石墨相氮化碳基材料的缺陷调控策略及其光催化性能研究进展

Progress in defect modulation of g-C3N4 based materials and its photocatalytic property

  • 摘要: 半导体光催化材料已成为有效应对环境污染和能源危机关键技术的核心要素。其中,石墨相氮化碳(g-C3N4)作为一种新兴的高效催化材料展现出了巨大的应用潜力。然而,未改性的g-C3N4存在诸如可见光响应范围有限、活性位点偏少及光生载流子复合速率高等缺点,严重制约了其实际应用。为了解决上述问题,研究人员采取了多种策略,如设计和开发异质结构、实施缺陷工程和进行形貌调控等。其中,缺陷调控因能有效地调制光催化材料的电子能带结构、延缓载流子的复合和增加表面活性位点等原因备受关注。本文阐述了缺陷修饰的类型、缺陷调控策略,最后对g-C3N4基材料的开发和光催化应用进行了总结并给出了展望。

     

    Abstract: Semiconductor photocatalytic materials have become a key factor of photocatalytic technologies to solve environmental pollution and energy crisis. Among them, graphitic phase carbon nitride (g-C3N4) has shown great potential for application as an emerging highly efficient catalytic material. However, the unmodified g-C3N4 has disadvantages such as limited visible light response range, less reactive sites and high photogenerated carrier complexation rate, which severely limit its practical applications. Thus, researchers have adopted various strategies, such as designing and developing heterogeneous structures, defect engineering and morphological modulation to solve the problems mentioned above. Among them, defect modulation has attracted much attention because it can effectively modulate the electronic band structure of photocatalytic materials, delay carrier recombination and increase the surface reactive sites. This paper describes the types of defect modulations, defect modulation strategies, and finally summarizes the development and application of g-C3N4 based photocatalytic materials and gives an outlook.

     

/

返回文章
返回