Barrier performance of Mo(N,O) thin films in CIGS solar cells based on stainless steel substrates
-
摘要: 不锈钢衬底铜铟镓硒(CIGS)太阳电池因其优异的光电转换效率和可弯曲特性而被广泛应用。但在制备CIGS薄膜过程中,衬底中的Fe元素会向CIGS薄膜扩散,导致电池性能下降。因此,需要在不锈钢衬底与Mo薄膜之间插入阻挡层来抑制Fe元素的扩散。采用反应磁控溅射方法制备了不同O2流量条件下的Mo(N,O)薄膜,通过XRD、SEM及XPS研究了O2流量对Mo(N,O)薄膜的晶体结构、微观形貌及元素组分的影响,二次离子质谱(SIMS)测试表明插入Mo(N,O)薄膜后,CIGS薄膜中Fe元素的相对强度由无阻挡层时的30 counts降至2 counts。通过优化选用O2流量0.25 mL/min制备Mo(N,O)阻挡层,并制备了CIGS太阳电池,电流密度-电压(J-V)特性测试表明插入Mo(N,O)阻挡层后,电池效率由11.07%提高到14.34%。Abstract: Copper indium gallium selenium (CIGS) solar cells on stainless steel substrate are widely used in the photovoltaics community due to their excellent photoelectric conversion efficiency and flexibility. However, the Fe element will diffuse into the CIGS thin film from the stainless-steel substrate during the process of the preparation of the CIGS thin films, which resulting deteriorated the performance of the devices. Therefore, it is necessary to insert a barrier layer between the stainless steel substrate and the Mo thin film to inhibit the diffusion of the Fe element. Mo(N,O) thin films were produced using reactive magnetron sputtering with varying O2 flow rates. The influence of the O2 flow rate on the crystal structure, microscopic morphology, and elemental composition of the Mo(N,O) thin films was analyzed using an XRD, SEM, and XPS. Base on secondary ion mass spectroscopy (SIMS) testing results, the addition of Mo(N,O) thin film to the fabrication process of CIGS solar cells results in a reduction of Fe element's relative intensity in the CIGS thin film from 30 counts to 2 counts. Moreover, current density-voltage (I-V) characteristic test demonstrated an increase in the photovoltaic conversion efficiency for the flexible CIGS solar cell on a stainless steel substrate, from 11.07% to 14.34%, upon the addition of the Mo(N,O) thin film.
-
Key words:
- solar cells /
- barrier layer /
- Fe /
- Mo(N,O) thin film /
- O2 /
- CIGS /
- SIMS
-
图 2 不同O2流量条件下Mo(N,O)薄膜的SEM图像:表面形貌:(a) 0 mL/min;(b) 0.15 mL/min;(c) 0.20 mL/min;(d) 0.25 mL/min;截面形貌:(e) 0 mL/min;(f) 0.15 mL/min;(g) 0.20 mL/min;(h) 0.25 mL/min
Figure 2. SEM images of Mo(N,O) thin films at different O2 flow rates: Surface: (a) 0 mL/min; (b) 0.15 mL/min; (c) 0.20 mL/min; (d) 0.25 mL/min; Section: (e) 0 mL/min; (f) 0.15 mL/min; (g) 0.20 mL/min; (h) 0.25 mL/min
图 5 不同O2流量下制备的Mo(N,O)薄膜的CIGS太阳电池特性参数:(a)开路电压Voc;(b)短路电流密度Jsc;(c)填充因子(FF);(d)光电转换效率(PCE)
Figure 5. Parameters of CIGS thin-film solar cells with Mo(N,O) thin films deposited at different O2 flow rates: (a) Open circuit voltage Voc; (b) Short circuit current density Jsc; (c) Fill factor (FF); (d) Photoelectric conversion efficiency (PCE)
图 7 有无阻挡层所制备的Mo薄膜和CIGS薄膜的SEM图像:(a) SS/Mo表面形貌;(b) SS/Mo/CIGS表面形貌;(c) SS/Mo/CIGS截面形貌;(d) SS/Mo(N,O)/Mo表面形貌;(e) SS/Mo(N,O)Mo/CIGS表面形貌;(f ) SS/Mo(N,O)Mo/CIGS截面形貌
Figure 7. SEM images of Mo thin film and CIGS thin film prepared with and without barrier layer: (a) SS/Mo surface image; (b) SS/Mo/CIGS surface image; (c) SS/Mo/CIGS section image; (d) SS/Mo(N,O)/Mo surface image; (e) SS/Mo(N,O)Mo/CIGS surface image; (f) SS/Mo(N,O)Mo/CIGS section image
表 1 Mo(N,O)薄膜制备工艺参数
Table 1. Process parameters of Mo(N,O) thin film
Ar:N2:O2/
(mL·min−1)Sputtering
pressure/PaSputtering
power/WSubstrate
temperature/
℃Thickness/
nm30:20:0 1 150 100 300 30:20:0.15
30:20:0.20
30:20:0.251
1
1150
150
150100
100
100300
300
300表 2 不同O2流量下制备Mo(N,O)薄膜的CIGS太阳电池特性参数
Table 2. Parameters of CIGS solar cells with Mo(N,O) thin films deposited at different O2 flow rates
O2 flow rate/
(mL·min−1)Voc/mV Jsc/(mA·cm-2) FF/% PCE/% 0.15 509.1±10.6 27.7±1.2 68.6±1.7 9.7±0.5 0.20
0.25528.0±6.9
554.0±3.730.1±0.9
29.9±0.663.3±3.1
72.8±0.910.1±0.5
12.1±0.4表 3 有无阻挡层CIGS太阳电池特性参数
Table 3. Characteristic parameters of CIGS solar cells with or without barrier layer
R/(Ω·cm2) G/(mS·cm−2) A J0/(mA·cm−2) W/O
W1.70
1.273.07
1.291.74
1.512.16×10−4
7.59×10−5Notes: R—Series resistance; G—Reciprocal of the shunt resistance; A—Diode ideality factor; J0—Reverse saturation current. -
[1] BARMAN B, KALITA P. Influence of back surface field layer on enhancing the efficiency of CIGS solar cell[J]. Solar Energy, 2021, 216: 329-337. doi: 10.1016/j.solener.2021.01.032 [2] FEURER T, REINHARD P, AVANCINI E, et al. Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(7): 645-667. doi: 10.1002/pip.2811 [3] HU D, MA B, LI X, et al. Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials[J]. Journal of Cleaner Production, 2022, 350: 131426. [4] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. doi: 10.1109/JPHOTOV.2019.2937218 [5] 赵彦民, 李威, 闫礼, 等. 卷对卷技术制备大面积柔性CIGS薄膜太阳电池吸收层[J]. 人工晶体学报, 2011, 40(2): 379-382.ZHAO Yanmin, LI Wei, YAN Li, et al. Deposition for scale-up absorption layer of CIGS thin-film solar cell on flexible substrate using roll-to-roll technology[J]. Journal of Synthetic Crystals, 2011, 40(2): 379-382(in Chinese). [6] CHIRILA A, BUECHELER S, PLANEZZI F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11): 857-861. doi: 10.1038/nmat3122 [7] PIANEZZI F, CHIRILA A, BLOSCH P, et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(3): 253-259. doi: 10.1002/pip.1247 [8] OTTE K, MAKHOVA L, BRAUN A, et al. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application[J]. Thin Solid Films, 2006, 511: 613-622. [9] BREMAUD D, RUDMANN D, KAELIN M, et al. Flexible Cu(In,Ga)Se2 on Al foils and the effects of Al during chemical bath deposition[J]. Thin Solid Films, 2007, 515(15): 5857-5861. doi: 10.1016/j.tsf.2006.12.152 [10] JACKSON P, GRABITA P, STROHM A, et al. Contamination of Cu(In,Ga)Se2 by metallic substrates[C]//Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition. Munich: WIP Renewable Energies, 2004: 1936-1938. [11] HERZ K, EICKE A, KESSLER F, et al. Diffusion barriers for CIGS solar cells on metallic substrates[J]. Thin Solid Films, 2003, 431-432: 392-397. [12] WUERZ R, EICKE A, FRANKENFELD M, et al. CIGS thin-film solar cells on steel substrates[J]. Thin Solid Films, 2009, 571(7): 2415-2418. [13] SHI C Y, SUN Y, HE Q, et al. Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers[J]. Solar Energy Materials and Solar Cells, 2009, 93(5): 654-656. doi: 10.1016/j.solmat.2008.12.004 [14] PARK H, KIM S C, BAE H C, et al. ALD-grown Al2O3 as a diffusion barrier for stainless steel substrates for flexible Cu(In,Ga)Se2 solar cells[J]. Molecular Crystals and Liquid Crystals, 2011, 551(1): 147-153. doi: 10.1080/15421406.2011.600634 [15] KIM K B, KIM M, BAEK J, et al. Influence of Cr thin films on the properties of flexible CIGS solar cells on steel substrates[J]. Electronic Materials Letters, 2014, 10: 247-251. doi: 10.1007/s13391-013-3158-3 [16] HERZ K, KESSLER F, WACHTER R, et al. Dielectric barriers for flexible CIGS solar modules[J]. Thin Solid Films, 2002, 403: 384-389. [17] 陈海波, 周继承, 李幼真. Ta基纳米薄膜扩散阻挡特性的比较研究[J]. 功能材料, 2007, 4(38): 655-658. doi: 10.3321/j.issn:1001-9731.2007.04.043CHEN Haibo, ZHOU Jicheng, LI Youzhen. Comparison of diffusion barrier properties of nanoscale Ta-based thin- films[J]. Journal of Functional Materials, 2007, 4(38): 655-658(in Chinese). doi: 10.3321/j.issn:1001-9731.2007.04.043 [18] 韩胜男, 常宣, 陈静伟, 等. MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用[J]. 太阳能学报, 2023, 44(7): 122-128.HAN Shengnan, CHANG Xuan, CHEN Jingwei, et al. Fabrication of MoNx thin films and its applications in flexible stainless steel CIGS solar cells[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 122-128(in Chinese). [19] XU C K, ZHANG H W, PARRY J, et al. A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 357-362. doi: 10.1016/j.solmat.2013.06.006 [20] ULICNA S, ARNOU P, ABBAS A, et al. Deposition and application of a Mo-N back contact diffusion barrier yielding a 12.0% efficiency solution-processed CIGS solar cell using an amine-thiol solvent system[J]. Journal of Materials Chemistry A, 2019, 7(12): 7042-7052. doi: 10.1039/C8TA12089G [21] KIM G T, PARK T K, CHUNG H, et al. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds[J]. Applied Surface Science, 1999, 152(1-2): 35-43. doi: 10.1016/S0169-4332(99)00293-7 [22] LI B Y, ZHANG Y, WANG H, et al. Preferred orientation of Cu(In,Ga)Se2 thin film deposited on stainless steel substrate[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 838-848. doi: 10.1002/pip.2164 [23] 陈永翀, 黎振华, 其鲁, 等. 固体中的扩散应力研究[J]. 金属学报, 2006, 42(3): 225-233.CHEN Yongchong, LI Zhenhua, QI Lu, et al. Diffusion-induced stresses in solids[J]. Acta Metallurgica Sinica, 2006, 42(3): 225-233(in Chinese). [24] OKADA K. Activation energy of mullitization from various starting materials[J]. Journal of the European Ceramic Society, 2008, 28(2): 377-382. [25] WANG C, ZHUANG D M, ZHAO M, et al. The effects of preheating temperature on CuInGaSe2/CdS interface and the device performance[J]. Solar Energy, 2019, 194: 11-17. doi: 10.1016/j.solener.2019.10.054 [26] WEI Y W, ZHUANG D M, ZHAO M, et al. Pre-deposition of CdS layer to improve the diode quality of CZTSSe solar cells[J]. Materials Letters, 2018, 229: 372-374. doi: 10.1016/j.matlet.2018.07.066