CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation
-
摘要: CeVO4因其对可见光较低的利用率和光生电子空穴对易于复合的缺点限制其在光催化领域中的应用。碳点(CDs)具有独特的π共轭结构赋予其优异的光生电子存储和转移能力。本研究采用水热和共沉淀两步法成功制备出CDs与CeVO4的纳米复合物(CDs/CeVO4),在掺入CDs后,其光生载流子的转移和分离效率得到有效提高。在可见光照射下,CDs/CeVO4能高效活化过一硫酸盐(PMS)降解盐酸四环素(TC),反应60 min后对TC的降解率达到90%。反应速率常数是CeVO4的4.1倍(
0.03815 min−1)。XPS、紫外可见漫反射光谱和时间分辨荧光光谱测试结果表明,CDs/CeVO4相比于CeVO4带隙变窄,可见光吸收能力增强,荧光寿命是CeVO4的15.1倍(7.10 ns)。电子顺磁共振光谱(EPR)与XPS测试结果相互印证掺入CDs的纳米复合物中存在丰富的氧空位,进一步增强其活化PMS能力。活性物质捕获实验表明,h+、$\text{SO}_{4}^{-}{\text{•}} $和•OH是反应体系中的活性物质,在此基础上提出了该体系可能的降解机制。CDs/CeVO4表现出良好的稳定性,经过5次循环实验后,仍表现出良好的催化性能。CDs/CeVO4协同可见光活化PMS降解水中有机污染物为废水治理提供一种新的方法和思路。-
关键词:
- 碳点 /
- 过一硫酸盐(PMS) /
- 光催化 /
- 高级氧化法 /
- 盐酸四环素
Abstract: The limited absorption of visible light and high recombination rate of photogenerated electron-hole pairs impede the practical application of CeVO4 in photocatalysis. The unique π-conjugated structure of carbon dots (CDs) endows them with exceptional capabilities for the storing and transferring photogenerated electrons. Herein, CDs/CeVO4 was successfully synthesized by two-step method of hydrothermal and co-precipitation, resulting in a significant enhancement of photogenerated carrier transfer and separation efficiency with the incorporation of CDs. Under visible light irradiation, CDs/CeVO4 exhibit enhanced activity towards peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TC), resulting in a 90% degradation rate of TC after 60 min of reaction. The reaction rate constant is 4.1 times higher than that of CeVO4. XPS, UV-Vis DRS, and time-resolved fluorescence spectra demonstrate that CDs/CeVO4 exhibits a narrower band gap, an enhanced capacity for absorbing visible light, and a 15.1-fold increase in the fluorescence lifetime compared to CeVO4. The results of electron paramagnetic resonance (EPR) and XPS tests confirm the presence of abundant oxygen vacancies in CDs/CeVO4, thereby further enhancing their capacity for activating PMS. Capture experiments of active substances show that h+, $\text{SO}_{4}^{-}{\text{•}} $ and •OH are the active species in the reaction system, and a plausible degradation mechanism was proposed. After five cycles of experiments, the degradation rate decreased slightly, showing good photocatalytic performance. This work provides a new strategy for the degradation of organic pollutants in wastewater.-
Key words:
- carbon dots /
- peroxymonosulfate (PMS) /
- photocatalysis /
- advanced oxidation processes /
- tetracycline
-
图 6 (a)不同催化体系在光照和未光照下降解盐酸四环素(TC)效率;(b)不同催化体系反应速率常数k
Figure 6. (a) Efficiency of different catalytic systems on tetracycline hydrochloride (TC) degradation with or without light irradiation; (b) Reaction rate constant k for different catalytic systems
PMS—Peroxymonosulfate; Vis—Visible light; P25—Commercial TiO2; C0 and C—Concentrations of TC at time 0 and t, respectively
表 1 不同碳点含量的复合催化剂活化过一硫酸盐(PMS)降解TC效率
Table 1. Efficiency of composite catalysts with different CDs contents on TC degradation by activating PMS
Catalyst CDs/g Ce(NO3)3/g NH4VO3/g C/C0/% CDs/CeVO4-2 0.027 0.271 0.059 70 CDs/CeVO4-4 0.054 0.271 0.059 90 CDs/CeVO4-8 0.108 0.271 0.059 72 -
[1] OYEKUNLE D T, GENDY E A, IFTHIKAR J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review[J]. Chemical Engineering Journal, 2022, 437: 135277. doi: 10.1016/j.cej.2022.135277 [2] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [3] WACŁAWEK S, LUTZE H V, GRÜBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132 [4] NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of Penicillin G by heat activated persulfate in aqueous solution[J]. Journal of Environmental Management, 2018, 215: 316-323. doi: 10.1016/j.jenvman.2018.03.038 [5] PAN Y, ZHANG Y, ZHOU M, et al. Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0[J]. Chemical Engineering Journal, 2019, 361: 908-918. doi: 10.1016/j.cej.2018.12.135 [6] ZHANG T T, YANG Y L, LI X, et al. Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239: 116537. doi: 10.1016/j.seppur.2020.116537 [7] TIAN D Q, ZHOU H Y, ZHANG H, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. doi: 10.1016/j.cej.2021.131166 [8] LIU J J, HE H, SHEN Z R, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. doi: 10.1016/j.jhazmat.2022.128398 [9] YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189: 116627. doi: 10.1016/j.watres.2020.116627 [10] MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296 [11] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011 [12] CHEN G L, SI X L, YU J S, et al. Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes[J]. Applied Surface Science, 2015, 330: 191-199. doi: 10.1016/j.apsusc.2015.01.011 [13] LI J N, LI X Y, WANG X, et al. Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal[J]. Applied Catalysis A: General, 2019, 584: 117170. doi: 10.1016/j.apcata.2019.117170 [14] YIN C, LIU Y L, LYU X Y, et al. Carbon dots as heterojunction transport mediators effectively enhance BiOI/g-C3N4 synergistic persulfate degradation of antibiotics[J]. Applied Surface Science, 2022, 601: 154249. doi: 10.1016/j.apsusc.2022.154249 [15] LIU X, YANG Y, LI H, et al. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots[J]. Chemical Engineering Journal, 2021, 408: 127259. doi: 10.1016/j.cej.2020.127259 [16] YOU Q L, ZHANG Q X, GU M B, et al. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 431: 133927. doi: 10.1016/j.cej.2021.133927 [17] HAN W Y, LI D G, ZHANG M Q, et al. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots[J]. Journal of Hazardous Materials, 2020, 395: 122695. doi: 10.1016/j.jhazmat.2020.122695 [18] SONG Y, WANG R, LI X Y, et al. Constructing a novel Ag nanowire@CeVO4 heterostructure photocatalyst for promoting charge separation and sunlight driven photodegradation of organic pollutants[J]. Chinese Chemical Letters, 2022, 33(3): 1283-1287. doi: 10.1016/j.cclet.2021.07.060 [19] ZHANG L J, HAO X Q, LI J K, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 82-94. doi: 10.1016/S1872-2067(19)63454-6 [20] CHANG M Y, WANG M F, CHEN Y Q, et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance[J]. Nanoscale, 2019, 11(20): 10129-10136. doi: 10.1039/C9NR02412C [21] OTHMAN I, HISHAM ZAIN J, ABU HAIJA M, et al. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway[J]. Applied Catalysis B: Environmental, 2020, 266: 118601. doi: 10.1016/j.apcatb.2020.118601 [22] HUANG J H, ZHU B K, SONG D B, et al. Synergistic photocatalysis for naphthalene (NAP) removal in seawater by S-scheme heterojunction Bi2S3/CeVO4: Mechanistic investigation and degradation pathways[J]. Chemical Engineering Journal, 2023, 464: 142784. doi: 10.1016/j.cej.2023.142784 [23] ZHANG Y Y, LI Y, YUAN Y, et al. C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: Reaction kinetics, DFT calculation and mechanism insight[J]. Separation and Purification Technology, 2022, 295: 121268. doi: 10.1016/j.seppur.2022.121268 [24] LI Q, REN J, HAO Y J, et al. Insight into reactive species-dependent photocatalytic toluene mineralization and deactivation pathways via modifying hydroxyl groups and oxygen vacancies on BiOCl[J]. Applied Catalysis B: Environmental, 2022, 317: 121761. doi: 10.1016/j.apcatb.2022.121761 [25] LI Q S, LU H, WANG X L, et al. Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation[J]. Chemical Engineering Journal, 2022, 443: 136473. doi: 10.1016/j.cej.2022.136473 [26] GHOSH U, PAL A. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination[J]. Chemical Engineering Journal, 2022, 431: 133914. doi: 10.1016/j.cej.2021.133914 [27] 郝彩红, 杨泽鹏, 常青, 等. 碳点/g-C3N4复合催化剂的制备及其光催化性能[J]. 复合材料学报, 2023, 40(10): 5811-5819.HAO Caihong, YANG Zepeng, CHANG Qing, et al. Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819(in Chinese). [28] 夏慧芸, 燕敏杰, 吕昕, 等. 隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能[J]. 复合材料学报, 2023, 40(10): 5782-5791.XIA Huiyun, YAN Minjie, LYU Xin, et al. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5782-5791(in Chinese). [29] LEELADEVI K, ARUNPANDIAN M, KUMAR J V, et al. Fabrication of 3D pebble-like CeVO4/g-C3N4 nanocomposite: A visible light-driven photocatalyst for mitigation of organic pollutants[J]. Diamond and Related Materials, 2021, 116(108424): 108424. [30] FAN C, LIU Q Q, MA T D, et al. Fabrication of 3D CeVO4/graphene aerogels with efficient visible-light photocatalytic activity[J]. Ceramics International, 2016, 42(8): 10487-10492. doi: 10.1016/j.ceramint.2016.03.072 [31] ZHU Y M, ZHANG L, ZHAO B T, et al. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides[J]. Advanced Functional Materials, 2019, 29(34): 1901783. doi: 10.1002/adfm.201901783 [32] ZHANG B B, WANG L, ZHANG Y J, et al. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation[J]. Angewandte Chemie International Edition, 2018, 57(8): 2248-2252. doi: 10.1002/anie.201712499 [33] CHEN F, MA Z Y, YE L Q, et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals[J]. Advanced Materials, 2020, 32(11): 1908350. doi: 10.1002/adma.201908350