留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不锈钢衬底CIGS太阳电池中Mo(N,O)薄膜的阻挡特性

朱义国 韩胜男 王浩 常萱 陈静伟

朱义国, 韩胜男, 王浩, 等. 基于不锈钢衬底CIGS太阳电池中Mo(N,O)薄膜的阻挡特性[J]. 复合材料学报, 2024, 41(10): 5434-5442. doi: 10.13801/j.cnki.fhclxb.20240312.002
引用本文: 朱义国, 韩胜男, 王浩, 等. 基于不锈钢衬底CIGS太阳电池中Mo(N,O)薄膜的阻挡特性[J]. 复合材料学报, 2024, 41(10): 5434-5442. doi: 10.13801/j.cnki.fhclxb.20240312.002
ZHU Yiguo, HAN Shengnan, WANG Hao, et al. Barrier performance of Mo(N,O) thin films in CIGS solar cells based on stainless steel substrates[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5434-5442. doi: 10.13801/j.cnki.fhclxb.20240312.002
Citation: ZHU Yiguo, HAN Shengnan, WANG Hao, et al. Barrier performance of Mo(N,O) thin films in CIGS solar cells based on stainless steel substrates[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5434-5442. doi: 10.13801/j.cnki.fhclxb.20240312.002

基于不锈钢衬底CIGS太阳电池中Mo(N,O)薄膜的阻挡特性

doi: 10.13801/j.cnki.fhclxb.20240312.002
基金项目: 河北省重点研发计划项目(20314305D)
详细信息
    通讯作者:

    陈静伟,博士,副教授,硕士生导师,研究方向为硅基太阳电池和铜铟镓硒太阳电池 E-mail: chenjingwei@hbu.edu.cn

  • 中图分类号: TB332

Barrier performance of Mo(N,O) thin films in CIGS solar cells based on stainless steel substrates

Funds: Key R&D Program of Hebei Province of China (20314305D)
  • 摘要: 不锈钢衬底铜铟镓硒(CIGS)太阳电池因其优异的光电转换效率和可弯曲特性而被广泛应用。但在制备CIGS薄膜过程中,衬底中的Fe元素会向CIGS薄膜扩散,导致电池性能下降。因此,需要在不锈钢衬底与Mo薄膜之间插入阻挡层来抑制Fe元素的扩散。采用反应磁控溅射方法制备了不同O2流量条件下的Mo(N,O)薄膜,通过XRD、SEM及XPS研究了O2流量对Mo(N,O)薄膜的晶体结构、微观形貌及元素组分的影响,二次离子质谱(SIMS)测试表明插入Mo(N,O)薄膜后,CIGS薄膜中Fe元素的相对强度由无阻挡层时的30 counts降至2 counts。通过优化选用O2流量0.25 mL/min制备Mo(N,O)阻挡层,并制备了CIGS太阳电池,电流密度-电压(J-V)特性测试表明插入Mo(N,O)阻挡层后,电池效率由11.07%提高到14.34%。

     

  • 图  1  铜铟镓硒(CIGS)太阳电池结构示意图

    Figure  1.  Schematic diagram of structure of CIGS solar cell

    SS—Stainless steel; CIGS—Copper indium gallium selenium

    图  2  不同O2流量条件下Mo(N,O)薄膜的SEM图像:表面形貌:(a) 0 mL/min;(b) 0.15 mL/min;(c) 0.20 mL/min;(d) 0.25 mL/min;截面形貌:(e) 0 mL/min;(f) 0.15 mL/min;(g) 0.20 mL/min;(h) 0.25 mL/min

    Figure  2.  SEM images of Mo(N,O) thin films at different O2 flow rates: Surface: (a) 0 mL/min; (b) 0.15 mL/min; (c) 0.20 mL/min; (d) 0.25 mL/min; Section: (e) 0 mL/min; (f) 0.15 mL/min; (g) 0.20 mL/min; (h) 0.25 mL/min

    图  3  不同O2流量条件下Mo(N,O)薄膜的XRD图谱

    Figure  3.  XRD patterns of Mo(N,O) films at different O2 flow rates

    图  4  不同O2流量条件下Mo(N,O)薄膜的XPS图谱:(a)全谱;(b) Mo3d;(c) N1s;(d) O1s

    Figure  4.  XPS spectra of Mo(N,O) films at different O2 flow rates: (a) Full spectrum; (b) Mo3d; (c) N1s; (d) O1s

    图  5  不同O2流量下制备的Mo(N,O)薄膜的CIGS太阳电池特性参数:(a)开路电压Voc;(b)短路电流密度Jsc;(c)填充因子(FF);(d)光电转换效率(PCE)

    Figure  5.  Parameters of CIGS thin-film solar cells with Mo(N,O) thin films deposited at different O2 flow rates: (a) Open circuit voltage Voc; (b) Short circuit current density Jsc; (c) Fill factor (FF); (d) Photoelectric conversion efficiency (PCE)

    图  6  有无阻挡层时CIGS薄膜的XRD图谱

    Figure  6.  XRD patterns of CIGS thin films with and without barrier layer

    W—With barrier layer; W/O—Without barrier layer

    图  7  有无阻挡层所制备的Mo薄膜和CIGS薄膜的SEM图像:(a) SS/Mo表面形貌;(b) SS/Mo/CIGS表面形貌;(c) SS/Mo/CIGS截面形貌;(d) SS/Mo(N,O)/Mo表面形貌;(e) SS/Mo(N,O)Mo/CIGS表面形貌;(f ) SS/Mo(N,O)Mo/CIGS截面形貌

    Figure  7.  SEM images of Mo thin film and CIGS thin film prepared with and without barrier layer: (a) SS/Mo surface image; (b) SS/Mo/CIGS surface image; (c) SS/Mo/CIGS section image; (d) SS/Mo(N,O)/Mo surface image; (e) SS/Mo(N,O)Mo/CIGS surface image; (f) SS/Mo(N,O)Mo/CIGS section image

    图  8  有无阻挡层下CIGS薄膜的二次离子质谱(SIMS)深度剖析曲线:(a)无阻挡层;(b)有阻挡层

    Figure  8.  Secondary ion mass spectroscopy (SIMS) depth profiles in the CIGS thin film with and without barrier layer: (a) Without barrier layer; (b) With barrier layer

    图  9  Mo(N,O)阻挡层对CIGS太阳电池的影响:(a) 电流密度-电压(J-V)曲线;(b) 外量子效率(EQE)曲线

    Figure  9.  Influence of the Mo(N,O) barrier layer on the CIGS solar cells: (a) J-V curves; (b) External quantum efficiency (EQE) curves

    图  10  有无阻挡层的CIGS薄膜太阳电池变温J-V曲线

    Figure  10.  Variable temperature J-V curves of CIGS thin film solar cells with and without barrier layer

    表  1  Mo(N,O)薄膜制备工艺参数

    Table  1.   Process parameters of Mo(N,O) thin film

    Ar:N2:O2/
    (mL·min−1)
    Sputtering
    pressure/Pa
    Sputtering
    power/W
    Substrate
    temperature/
    Thickness/
    nm
    30:20:0 1 150 100 300
    30:20:0.15
    30:20:0.20
    30:20:0.25
    1
    1
    1
    150
    150
    150
    100
    100
    100
    300
    300
    300
    下载: 导出CSV

    表  2  不同O2流量下制备Mo(N,O)薄膜的CIGS太阳电池特性参数

    Table  2.   Parameters of CIGS solar cells with Mo(N,O) thin films deposited at different O2 flow rates

    O2 flow rate/
    (mL·min−1)
    Voc/mV Jsc/(mA·cm-2) FF/% PCE/%
    0.15 509.1±10.6 27.7±1.2 68.6±1.7 9.7±0.5
    0.20
    0.25
    528.0±6.9
    554.0±3.7
    30.1±0.9
    29.9±0.6
    63.3±3.1
    72.8±0.9
    10.1±0.5
    12.1±0.4
    下载: 导出CSV

    表  3  有无阻挡层CIGS太阳电池特性参数

    Table  3.   Characteristic parameters of CIGS solar cells with or without barrier layer

    R/(Ω·cm2) G/(mS·cm−2) A J0/(mA·cm−2)
    W/O
    W
    1.70
    1.27
    3.07
    1.29
    1.74
    1.51
    2.16×10−4
    7.59×10−5
    Notes: R—Series resistance; G—Reciprocal of the shunt resistance; A—Diode ideality factor; J0—Reverse saturation current.
    下载: 导出CSV
  • [1] BARMAN B, KALITA P. Influence of back surface field layer on enhancing the efficiency of CIGS solar cell[J]. Solar Energy, 2021, 216: 329-337. doi: 10.1016/j.solener.2021.01.032
    [2] FEURER T, REINHARD P, AVANCINI E, et al. Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(7): 645-667. doi: 10.1002/pip.2811
    [3] HU D, MA B, LI X, et al. Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials[J]. Journal of Cleaner Production, 2022, 350: 131426.
    [4] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. doi: 10.1109/JPHOTOV.2019.2937218
    [5] 赵彦民, 李威, 闫礼, 等. 卷对卷技术制备大面积柔性CIGS薄膜太阳电池吸收层[J]. 人工晶体学报, 2011, 40(2): 379-382.

    ZHAO Yanmin, LI Wei, YAN Li, et al. Deposition for scale-up absorption layer of CIGS thin-film solar cell on flexible substrate using roll-to-roll technology[J]. Journal of Synthetic Crystals, 2011, 40(2): 379-382(in Chinese).
    [6] CHIRILA A, BUECHELER S, PLANEZZI F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11): 857-861. doi: 10.1038/nmat3122
    [7] PIANEZZI F, CHIRILA A, BLOSCH P, et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(3): 253-259. doi: 10.1002/pip.1247
    [8] OTTE K, MAKHOVA L, BRAUN A, et al. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application[J]. Thin Solid Films, 2006, 511: 613-622.
    [9] BREMAUD D, RUDMANN D, KAELIN M, et al. Flexible Cu(In,Ga)Se2 on Al foils and the effects of Al during chemical bath deposition[J]. Thin Solid Films, 2007, 515(15): 5857-5861. doi: 10.1016/j.tsf.2006.12.152
    [10] JACKSON P, GRABITA P, STROHM A, et al. Contamination of Cu(In,Ga)Se2 by metallic substrates[C]//Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition. Munich: WIP Renewable Energies, 2004: 1936-1938.
    [11] HERZ K, EICKE A, KESSLER F, et al. Diffusion barriers for CIGS solar cells on metallic substrates[J]. Thin Solid Films, 2003, 431-432: 392-397.
    [12] WUERZ R, EICKE A, FRANKENFELD M, et al. CIGS thin-film solar cells on steel substrates[J]. Thin Solid Films, 2009, 571(7): 2415-2418.
    [13] SHI C Y, SUN Y, HE Q, et al. Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers[J]. Solar Energy Materials and Solar Cells, 2009, 93(5): 654-656. doi: 10.1016/j.solmat.2008.12.004
    [14] PARK H, KIM S C, BAE H C, et al. ALD-grown Al2O3 as a diffusion barrier for stainless steel substrates for flexible Cu(In,Ga)Se2 solar cells[J]. Molecular Crystals and Liquid Crystals, 2011, 551(1): 147-153. doi: 10.1080/15421406.2011.600634
    [15] KIM K B, KIM M, BAEK J, et al. Influence of Cr thin films on the properties of flexible CIGS solar cells on steel substrates[J]. Electronic Materials Letters, 2014, 10: 247-251. doi: 10.1007/s13391-013-3158-3
    [16] HERZ K, KESSLER F, WACHTER R, et al. Dielectric barriers for flexible CIGS solar modules[J]. Thin Solid Films, 2002, 403: 384-389.
    [17] 陈海波, 周继承, 李幼真. Ta基纳米薄膜扩散阻挡特性的比较研究[J]. 功能材料, 2007, 4(38): 655-658. doi: 10.3321/j.issn:1001-9731.2007.04.043

    CHEN Haibo, ZHOU Jicheng, LI Youzhen. Comparison of diffusion barrier properties of nanoscale Ta-based thin- films[J]. Journal of Functional Materials, 2007, 4(38): 655-658(in Chinese). doi: 10.3321/j.issn:1001-9731.2007.04.043
    [18] 韩胜男, 常宣, 陈静伟, 等. MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用[J]. 太阳能学报, 2023, 44(7): 122-128.

    HAN Shengnan, CHANG Xuan, CHEN Jingwei, et al. Fabrication of MoNx thin films and its applications in flexible stainless steel CIGS solar cells[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 122-128(in Chinese).
    [19] XU C K, ZHANG H W, PARRY J, et al. A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 357-362. doi: 10.1016/j.solmat.2013.06.006
    [20] ULICNA S, ARNOU P, ABBAS A, et al. Deposition and application of a Mo-N back contact diffusion barrier yielding a 12.0% efficiency solution-processed CIGS solar cell using an amine-thiol solvent system[J]. Journal of Materials Chemistry A, 2019, 7(12): 7042-7052. doi: 10.1039/C8TA12089G
    [21] KIM G T, PARK T K, CHUNG H, et al. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds[J]. Applied Surface Science, 1999, 152(1-2): 35-43. doi: 10.1016/S0169-4332(99)00293-7
    [22] LI B Y, ZHANG Y, WANG H, et al. Preferred orientation of Cu(In,Ga)Se2 thin film deposited on stainless steel substrate[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 838-848. doi: 10.1002/pip.2164
    [23] 陈永翀, 黎振华, 其鲁, 等. 固体中的扩散应力研究[J]. 金属学报, 2006, 42(3): 225-233.

    CHEN Yongchong, LI Zhenhua, QI Lu, et al. Diffusion-induced stresses in solids[J]. Acta Metallurgica Sinica, 2006, 42(3): 225-233(in Chinese).
    [24] OKADA K. Activation energy of mullitization from various starting materials[J]. Journal of the European Ceramic Society, 2008, 28(2): 377-382.
    [25] WANG C, ZHUANG D M, ZHAO M, et al. The effects of preheating temperature on CuInGaSe2/CdS interface and the device performance[J]. Solar Energy, 2019, 194: 11-17. doi: 10.1016/j.solener.2019.10.054
    [26] WEI Y W, ZHUANG D M, ZHAO M, et al. Pre-deposition of CdS layer to improve the diode quality of CZTSSe solar cells[J]. Materials Letters, 2018, 229: 372-374. doi: 10.1016/j.matlet.2018.07.066
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  28
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2024-02-18
  • 录用日期:  2024-02-22
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回