Progress in the preparation and application of superamphiphobic surface
-
摘要: 自然界中的超疏水/超疏油现象吸引了表界面科学、微纳制造及纳米涂层等多学科领域研究者的广泛关注,在人们的生产生活中展现出了巨大的应用前景。本文聚焦于具有微纳粗糙结构的超双疏表面发展现状,从基本润湿性理论出发,介绍了超双疏表面微观粗糙结构的主要类型和降低表面能的原理,探讨了表面微观粗糙结构和化学改性与润湿性之间的关系,并归纳了制备超双疏表面的主要方法。最后,总结了超双疏表面的主要应用现状,分析了超双疏表面目前存在的不足和缺陷,并对其未来的发展方向进行了展望。Abstract: Superhydrophobic/superoleophobic phenomenon in nature have attracted extensive attention from researchers in surface interface science, micro-nano manufacturing, nano coating and other fields, and have shown great application prospects in people's production and life. Based on the basic wettability theory, this paper introduces the main types of micro-nano rough structures on superoleophobic surfaces and the principle of reducing surface energy. The relationship between the micro-nano rough structure, chemical modification, and wettability also be explored, and the main methods for preparing superamphiphobic surfaces are summarized. Finally, the main applications status of the superamphiphobic surface are summarized, and the shortcomings and defects of the superamphiphobic surface are analyzed. Likewise, the future development direction of the superamphiphobic surface is prospected.
-
Key words:
- superamphiphobic /
- superhydrophobic /
- wettability /
- surface micro/nano-structure /
- functional coating
-
图 1 润湿性理论:(a)基于杨氏模型理论的接触角和滑动角;(b) 超疏水表面(SHPS)与超双疏表面(SAPS); (c)接触角滞后;(d) Wenzel模型、Cassie-Baxter模型、混合模型示意图;(e) 光滑液体注入多孔表面(SLIPS)
γSV—Surface tension of solid-gas interfaces; γSL—Surface tension of solid-liquid interfaces; γLV—Surface tension of liquid-gas interfaces; m—Mass of the droplet; g—Gravitational constant; θR—Receding contact angel; θA—Advancing contact angel; α—Inclination of a bevel
Figure 1. Wettability theory: (a) Contact angle and slip angle base on Young model; (b) Air-mediated superhydrophobic surface (SHPS) or superamphiphobic surface (SAPS); (c) Contact angle hysteresis; (d) Schematic diagram of Wenzel model, Cassie-Baxter model and Mixed model; (e) Slippery lubricant-infused porous surface (SLIPS)
图 2 多孔结构表面微观形貌:(a)液体火焰喷涂表面的SEM图像[58];(b)多孔表面的SEM图像[59];(c)经过拉伸后压缩微结构的重新排列过程[60]
d, d'—Spacing of two clusters under different strain
Figure 2. Surface microstructure of porous structure: (a) SEM image of liquid flame spray surfaces[58]; (b) SEM images of porous surface[59]; (c) SEM image of rearranging process of the compacted microstructures after stretching[60]
图 3 6种类型的凹角结构示意图:(a) 微柱;(b) 倒梯形;(c) T形凹角;(d) T-型折边凹角;(e) T-型凸边凹角;(f) 双凹角结构蘑菇形
Figure 3. Six types of re-entrant structure diagram: (a) Micro-pillar structure; (b) Inverse-trapezoidal structure; (c) T-shape re-entrant structure; (d) T-shape with folding edge re-entrant structure; (e) Double re-entrant structure; (f)T-shape with convex edge re-entrant structure
图 4 凹角结构和层次结构的表面微观形貌:(a) 涂层表面微柱状结构的SEM图像[67];(b) 涂层表面的蘑菇双凹角结构横向SEM图像[66];(c) 涂层表面悬垂结构的SEM图像[68];(d) 三凹角结构示意图及SEM图像[69];(e) 利用激光制备的周期微锥与堆叠的致密纳米颗粒[40];(f)微-纳复合的层次结构[75]
h—Height of mushroom shaped re-entrant angular structure; Ds—Height of mushroom shaped side re-entrant angular structure; MCNP—Double-scale periodical microcones with dense nanoparticles; SMC—Single-scale periodical microcone; MBNP—Double-scale random microbumps with dense nanoparticles; IMN—Irregular micro-nanostructure by chemical etching; L—Distance between adjacent mushroom structures
Figure 4. Surface microstructure of the concave structure and the hierarchical structure: (a) SEM image of the coating surface as a micropillars structure[67] ; (b) SEM image of the coating surface as mushroom shaped double re-entrant angular structure[66]; (c) SEM images of the coating surface as a overhang structure[68]; (d) Schematic diagram of triply re-entrant structures and SEM images[69]; (e) Periodical microcones with dense nanoparticles prepared by laser[40]; (f) Micro-nano composite hierarchy[75]
图 5 喷涂法制备的超双疏涂层:(a) 可拉伸超双疏表面上纳米丝结构和分层微/纳米结构的制造工艺示意图[60];(b) 通过喷涂技术制备涂层的示意图[101]
PFOTES—1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane; RP2—Superamphiphobic coating; R1—First spraying coating; RP1—First two spraying coating; PDMS—Poly(dimethylsiloxane); NF—Nanofilament
Figure 5. Superamphiphobic coating prepared by spraying method: (a) Schematic of the fabrication process of the nanofilament-structured and hierarchical micro/nanostructure on stretchable superamphiphobic surface[60]; (b) Schematic illustration for the preparation of the coatings by the spraying technique[101]
图 6 基于超双疏表面的防腐蚀策略:(a) 表面保护过程示意图[127];(b) AZ31B Mg基双功能涂层的防腐机制[128]
EP—Epoxy; HD-POS@SiO2—Hexadecyl polysiloxane modified SiO2 nanoparticles; PF-POS@SiO2—Perfluorodecyl polysiloxane modified SiO2 nanoparticles; 2-MBI—2-mercaptabenzimidazole
Figure 6. Anti-corrosion strategies based on superamphiphobic surfaces: (a) Schematic illustration of the process of surface protection[127]; (b) Anticorrosion mechanisms of the prepared dual-functional coating for AZ31B Mg substrate[128]
图 7 自清洁与抗污的应用:(a) 太阳能板上的灰尘堆积现象[133];(b) 对比ZnO粉末喷涂前后(左)和PFDTS改性ChNFs涂层在玻璃玻片上指纹的时间变化[137];(c) 涂层的指纹图谱时间变化对比[137];(d) Zn涂层的抗黏附过程示意图;(e) 未涂覆和涂覆PES-PVDF-HFP/Pal@SiO2 (P-P/Pal@SiO2-F)涂层的Al板抗蜡试验照片[26]
PFDTS—1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane; ChNFs—Chitin nanofibers; Pal@SiO2-F—Fluorinated palygorskite@SiO2; PES—Polyethersulfone; PVDF-HFP—Vinylidene fluoride-co-hexafluoropropylene
Figure 7. Self-cleaning and anti-fouling applications: (a) Dust accumulation on Solar panel[133]; (b) Comparison of the fingerprints on glass slide before (left) and after (right) sprinkling ZnO powder and the ChNFs coating modified with PFDTS deposition for time change[137]; (c) Comparison of time change of coating fingerprint[137]; (d) Schematic diagram of anti-adhesion process of Zn coating; (e) Photographs of anti-waxing tests on Al sheet uncoated and coated with PES-PVDF-HFP/Pal@SiO2 (P-P/Pal@SiO2-F) coating[26]
-
[1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096 [2] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020 [3] WISDOM K M, WATSON J A, QU X, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences, 2013, 110(20): 7992-7997. doi: 10.1073/pnas.1210770110 [4] 尧婉辰, 程静, 孙文文, 等. 仿生超疏水表面的生物医学应用进展[J]. 复合材料学报, 2023, 40(10): 5502-5517.YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517(in Chinese). [5] 汪希奎, 苏一凡, 程真, 等. 基于多孔黏结层的超疏水复合涂层制备及其耐磨性研究[J]. 表面技术, 2023, 52(11): 63-71.WANG Xikui, SU Yifan, CHENG Zhen, et al. Fabrication and wear resistance of robust superhydrophobic composite coating based on porous adhesive layer[J]. Surface Technology, 2023, 52(11): 63-71(in Chinese). [6] ZHANG B, ZENG Y, WANG J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency[J]. Materials & Design, 2020, 188: 108479. [7] SHI T, WANG H, JIA Q, et al. Preparation of a transparent coating with superamphiphobic and antifouling properties[J]. Materials Chemistry and Physics, 2023, 293: 126888. doi: 10.1016/j.matchemphys.2022.126888 [8] MEENA N M D, GIARDINO M, JANNER D. Tunable pulsewidth nanosecond laser texturing: From environment friendly superhydrophobic to superamphiphobic surfaces[J]. Applied Surface Science, 2023, 610: 155356. doi: 10.1016/j.apsusc.2022.155356 [9] 梁雷, 王彦玲, 张杉. 超双疏含氟聚合物的研究进展[J]. 化工进展, 2020, 39(3): 1070-1079.LIANG Lei, WANG Yanling, ZHANG Shan. Research progress of super-amphiphobic fluoropolymers[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1070-1079(in Chinese). [10] REN G, QIAO Z, TUO Y, et al. Graded fillers method fabricating superamphiphobic coatings with high thermal conductivity, wear resistance and durable corrosion resistance[J]. Progress in Organic Coatings, 2024, 189: 108268. doi: 10.1016/j.porgcoat.2024.108268 [11] WANG C, AN D, YANG T, et al. Self-cleaning and amphiphobic properties of octadecyltrichlorosilane self-assembled modified polytetrafluoroethylene films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133132. doi: 10.1016/j.colsurfa.2023.133132 [12] LIU W, GUAN F, ZHANG F, et al. Fabrication of bio-inspired superamphiphobic aluminum alloy surface with oil-triggered wenzel-slippery transition via femtosecond laser[J]. Journal of Bionic Engineering, 2024, 21(3): 1375-1387. [13] XIONG D, LIU G, HONG L, et al. Superamphiphobic diblock copolymer coatings[J]. Chemistry of Materials, 2011, 23(19): 4357-4366. doi: 10.1021/cm201797e [14] LEE S Y, RAHMAWAN Y, YANG S. Transparent and superamphiphobic surfaces from mushroom-like micropillar arrays[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24197-24203. [15] TIAN X, JOKINEN V, LI J, et al. Unusual dual superlyophobic surfaces in oil-water systems: The design principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. doi: 10.1002/adma.201602714 [16] WU Y, ZENG J, SI Y, et al. Large-area preparation of robust and transparent superomniphobic polymer films[J]. ACS Nano, 2018, 12(10): 10338-10346. doi: 10.1021/acsnano.8b05600 [17] LI Y, HE Y, LI J, et al. Design of robust superamphiphobic surfaces with enlarged area fractions: The considerable role of Laplace pressure in dynamics of contact lines[J]. Physical Chemistry Chemical Physics, 2022, 24(16): 9308-9315. doi: 10.1039/D2CP00606E [18] DONG Z, LEVKIN P A. 3D microprinting of super-repellent microstructures: Recent developments, challenges, and opportunities[J]. Advanced Functional Materials, 2023, 33(39): 2213916. [19] YU F, WANG D, YANG J, et al. Durable super-repellent surfaces: From solid-liquid interaction to applications[J]. Accounts of Materials Research, 2021, 2(10): 920-932. doi: 10.1021/accountsmr.1c00147 [20] CHEN D, GAO F, LIU T, et al. Fabrication of anti-fouling thin-film composite reverse osmosis membrane via constructing heterogeneous wettability surface[J]. Journal of Applied Polymer Science, 2021, 138(42): 51256. doi: 10.1002/app.51256 [21] XIA B, LIU H, FAN Y, et al. Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and sol-gel methods [J]. Advanced Engineering Materials, 2017, 19(2): 1600572. doi: 10.1002/adem.201600572 [22] EMELYANENKO A M, BOINOVICH L B, BEZDOMNIKOV A A, et al. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24210-24219. [23] WANG Z, LIU X, JI J, et al. Underwater drag reduction and buoyancy enhancement on biomimetic antiabrasive superhydrophobic coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48270-48280. [24] ZHANG B, XU W, ZHU Q, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corrosion Science, 2019, 158: 108083. doi: 10.1016/j.corsci.2019.06.031 [25] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157. doi: 10.1016/j.cis.2017.09.003 [26] PENG J, YUAN S, GENG H, et al. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion[J]. Chemical Engineering Journal, 2022, 428: 131162. doi: 10.1016/j.cej.2021.131162 [27] YANG S, WU C, ZHAO G, et al. Condensation frosting and passive anti-frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474. doi: 10.1016/j.xcrp.2021.100474 [28] CHU Z, SEEGER S. Superamphiphobic surfaces[J]. Chemical Society Reviews, 2014, 43(8): 2784-2798. doi: 10.1039/C3CS60415B [29] KANGO S, SINGH S, SHARMA N, et al. Recent advances in the mechanical durability of superamphiphobic surfaces: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 208-210: 1994-1996. [30] HUANG C, GUO Z. Fabrications and applications of slippery liquid-infused porous surfaces inspired from nature: A review[J]. Journal of Bionic Engineering, 2019, 16(5): 769-793. doi: 10.1007/s42235-019-0096-2 [31] YAN X, JIN Y, CHEN X, et al. Nature-inspired surface topography: Design and function[J]. Science China Physics, Mechanics & Astronomy, 2019, 63(2): 224601. [32] JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. doi: 10.1007/s11998-017-0011-x [33] LI Q, GUO Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581. doi: 10.1039/C8TA03259A [34] SEMPREBON C, MCHALE G, KUSUMAATMAJA H. Apparent contact angle and contact angle hysteresis on liquid infused surfaces[J]. Soft Matter, 2017, 13(1): 101-110. doi: 10.1039/C6SM00920D [35] PAN S, GUO R, BJÖRNMALM M, et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials, 2018, 17(11): 1040-1047. doi: 10.1038/s41563-018-0178-2 [36] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005 [37] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 8: 988-994. [38] CASSIE A B S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546 [39] MILJKOVIC N, ENRIGHT R, WANG E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J]. ACS Nano, 2012, 6(2): 1776-1785. doi: 10.1021/nn205052a [40] WANG L, TIAN Z, JIANG G, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13(1): 378. [41] ZHANG X, GAN L, SUN B, et al. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications[J]. Science China Technological Sciences, 2022, 65: 1975-1994. [42] JIANG Y, LIAN J, JIANG Z, et al. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces[J]. Advances in Colloid and Interface Science, 2020, 278: 102136. doi: 10.1016/j.cis.2020.102136 [43] ZHANG K, LI Z, MAXEY M, et al. Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition[J]. Langmuir, 2019, 35(6): 2431-2442. doi: 10.1021/acs.langmuir.8b03664 [44] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Advances in Colloid and Interface Science, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009 [45] BOTTIGLIONE F, CARBONE G. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity[J]. Langmuir, 2013, 29(2): 599-609. doi: 10.1021/la304072p [46] MARMUR A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?[J]. Langmuir, 2003, 19(20): 8343-8348. doi: 10.1021/la0344682 [47] FURMIDGE C G L . Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid and Interface Science, 1962, 4: 309-324. [48] BHUSHAN B. Bioinspired structured surfaces[J]. Langmuir, 2012, 28(3): 1698-1714. doi: 10.1021/la2043729 [49] NGUYEN S H, WEBB H K, MAHON P J, et al. Natural insect and plant micro-/nanostructsured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties[J]. Molecules, 2014, 19(9): 13614-13630. doi: 10.3390/molecules190913614 [50] SU Y, JI B, ZHANG K, et al. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces[J]. Langmuir, 2010, 26(7): 4984-4989. doi: 10.1021/la9036452 [51] CHEN L, GUO Z, LIU W. Outmatching superhydrophobicity: Bio-inspired re-entrant curvature for mighty superamphiphobicity in air[J]. Journal of Materials Chemistry A, 2017, 5(28): 14480-14507. doi: 10.1039/C7TA03248J [52] FANG R, LIU M, LIU H, et al. Bioinspired interfacial materials: From binary cooperative complementary interfaces to superwettability systems[J]. Advanced Materials Interfaces, 2018, 5(3): 1701176. doi: 10.1002/admi.201701176 [53] WONG T, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. doi: 10.1038/nature10447 [54] KOUHPOUR A, GOUDARZI S, ESLAMI R, et al. Micro-nano-engineered slippery liquid-infused porous surface coating with highly sustainable superhydrophobicity and omniphobicity[J]. Progress in Organic Coatings, 2024, 187: 108182. doi: 10.1016/j.porgcoat.2023.108182 [55] LIU H, WANG Y, HUANG J, et al. Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(19): 1707415. doi: 10.1002/adfm.201707415 [56] ZHANG D, WU G, LI H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion[J]. Chemical Engineering Journal, 2021, 406: 126753. doi: 10.1016/j.cej.2020.126753 [57] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. doi: 10.1126/science.1148326 [58] HEGNER K I, WONG W S Y, VOLLMER D. Ultrafast bubble bursting by superamphiphobic coatings[J]. Advanced Materials, 2021, 33(39): 2101855. doi: 10.1002/adma.202101855 [59] LI F, DU M, ZHENG Q. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2): 2910-2921. doi: 10.1021/acsnano.6b00036 [60] ZHOU X, LIU J, LIU W, et al. Fabrication of stretchable superamphiphobic surfaces with deformation-induced rearrangeable structures[J]. Advanced Materials, 2022, 34(10): 2107901. doi: 10.1002/adma.202107901 [61] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403. doi: 10.1016/j.cej.2020.125403 [62] LI X, LI H, HUANG K, et al. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method[J]. Applied Surface Science, 2018, 436: 283-292. doi: 10.1016/j.apsusc.2017.11.241 [63] ZHAO X, DUAN Y. Improve the mechanical durability of superhydrophobic/superamphiphobic coating through multiple cross-linked mesh structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128560. doi: 10.1016/j.colsurfa.2022.128560 [64] FU Y, SOLDERA M, WANG W, et al. Wettability control of polymeric microstructures replicated from laser-patterned stamps[J]. Scientific Reports, 2020, 10(1): 22428. doi: 10.1038/s41598-020-79936-1 [65] KANG S M, CHOI J S. Selective liquid sliding surfaces with springtail-inspired concave mushroom-like micropillar arrays[J]. Small, 2020, 16(3): 1904612. doi: 10.1002/smll.201904612 [66] DAS R, AHMAD Z, NAURUZBAYEVA J, et al. Biomimetic coating-free superomniphobicity[J]. Scientific Reports, 2020, 10(1): 7934. [67] MAMMEN L, BLEY K, PAPADOPOULOS P, et al. Functional superhydrophobic surfaces made of Janus micropillars[J]. Soft Matter, 2015, 11(3): 506-515. doi: 10.1039/C4SM02216E [68] CHOI H, CHOO S, SHIN J, et al. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24354-24359. doi: 10.1021/jp4070399 [69] SUN J, ZHU P, YAN X, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 31403. doi: 10.1063/5.0056377 [70] YUN G, JUNG W, OH M S, et al. Springtail-inspired superomniphobic surface with extreme pressure resistance[J]. Science Advances, 2018, 4(8): eaat4978. doi: 10.1126/sciadv.aat4978 [71] HU S, CAO X, REDDYHOFF T, et al. Liquid repellency enhancement through flexible microstructures[J]. Science Advances, 2020, 6(32): eaba9721. doi: 10.1126/sciadv.aba9721 [72] LIU X, GU H, WANG M, et al. 3D printing of bioinspired liquid superrepellent structures[J]. Advanced Materials, 2018, 30(22): 1800103. doi: 10.1002/adma.201800103 [73] TUOMINEN M, TEISALA H, HAAPANEN J, et al. Superamphiphobic overhang structured coating on a biobased material[J]. Applied Surface Science, 2016, 389: 135-143. doi: 10.1016/j.apsusc.2016.05.095 [74] LIU Y, LU J, XUE W, et al. A strategy for fabricating multi-level micro-nano superamphiphobic surfaces by laser-electrochemistry subtractive-additive hybrid manufacturing method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 130946. doi: 10.1016/j.colsurfa.2023.130946 [75] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8 [76] NEPAL D, KANG S, ADSTEDT K M, et al. Hierarchically structured bioinspired nanocomposites[J]. Nature Materials, 2023, 22(1): 18-35. doi: 10.1038/s41563-022-01384-1 [77] CHEN J, LONG M, PENG S, et al. Superamphiphobic aluminum surfaces that maintain robust stability after undergoing severe chemical and physical damage[J]. New Journal of Chemistry, 2017, 41(3): 1334-1345. doi: 10.1039/C6NJ03696A [78] ZHAO D, PAN M, YUAN J, et al. A waterborne coating for robust superamphiphobic surfaces[J]. Progress in Organic Coatings, 2020, 138: 105368. doi: 10.1016/j.porgcoat.2019.105368 [79] WANG L, WANG F, HUANG B, et al. Recent advances in superhydrophobic composites based on clay minerals[J]. Applied Clay Science, 2020, 198: 105793. doi: 10.1016/j.clay.2020.105793 [80] SAJI V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2021, 9(3): 748-778. doi: 10.1016/j.jma.2021.01.005 [81] RIESS J G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery[J]. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 2005, 33(1): 47-63. doi: 10.1081/BIO-200046659 [82] BAO M, TIE L, LI J. Smart superamphiphobic surface manipulating wetting behaviors of oil droplet in water[J]. Tribology International, 2023, 179: 108189. doi: 10.1016/j.triboint.2022.108189 [83] TEISALA H, GEYER F, HAAPANEN J, et al. Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure[J]. Advanced Materials, 2018, 30(14): 1706529. doi: 10.1002/adma.201706529 [84] LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5(1): 5714. doi: 10.1038/ncomms6714 [85] YE R, CHYAN Y, ZHANG J, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37): 1702211. doi: 10.1002/adma.201702211 [86] CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539 [87] KULYK B, PEREIRA S O, FERNANDES A J S, et al. Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine[J]. Carbon, 2022, 197: 253-263. doi: 10.1016/j.carbon.2022.06.013 [88] CARVALHO A F, FERNANDES A J S, MARTINS R, et al. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis[J]. Advanced Materials Technologies, 2020, 5(12): 2000630. doi: 10.1002/admt.202000630 [89] ZHANG Q, XU P, PANG C, et al. A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating[J]. New Journal of Chemistry, 2022, 46(40): 19188-19197. doi: 10.1039/D2NJ03988E [90] SUN K, YANG H, XUE W, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel[J]. Applied Surface Science, 2018, 436: 263-267. doi: 10.1016/j.apsusc.2017.12.012 [91] YUAN G, LIU Y, XIE F, et al. Fabrication of superhydrophobic gully-structured surfaces by femtosecond laser and imprinting for high-efficiency self-cleaning rain collection[J]. Langmuir, 2022, 38(8): 2720-2728. doi: 10.1021/acs.langmuir.1c03488 [92] YANG Y, ZHANG Y, HU Y, et al. Femtosecond laser regulated ultrafast growth of mushroom-like architecture for oil repellency and manipulation[J]. Nano Letters, 2021, 21(21): 9301-9309. doi: 10.1021/acs.nanolett.1c03506 [93] WANG T, ZHU H, ZHANG Z, et al. Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J]. Surfaces and Interfaces, 2021, 24: 101112. doi: 10.1016/j.surfin.2021.101112 [94] 赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379.ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379(in Chinese). [95] CHECCO A, RAHMAN A, BLACK C T. Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly[J]. Advanced Materials, 2014, 26(6): 886-891. doi: 10.1002/adma.201304006 [96] SHAMSI A, AMIRI A, HEYDARI P, et al. Low cost method for hot embossing of microstructures on PMMA by SU-8 masters[J]. Microsystem Technologies, 2014, 20(10): 1925-1931. [97] TAN X, SHI T, LIN J, et al. One-step mask-based diffraction lithography for the fabrication of 3D suspended structures[J]. Nanoscale Research Letters, 2018, 13(1): 394. doi: 10.1186/s11671-018-2817-6 [98] ABU JARAD N, IMRAN H, IMANI S M, et al. Fabrication of superamphiphobic surfaces via spray coating: A review[J]. Advanced Materials Technologies, 2022, 7(10): 2101702. doi: 10.1002/admt.202101702 [99] PENG J, ZHAO X, WANG W, et al. Durable self-cleaning surfaces with superhydrophobic and highly oleophobic properties[J]. Langmuir, 2019, 35(25): 8404-8412. [100] DAS A, SCHUTZIUS T M, BAYER I S, et al. Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films[J]. Carbon, 2012, 50(3): 1346-1354. doi: 10.1016/j.carbon.2011.11.006 [101] ZHU P, ZHU L, GE F, et al. Robust and transparent superamphiphobic coating prepared via layer-by-layer spraying[J]. Surface and Coatings Technology, 2021, 426: 127793. doi: 10.1016/j.surfcoat.2021.127793 [102] LI J, XU L, YUAN X, et al. Preparation of robust and self-healing superamphiphobic cotton fabrics based on modified silica aerogel particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129634. doi: 10.1016/j.colsurfa.2022.129634 [103] LIU L, PAN Y, BHUSHAN B, et al. Core-shell magnetic nanoparticles for substrate-independent super-amphiphobic surfaces and mechanochemically robust liquid marbles[J]. Chemical Engineering Journal, 2020, 391: 123523. doi: 10.1016/j.cej.2019.123523 [104] PENNA M O, SILVA A A, DO ROSÁRIO F F, et al. Organophilic nano-alumina for superhydrophobic epoxy coatings[J]. Materials Chemistry and Physics, 2020, 255: 123543. doi: 10.1016/j.matchemphys.2020.123543 [105] ZHANG J, LIU S, HUANG Y, et al. Durable fluorinated-SiO2/epoxy superhydrophobic coatings on polycarbonate with strong interfacial adhesion enhanced by solvent-induced crystallization[J]. Progress in Organic Coatings, 2021, 150: 106002. doi: 10.1016/j.porgcoat.2020.106002 [106] WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal, 2020, 387: 124066. doi: 10.1016/j.cej.2020.124066 [107] ZHANG J, WEI J, LI B, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847. doi: 10.1016/j.jcis.2021.03.005 [108] YANG Y, TU Y, GUI X, et al. Facile fabrication of wear-resistant, fluorine-free, strongly adhesive superhydrophobic coating based on modified SiO2/silicone nanocomposites[J]. Progress in Organic Coatings, 2023, 182: 107694. doi: 10.1016/j.porgcoat.2023.107694 [109] WEI J, LI B, TIAN N, et al. Scalable robust superamphiphobic coatings enabled by self-similar structure, protective micro-skeleton, and adhesive for practical anti-icing of high-voltage transmission tower[J]. Advanced Functional Materials, 2022, 32(43): 2206014. doi: 10.1002/adfm.202206014 [110] ZHOU H, WANG H, NIU H, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: A super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. doi: 10.1002/adma.201200184 [111] XIAO Z, XU D, ZHANG W, et al. Dip-coating of superhydrophobic surface on irregular substrates for dropwise condensation[J]. Journal of Bionic Engineering, 2021, 18(2): 387-397. doi: 10.1007/s42235-021-0024-0 [112] LIAO K, ZHU J. Fabrication of superamphiphobic surface on Cu substrate via a novel and facile dip coating method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128379. doi: 10.1016/j.colsurfa.2022.128379 [113] LI H, YU S, HAN X. Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 283: 1443-1454. doi: 10.1016/j.cej.2015.08.112 [114] HE H, DU J, WENG Z, et al. One-step electrodeposition to fabricate superhydrophobic surfaces on flexible conductive films: Optimization of metallic compounds[J]. Materials Today Communications, 2023, 35: 105492. doi: 10.1016/j.mtcomm.2023.105492 [115] KUANG Y, JIANG F, ZHU T, et al. One-step electrodeposition of superhydrophobic copper coating from ionic liquid[J]. Materials Letters, 2021, 303: 130579. doi: 10.1016/j.matlet.2021.130579 [116] LIU Q, KANG Z. One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Materials Letters, 2014, 137: 210-213. doi: 10.1016/j.matlet.2014.09.010 [117] ZHAO Z E, SUN S H, HU Y M, et al. Robust superamphiphobic aluminum surfaces: Fabrication and investigation[J]. Journal of Coatings Technology and Research, 2019, 16(6): 1707-1714. doi: 10.1007/s11998-018-0143-7 [118] ZHANG W, JOHNSON L, SILVA S R P, et al. The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes[J]. Applied Surface Science, 2012, 258(20): 8209-8213. doi: 10.1016/j.apsusc.2012.05.023 [119] ZHANG L, UZOMA P C, XIAOYANG C, et al. Bio-inspired hierarchical micro/nanostructured surfaces for superhydrophobic and anti-ice applications[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 872268. [120] WECLAWSKI B T, HORROCKS A R, EBDON J R, et al. Combined atmospheric pressure plasma and UV surface functionalisation and diagnostics of nylon 6.6 fabrics[J]. Applied Surface Science, 2021, 562: 150090. doi: 10.1016/j.apsusc.2021.150090 [121] MONTARSOLO A, VARESANO A, MOSSOTTI R, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect[J]. Journal of Applied Polymer Science, 2012, 126(4): 1385-1393. doi: 10.1002/app.36762 [122] OH K W, KIM S H, KIM E A. Improved surface characteristics and the conductivity of polyaniline–nylon 6 fabrics by plasma treatment[J]. Journal of Applied Polymer Science, 2001, 81(3): 684-694. doi: 10.1002/app.1485 [123] ZHOU Y, LIU Y, DU F. Rational fabrication of fluorine-free, superhydrophobic, durable surface by one-step spray method[J]. Progress in Organic Coatings, 2023, 174: 107227. doi: 10.1016/j.porgcoat.2022.107227 [124] LINSHA V, MAHESH K V, ANAS S, et al. Synthesis of organotrimethoxy silane modified alumino-siloxane hybrid gels: Physico-chemical properties evaluation and design of superhydrophobic smart powders and coatings[J]. Materials Chemistry and Physics, 2022, 278: 125587. doi: 10.1016/j.matchemphys.2021.125587 [125] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. doi: 10.1016/j.jcis.2018.08.060 [126] ASLAN ÇAKIR M, YETIM T, YETIM A, et al. Superamphiphobic TiO2 film by sol-gel dip coating method on commercial pure titanium[J]. Journal of Materials Engineering and Performance, 2024, 33(3): 1472-1484. [127] WEI J, LI B, JING L, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating[J]. Chemical Engineering Journal, 2020, 390: 124562. doi: 10.1016/j.cej.2020.124562 [128] LIU X, HE H, ZHANG T C, et al. Superhydrophobic and self-healing dual-function coatings based on mercaptabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys[J]. Chemical Engineering Journal, 2021, 404: 127106. doi: 10.1016/j.cej.2020.127106 [129] ZHANG B, YAN J, LI X, et al. Self-cleaning and corrosion-resistant superamphiphobic coating with super-repellency towards low-surface-tension liquids[J]. Journal of Materials Research and Technology, 2023, 23: 1094-1104. doi: 10.1016/j.jmrt.2023.01.078 [130] NAWAZ T, ALI A, AHMAD S, et al. Enhancing anticorrosion resistance of aluminum alloys using femtosecond laser-based surface structuring and coating[J]. Nanomaterials, 2023, 13(4): 644. [131] LIU X, CHEN J, SHAO Q, et al. Robust, flame-retardant and colorful superamphiphobic aramid fabrics for extreme conditions[J]. Science China Technological Sciences, 2021, 64(8): 1765-1774. doi: 10.1007/s11431-020-1781-y [132] JIAO X, LI M, YU X, et al. Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency[J]. Chemical Engineering Journal, 2021, 420: 127606. doi: 10.1016/j.cej.2020.127606 [133] LASFAR S, HAIDARA F, MAYOUF C, et al. Study of the influence of dust deposits on photovoltaic solar panels: Case of nouakchott[J]. Energy for Sustainable Development, 2021, 63: 7-15. doi: 10.1016/j.esd.2021.05.002 [134] ZHANG H, HUANG J, FAN D. Switchable radiative cooling from temperature-responsive thermal resistance modulation[J]. ACS Applied Energy Materials, 2022, 5(5): 6003-6010. doi: 10.1021/acsaem.2c00421 [135] LIU L, ZHANG H, CAI Y, et al. Super-amphiphobic coatings with sub-ambient daytime radiative cooling—Part 2: Cooling effect under real conditions[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111736. doi: 10.1016/j.solmat.2022.111736 [136] 王威, 余新泉, 张友法. 仿蝉翼超疏水疏油玻璃防指纹特性研究[J]. 表面技术, 2021, 50(10): 40-47.WANG Wei, YU Xinquan, ZHANG Youfa. Study on anti-fingerprint properties of biomimetic cicada-wing superhydro(oleo)phobic glass[J]. Surface Technology, 2021, 50(10): 40-47(in Chinese). [137] WANG P, ZHANG L, HU Z, et al. Transparent and anti-fingerprint coating prepared with chitin nanofibers and surface modification via vapor deposition[J]. Progress in Organic Coatings, 2022, 172: 107126. doi: 10.1016/j.porgcoat.2022.107126 [138] LIANG W, ZHU L, XU C, et al. Ecologically friendly conversion coatings with special wetting behaviors for wax prevention[J]. RSC Advances, 2016, 6(31): 26045-26054. doi: 10.1039/C6RA00611F [139] CHANSOMWONG K, KIM Y H, LEE H, et al. Facile preparation of wear-resistant and anti-fingerprint hard coating with chemisorption of fluorosilane by simple wet coating[J]. Journal of Sol-Gel Science and Technology, 2020, 95(2): 447-455. doi: 10.1007/s10971-020-05294-z [140] CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections[J]. Nanomaterials (Basel), 2021, 11(4): 1046. [141] ZHANG J, YANG J, LI Q, et al. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiOx particles and their anti-biofilm mechanism[J]. Biomaterials Science, 2021, 9(22): 7504-7521. doi: 10.1039/D1BM01285A [142] LI M, YANG T, YANG Q, et al. Slippery quartz surfaces for anti-fouling optical windows[J]. Droplet, 2023, 2(1): e41. doi: 10.1002/dro2.41 [143] DOTTO M E R, MARTINS R N, FERREIRA M, et al. Influence of hydrogenated amorphous carbon coatings on the formation of paraffin deposits[J]. Surface and Coatings Technology, 2006, 200(22): 6479-6483. [144] YANG F, ZHU H, LI C, et al. Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108723. doi: 10.1016/j.petrol.2021.108723 [145] LIU Z, LI Y, WANG W, et al. Wax and wax-hydrate deposition characteristics in single-, two-, and three-phase pipelines: A review[J]. Energy & Fuels, 2020, 34(11): 13350-13368. [146] HUANG Z, LU Y, HOFFMANN R, et al. The effect of operating temperatures on wax deposition[J]. Energy & Fuels, 2011, 25(11): 5180-5188. [147] SOUSA A M, MATOS H A, GUERREIRO L. Wax deposition mechanisms and the effect of emulsions and carbon dioxide injection on wax deposition: Critical review[J]. Petroleum, 2020, 6(3): 215-225. doi: 10.1016/j.petlm.2019.09.004 [148] WANG Z, ZHU L, LI W, et al. Bioinspired in situ growth of conversion films with underwater superoleophobicity and excellent self-cleaning performance[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10904-10911. [149] LIANG W, ZHU L, LI W, et al. Bioinspired composite coating with extreme underwater superoleophobicity and good stability for wax prevention in the petroleum industry[J]. Langmuir, 2015, 31(40): 11058-11066. doi: 10.1021/acs.langmuir.5b03234 [150] WU Y, ZHAO M, GUO Z. Multifunctional superamphiphobic SiO2 coating for crude oil transportation[J]. Chemical Engineering Journal, 2018, 334: 1584-1593. doi: 10.1016/j.cej.2017.11.080 [151] GENG H, PENG J, YUAN S, et al. Bioinspired hybrid nanostructures for wax inhibition coatings with superhydrophilicity[J]. ACS Applied Nano Materials, 2021, 4(6): 6178-6188. [152] SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. doi: 10.1016/j.pmatsci.2019.03.004 [153] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese). [154] SHI X, VENEZIANO D, XIE N, et al. Use of chloride-based ice control products for sustainable winter maintenance: A balanced perspective[J]. Cold Regions Science and Technology, 2013, 86: 104-112. doi: 10.1016/j.coldregions.2012.11.001 [155] PENG C, YU J, ZHAO Z, et al. Synthesis and properties of a clean and sustainable deicing additive for asphalt mixture[J]. PLOS ONE, 2015, 10(1): e0115721. doi: 10.1371/journal.pone.0115721 [156] ZHENG W, TENG L, LAI Y, et al. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J]. Chemical Engineering Journal, 2022, 427: 130922. doi: 10.1016/j.cej.2021.130922 [157] TOURKINE P, LE MERRER M, QUÉRÉ D. Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25: 7214-7216. [158] 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775.WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing properties of superhydrophobic surfaces of micro-nano structures [1]. Acta Materiae Compositae Sinica, 2020, 37(11): 2769-2775(in Chinese). [159] WEI J, LIANG W, ZHANG J. Preparation of mechanically stable superamphiphobic coatings via combining phase separation of adhesive and fluorinated SiO2 for anti-Icing[J]. Nanomaterials, 2023, 13(12): 1872. [160] EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9): 4874-4881. doi: 10.1039/C3NR06644D [161] FLETCHER N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 2004, 29(3): 572-576. [162] BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings[J]. ACS Nano, 2019, 13(4): 4335-4346. doi: 10.1021/acsnano.8b09549 [163] WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. doi: 10.1016/j.jcis.2021.01.054 [164] LI W, ZHAN Y, YU S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. doi: 10.1016/j.porgcoat.2020.106117 [165] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066. doi: 10.1021/la104762g