and Li-S/C cells; (c) Cycling performance of Li-TAA/S/C and Li-S/C cells (Rate: 0.1 C)[38]
图 5 (a) 1,3-二氧戊环(DOL)与氰基聚乙烯醇(PVA-CN)合成互传网络(IPN)-GPE的两步反应机制;(b)具有非对称GPE网络的Li|IPN-GPE|S电池示意图[39];(c)超高离子导电凝胶聚合物(SHGP)电解质的原理图和工作原理;(d)聚乙二醇二缩水甘油酯(PEGDE)和支化聚乙烯亚胺(PEI)聚合合成方案[40];(e) 采用碳纳米管(CNT)/Mo2C/S正极和GPE的电池中的性能提升机制示意图[41];(f)当与锂箔静态接触时,电解液(LE)、PDOL和PDOL@酞菁铟(InPc)的原理图和光学图像[42]
Figure 5. (a) The two-step reaction mechanisms of 1,3-dioxolane (DOL) and cyanoethyl polyvinyl alcohol (PVA-CN) to form the interpenetrating network (IPN)-GPE; (b) Schematic diagram of the Li|IPN-GPE|S battery with the asymmetric GPE network[39]; (c) Schematic illustration and the working principle of super-high ionic conductive gel polymer (SHGP) electrolyte; (d) Synthesis scheme of the polar polymer by polymerization of poly(ethylene glycol) diglycidyl ether (PEGDE) and branched polyethylenimine (PEI)[40]; (e) Schematic illustration for the performance improvement mechanisms of the cells with carbon nanotubes (CNT)/Mo2C/S cathodes and GPE[41]; (f) Schematic and optical images of electrolyte (LE), PDOL, and PDOL@indium phthalocyanine (InPc) when in static contact with lithium foil[42]
图 7 (a) Li2S2和Li2S的成核、生长、沉积、溶解等动态过程[50];(b)可溶性多硫化锂的In-situ UV-Vis光谱;(c)硫正极上Li2Sx的动态分布情况[53];(d)有/无碳基体中的硫化铋/氧化铋纳米团簇(BSOC)的Li/S电池负极侧的原位S K-edge XAS光谱[54]
Figure 7. (a) Dynamic processes of nucleation, growth, deposition, and dissolution of Li2S2 and Li2S[50]; (b) In-situ UV-Vis spectra of soluble lithium polysulfide; (c) Dynamic distribution of Li2Sx on the positive sulfur electrode[53]; (d) In situ/operando S K-edge XAS observations at the anodic side of Li/S cells with/without bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix (BSOC) layer[54]
OCP—Open circuit potential; DOD—Depth of discharge; SOC—State of charge; PP—Polypropylene; TFSI—Thium bistrifluoromethane sulfonimide
表 1 运用不同合成工艺GPE的优点及其组装锂硫电池的性能参数
Table 1 Advantages of using different synthetic processes GPE and the performance parameters of assembling lithium-sulfur batteries
合成工艺 优点 GPE 离子电导率/(S·cm−1) 面载量/(mg·cm−2) 放电比容量/(mA·h·g−1) 循环性能 非原位聚合法 合成凝胶流程简便,容易在分子水平进行修饰,兼容性更好,易于整合多种材料的优点 PVFH-TOC-PEG 8×10−3(25℃) 5 1103 (2 mA·cm−1)8 mA·cm−2、650次循环后放电比容量680 mA·h·g−1 PVDF-HFP-m-Co3O4-NH3 3.23×10−3(室温) 2 — 0.5 C、150次循环后放电比容量620 mA·h·g−1 PVDF-HFP-Al2O3 1.85×10−3(室温) 1 1233 (0.1 C)0.1 C、150次循环后放电比容量841.5 mA·h·g−1 PEO-PAN-Li7La3Zr2O2 2.1×10−3(30℃) 2±0.3 1459 (0.1 C)1 C、300次循环后放电比容量575 mA·h·g−1 PI10 6.22×10−3(室温) 1 — 0.2 C、450次循环后放电比容量 1154.3 mA·h·g−1原位界面聚合法 在硫正极到锂负极间形成固化程度不同的GPE,解决正极/GPE界面稳定性较差的问题 PDOL 5.56×10−3(室温) 2 1102 (0.1 C)0.1 C、200次循环后放电比容量805 mA·h·g−1 PDOL — 1.5 760(0.5 C) 0.1 C、200次循环后放电比容量645 mA·h·g−1 原位溶液聚合法 扬弃了传统GPE合成过程中的聚合物材料溶解、干燥涂膜等复杂工序,制取便捷、操作安全 PVA-CN/PDOL 3.23×10−3(25℃) 1.5 — 0.5 C、500次循环后放电比容量807 mA·h·g−1 SHGP 0.75×10−3(30℃) 2.5 950(0.2 C) 0.5 C、100次循环后放电比容量715 mA·h·g−1 PDOL 2.5×10−2(室温) 1 1024 (0.05 C)0.5 C、100次循环后放电比容量521 mA·h·g−1 PDOL@InPc 3.7×10−3(室温) 1.5±0.02 1194.7 (0.2 C)0.2 C、260次循环后放电比容量673.5 mA·h·g−1 Notes: PI10—Polyimide10; PDOL—Poly (1, 3-dioxopentylene); SHGP—Novel gel polymer synthesized from polyethylene glycol diglycidyl ester and branched polyethylene imide; PDOL@InPc—Indium phthalocyanine added to PDOL. 表 2 不同原位表征方法及其用途
Table 2 Different in situ characterization methods and their uses
原位表征方法 特点 测试对象 在锂硫电池中的用途 In-situ TEM 提供电化学反应过程中电极在高空间分辨率下的实时综合信息,探究锂硫电池中的微观结构演变和化学组成变化 锂硫电池循环过程中的固态产物 观测锂硫电池中Li2S的结晶状态及其演变 In-situ AFM 结合模拟电池环境条件,并跟踪这种环境下观测物的形貌演变 固体材料表面结构(包括绝缘体) 观测正极侧不溶性Li2S及Li2S2演变过程和负极侧SEI形成及演变途径 In-situ Raman及
In-situ UV-Vis根据拉曼散射光谱和紫外吸收光谱的不同来确定不同分子的组成结构 锂硫电池循环过程中产生的多硫化物 观测锂硫电池体系中,正极/电解质界面处多硫化锂的分布情况 In-situ XAS 不依赖长程有序结构而对目标原子近邻结构敏感,能够得到材料局部几何结构和电子结构信息 催化剂及多硫化物 定量测定硫中几种含硫物种的含量,研究材料与多硫化物相互作用 -
[1] EVARTS E. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526: S93-S95. DOI: 10.1038/526S93a
[2] LI S, HUANG J, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology, 2022, 17: 613-621. DOI: 10.1038/s41565-022-01107-2
[3] YUE L, WANG X, CHEN L, et al. In situ interface engineering of highly nitrogen-rich triazine-based covalent organic frameworks for an ultra-stable, dendrite-free lithium-metal anode[J]. Energy & Environmental Science, 2024, 17(3): 1117-1131.
[4] SU C C, AMINE K. Dicarbonyl electrolyte for high-voltage lithium metal batteries: Importance of the entropy of solvation in bidentate solvent[J]. ACS Energy Letters, 2023, 9(1): 118-125.
[5] LIU X, WANG G, LYU Z, et al. A perspective on uniform plating behavior of Mg metal anode: Diffusion limited theory versus nucleation theory[J]. Advanced Materials, 2024, 36(9): 2306395. DOI: 10.1002/adma.202306395
[6] JI L, JIA Y, WANG X, et al. Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery[J]. Nanotechnology, 2021, 32(19): 192002. DOI: 10.1088/1361-6528/abe002
[7] LIU S, LI J, YAN X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895. DOI: 10.1002/adma.201706895
[8] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. DOI: 10.1021/cr500062v
[9] JI L, WANG X, JIA Y, et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry[J]. Advanced Functional Materials, 2020, 30(28): 1910533. DOI: 10.1002/adfm.201910533
[10] WANG Z, FAN Q, SI Y, et al. A self-regulatory organosulfur copolymer cathode towards high performance lithium-sulfur batteries[J]. Energy Storage Materials, 2023, 58: 222-231. DOI: 10.1016/j.ensm.2023.03.020
[11] HUANG Y, WANG Y, FU Y. A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 454: 140250. DOI: 10.1016/j.cej.2022.140250
[12] HAN Z, REN H R, HUANG Z, et al. A permselective coating protects lithium anode toward a practical lithium-sulfur battery[J]. ACS Nano, 2023, 17(5): 4453-4462. DOI: 10.1021/acsnano.2c10047
[13] WU T, YE J, LI T, et al. Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 536: 231482. DOI: 10.1016/j.jpowsour.2022.231482
[14] WU T, SUN G, LU W, et al. A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 353: 136529. DOI: 10.1016/j.electacta.2020.136529
[15] MIKHAYLIK Y V. Electrolytes for lithium sulfur cells: US patent, 7358012 B2[P]. 2008-04-15.
[16] SHI C, SHAO S, ZONG C, et al. Organothiols for dual-interface modification of high performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 448: 137552. DOI: 10.1016/j.cej.2022.137552
[17] QIU H, SONG Y, GU J, et al. A bifunctional electrolyte additive ammonium hexafluorophosphate for long cycle life lithium-sulfur batteries[J]. Materials Letters, 2023, 351: 134986. DOI: 10.1016/j.matlet.2023.134986
[18] XU R, ZHANG S, WANG X, et al. Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes[J]. Chemistry—A European Journal, 2018, 24(23): 6007-6018. DOI: 10.1002/chem.201704568
[19] FU K K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575.
[20] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. DOI: 10.1002/anie.201304762
[21] CUI Y, LI J, YUAN X, et al. Emerging strategies for gel polymer electrolytes with improved dual-electrode side regulation mechanisms for lithium-sulfur batteries[J]. Chemistry—An Asian Journal, 2022, 17(21): e202200746. DOI: 10.1002/asia.202200746
[22] FENTON D E, PARKER J M, WRIGHT P V. Complex of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589.
[23] MICHOT T, NISHIMOTO A, WATANABE M. Electrochemical properties of polymer gel electrolytes based on poly (vinylidene fluoride) copolymer and homopolymer[J]. Electrochimica Acta, 2000, 45(8-9): 1347-1360. DOI: 10.1016/S0013-4686(99)00343-6
[24] JIA M, LI T, YANG D, et al. Polymer electrolytes for lithium-sulfur batteries: Progress and challenges[J]. Batteries, 2023, 9(10): 488. DOI: 10.3390/batteries9100488
[25] NAIR J R, BELLA F, ANGULAKSHMI N, et al. Nanocellulose-laden composite polymer electrolytes for high performing lithium-sulphur batteries[J]. Energy Storage Materials, 2016, 3: 69-76. DOI: 10.1016/j.ensm.2016.01.008
[26] QIAN J, JIN B, LI Y, et al. Research progress on gel polymer electrolytes for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 56: 420-437. DOI: 10.1016/j.jechem.2020.08.026
[27] HU J K, YUAN H, YANG S J, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 71: 612-618. DOI: 10.1016/j.jechem.2022.04.048
[28] SONG J, NOH H, LEE H, et al. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium–sulfur battery[J]. Journal of Materials Chemistry A, 2015, 3(1): 323-330. DOI: 10.1039/C4TA03625E
[29] LI W, PANG Y, ZHU T, et al. A gel polymer electrolyte based lithium-sulfur battery with low self-discharge[J]. Solid State Ionics, 2018, 318: 82-87. DOI: 10.1016/j.ssi.2017.08.018
[30] CHIU L L, CHUNG S H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes[J]. Journal of Materials Chemistry A, 2022, 10(26): 13719-13726. DOI: 10.1039/D2TA01867E
[31] ZHANG H, LU H, CHEN J, et al. A novel filler for gel polymer electrolyte with a high lithium-ion transference number toward stable cycling for lithium-metal anodes in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48622-48633.
[32] PEI F, DAI S, GUO B, et al. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities[J]. Energy & Environmental Science, 2021, 14(2): 975-985.
[33] LI J, CHEN X, YUE W. Mesoporous Co3O4-modified gel polymer electrolyte applied in lithium-sulfur batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15548-15558. DOI: 10.1021/acsaem.2c03130
[34] WANG H M, WANG Z Y, ZHOU C, et al. A gel polymer electrolyte with Al2O3 nanofibers skeleton for lithium-sulfur batteries[J]. Science China Materials, 2023, 66(3): 913-922. DOI: 10.1007/s40843-022-2252-1
[35] XIE P, YANG R, ZHOU Y, et al. Rationally designing composite gel polymer electrolyte enables high sulfur utilization and stable lithium anode[J]. Chemical Engineering Journal, 2022, 450: 138195. DOI: 10.1016/j.cej.2022.138195
[36] ZHANG H, CHEN J, LIU J, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery[J]. Energy Storage Materials, 2023, 61: 102885. DOI: 10.1016/j.ensm.2023.102885
[37] WANG W P, ZHANG J, YIN Y X, et al. A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Advanced Materials, 2020, 32(23): 2000302. DOI: 10.1002/adma.202000302
[38] LI C C, WANG W P, FENG X X, et al. High-performance quasi-solid-state lithium-sulfur battery with a controllably solidified cathode-electrolyte interface[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19066-19074.
[39] YANG Y J, WANG R, XUE J X, et al. In situ forming asymmetric bi-functional gel polymer electrolyte in lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27390-27397. DOI: 10.1039/D1TA06007D
[40] ZHOU J, JI H, LIU J, et al. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery[J]. Energy Storage Materials, 2019, 22: 256-264. DOI: 10.1016/j.ensm.2019.01.024
[41] ZHANG Y J, XING Z Y, WANG W P, et al. Mo2C electrocatalysts for kinetically boosting polysulfide conversion in quasi-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45651-45660.
[42] GUO Y, LU J, JIN Z, et al. InPc-modified gel electrolyte based on in situ polymerization in practical high-loading lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 469: 143714. DOI: 10.1016/j.cej.2023.143714
[43] HAN D D, LIU S, LIU Y T, et al. Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2018, 6(38): 18627-18634. DOI: 10.1039/C8TA07685E
[44] ZHAO E, NIE K, YU X, et al. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707543. DOI: 10.1002/adfm.201707543
[45] ZHANG L, QIAN T, ZHU X, et al. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chemical Society Reviews, 2019, 48(22): 5432-5453. DOI: 10.1039/C9CS00381A
[46] MAHANKALI K, THANGAVEL N K, REDDY A L M. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, 19(8): 5229-5236. DOI: 10.1021/acs.nanolett.9b01636
[47] WANG Z, TANG Y, ZHANG L, et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 2020, 16(28): 2001899. DOI: 10.1002/smll.202001899
[48] LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie International Edition, 2016, 55(51): 15835-15839. DOI: 10.1002/anie.201608730
[49] SONG Y X, SHI Y, WAN J, et al. Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(25): 2000465. DOI: 10.1002/aenm.202000465
[50] TAN J, LIU D, XU X, et al. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: A review[J]. Nanoscale, 2017, 9(48): 19001-19016. DOI: 10.1039/C7NR06819K
[51] WU H L, HUFF L A, GEWIRTH A A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1709-1719.
[52] LUO Y, FANG Z, DUAN S, et al. Direct monitoring of Li2S2 evolution and its influence on the reversible capacities of lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2023, 62(11): e202215802. DOI: 10.1002/anie.202215802
[53] MENG X, LIU Y, MA Y, et al. Diagnosing and correcting the failure of the solid-state polymer electrolyte for enhancing solid-state lithium-sulfur batteries[J]. Advanced Materials, 2023, 35(22): 2212039. DOI: 10.1002/adma.202212039
[54] JIA L, WANG J, REN S, et al. Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization[J]. Energy & Environmental Materials, 2021, 4(2): 222-228.
[55] PREHAL C, VON MENTLEN J M, DRVARIČ T S, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering[J]. Nature Communications, 2022, 13(1): 6326. DOI: 10.1038/s41467-022-33931-4
[56] ZHANG X, LI X, ZHANG Y, et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets[J]. Advanced Functional Materials, 2023, 33(36): 2302624. DOI: 10.1002/adfm.202302624
-
目的
凝胶聚合物电解质能够改善全固态电解质与双电极之间存在的高界面阻抗所带来的电荷转移受阻、锂沉积不均匀等问题,有效解决容量衰减快、循环稳定性差等缺陷。本文针对锂硫电池中制备凝胶聚合物电解质所采用的原位聚合和非原位聚合两种不同的工艺手段进行介绍,并讨论供科研工作者开发研究更适宜产业化的凝胶聚合物电解质的合成工艺,展望未来锂硫电池凝胶聚合物电解质合成设计的发展方向。
方法通过对近些年来国内外凝胶聚合物在锂硫电池中应用的相关文献整理,分析了制备凝胶类聚合物的主要方法,并分别对制备方法的原理、优缺点进行了总结;按照聚合凝胶聚合物的类型,将其分为原位聚合凝胶聚合物和非原位聚合凝胶聚合物,并分析了不同凝胶聚合物基底的特点;基于对凝胶聚合物电解质的研究,总结了不同原位表征手段在锂硫电池凝胶聚合物中的相关应用。
结果凝胶聚合物的制备方法主要分为:(1)非原位聚合:因其合成凝胶流程简便,更容易在分子水平进行修饰,兼容性更好,易于整合多种材料的优点。非原位聚合方法被广泛应用于制备多功能凝胶聚合物电解质。(2)原位聚合:与非原位聚合凝胶电解质相比,原位聚合凝胶聚合物电解质是在电池内部形成电解质,电极和电解质之间界面稳定性更强,界面阻抗更小,离子迁移速率更高。此外还具有制取便捷,操作安全,更易于实现产业化等优点。为了合理设计凝胶聚合物电解质的成分和结构,研究者还需对锂硫电池凝胶聚合物电解质的反应机理及其对电化学性能的影响进行全面而深入的了解。近年来出现了众多原位表征方法包括:原位X射线吸收光谱法(in-situ XAS)、原位透射电子显微镜(in-situ TEM)、原位原子力显微镜(in-situ AFM)、原位拉曼光谱(in-situ Raman)、原位紫外可见吸收光谱(in-situ UV-Vis)等,这些技术已被用于探究锂硫电池电化学反应过程的内部结构变化,通过联用其他设备也可以获取不同发现,为进一步合理设计凝胶聚合物电解质锂硫电池提供助力。
结论开发功能化凝胶聚合物电解质锂硫电池是抑制多硫化锂穿梭效应、稳定电极界面和提升电池安全性的必要手段,但凝胶聚合物电解质基底缺陷仍然阻碍着凝胶聚合物电解质锂硫电池的商业化进程,合理设计功能化凝胶聚合物电解质可以解决上述问题。近年来,科研人员提出多种聚合工艺,合理采用不同聚合工艺实现锂硫电池凝胶聚合物电解质功能化。综上所述,针对锂硫电池凝胶聚合物电解质合成工艺及功能化改进进行深入探究,利用先进表征技术阐明锂硫电池电化学作用机制,为推动锂硫电池的商业化提供助力。