基于Co-MOFs改性商业条形电极的葡萄糖传感器

夏海艳, 李佳楠, 徐江红, 张饶, 全昌云, 李苏原

夏海艳, 李佳楠, 徐江红, 等. 基于Co-MOFs改性商业条形电极的葡萄糖传感器[J]. 复合材料学报, 2024, 41(12): 6580-6588. DOI: 10.13801/j.cnki.fhclxb.20240307.001
引用本文: 夏海艳, 李佳楠, 徐江红, 等. 基于Co-MOFs改性商业条形电极的葡萄糖传感器[J]. 复合材料学报, 2024, 41(12): 6580-6588. DOI: 10.13801/j.cnki.fhclxb.20240307.001
XIA Haiyan, LI Jianan, XU Jianghong, et al. Glucose sensor based on Co-MOFs-modified commercial strip electrodes[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6580-6588. DOI: 10.13801/j.cnki.fhclxb.20240307.001
Citation: XIA Haiyan, LI Jianan, XU Jianghong, et al. Glucose sensor based on Co-MOFs-modified commercial strip electrodes[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6580-6588. DOI: 10.13801/j.cnki.fhclxb.20240307.001

基于Co-MOFs改性商业条形电极的葡萄糖传感器

基金项目: 河西学院博士启动基金(KYQD2022006);湛江市科技计划(2023B01001)
详细信息
    通讯作者:

    徐江红,硕士,实验师,研究方向为纳米功能材料及器件 E-mail: xujianghonghong@126.com

    李苏原,博士,副教授,研究方向为储能器件、电化学传感器 E-mail: lisuyuan86@163.com

  • 中图分类号: TB333;TS207.3;O614.121

Glucose sensor based on Co-MOFs-modified commercial strip electrodes

Funds: Scientific Research Start-up Fund of Hexi University (KYQD2022006); Zhanjiang Science and Technology Project (2023B01001)
  • 摘要:

    第三代葡萄糖传感器中氧化酶存在容易受温度、湿度、酸碱度等影响的缺点。因此,开发低成本、高灵敏度的葡萄糖催化剂具有广阔的应用前景。金属-有机框架(Metal-origanic frameworks,MOFs)因具有传质速度快、孔隙率可调和电子转移能力强等优点而受到广泛的关注。丝网印刷技术是一种低成本、批量化制备商业电极工艺。本文采用一种简单、经济的方法室温下成功地合成了Co-MOFs,采用丝网印刷技术将Co-MOFs涂敷在商业化条形银-碳电极上。作为生物传感器的催化剂,Co-MOFs纳米材料对葡萄糖表现出较高的电催化活性。测试结果表明,Co-MOFs基条形电极对葡萄糖检测的灵敏度为1393 nA·L/(mmol·cm2),检测极限为0.58 μmol/L (S/N=3),线性范围为0.1~0.5 mmol/L。该工作对葡萄糖传感器中批量构筑多功能电极的设计具有一定的指导意义。

     

    Abstract:

    The oxidase catalyst in the third-generation glucose sensors can be easily affected by temperature, humidity, and pH. As a result, developing some catalysts with low cost and high sensitivity has a broad application prospect. Metal-organic frameworks (MOFs) have attracted much attention because of their high mass transfer rate, adjustable porosity and strong electron transfer ability. The screen-printing technique has been used to fabricate commercial electrodes due to its low cost and batch preparation. Here, Co-MOFs were successfully synthesized by a simple and economical method at room temperature and coated on commercial strip silver-carbon electrode by screen-printing technique. As a biosensor catalyst, Co-MOFs nanomaterials exhibit high electrocatalytic activity for glucose. The results showed that the sensitivity of Co-MOFs-based strip electrode for glucose detection was 1393 nA·L/(mmol·cm2). The detection limit was 0.58 μmol/L (S/N=3) and the linear range was 0.1-0.5 mmol/L. This work has certain guiding significance for the design of multi-function electrode in glucose sensor.

     

  • 糖尿病是一种严重威胁人类健康的慢性病。全球糖尿病患者人数从1980年的1.08亿增加到2023年的5.37亿。葡萄糖传感器在糖尿病的诊断和治疗中起着重要作用[1-3]。糖尿病患者要定期检测生理血糖水平,并将血糖水平维持在正常浓度范围内。而且,准确评价食品中的葡萄糖含量对维持糖尿病患者血液中葡萄糖的生理水平至关重要[4-5]。食品和饮料中葡萄糖含量的信息对生产者和消费者都有参考价值。葡萄糖检测在葡萄酒酿造工艺和乳制品工业的发酵过程中是至关重要的[4-5]。迄今为止,检测葡萄糖的方法很多。在各种分析方法中,电化学葡萄糖传感器具有灵敏度高、选择性好、操作简单、成本低等优点,并能实现自我监控和床边血糖检测[5-8]。基于酶的电化学葡萄糖传感器已经商业化并取得了巨大的成功。由于自然酶容易受到环境(温度、湿度、酸碱度等)影响,非酶葡萄糖传感器受到广泛关注[1-3, 8]

    金属-有机框架(Metal-origanic frameworks,MOFs)材料是一类新兴的多孔材料,存在电化学传感器应用潜力[9-12]。它们具有金属活性位点丰富、表面积大、结构多样、孔径可调和功能可调等优点。Li等[13]开发了Co-MOF纳米片阵列构建葡萄糖检测平台,其灵敏度为10886 μA·L/(mmol·cm2),检测极限为1.3 nmol/L。Khan等[14]以MOF-199为前驱体合成 CuO/C复合材料,催化葡萄糖的氧化反应。Cu-MOFs修饰电极在0.06至5 mmol/L的线性范围内,对葡萄糖氧化显示出相对较好的电催化活性,其灵敏度为89 mA·L/(mmol·cm2),检测限为10.5 nmol/L。在另一份报告中,球形Ni-MOFs 颗粒在单独使用时表现出较差的电化学葡萄糖传感性能[15]。然而,当它们与碳纳米管的杂交后,对葡萄糖检测的灵敏度为13.85 mA·L/(mmol·cm2),检测极限为0.82 mmol/L,线性范围为1至1.6 mmol/L。此外,Zha等[16]开发了基于NiCo-MOF/C复合材料的无创血糖检测平台,其高灵敏度和检测极限分别为2701.29 μA·L/(mmol·cm2)和0.09 μmol/L。MOFs衍生复合材料在电化学葡糖糖传感器领域得到一定程度的应用。

    另一方面,随着实时传感设备和护理点设备的发展需要,经济的、可靠的、规模化的电极制备方法受到广泛关注[17]。作为一种商业化电极制备方法,丝网印刷技术具有设备简单、图案设计灵活、操作简单、经济等特点[17]。该技术在生物传感器领域,尤其指尖血糖检测中取得商业成功。Li等[18]实验组通过丝网印刷技术开发了一种具有优化三电极配置的多功能电化学平台,检测葡萄糖浓度。Ji等[19]实验组基于智能手机的循环伏安系统,采用石墨烯修饰的丝网印刷电极检测葡萄糖浓度。因此,本文在室温条件合成Co基MOFs(Co-ZIF-67),采用丝网印刷技术,制备了Co-ZIF-67修饰的商业银-碳电极,研究其对葡萄糖的传感性能。

    六水硝酸钴(Co(NO3)2·6H2O,99.5%) 、聚乙烯醇(PVA,92%~94%)、聚乙烯吡咯烷酮(PVP,K23-27)、甲醇(CH2OH,99.5%)、3-(N-吗啉)丙磺酸钠(MOPs-Na,C7H14NO4SNa,99.5%)、羟乙基纤维素(HEC)、丙烯酰胺(C3H5NO,99.0%)、抗坏血酸(C6H6O8,99.0%)、半乳糖(C6H12O6,99.0%)、羧甲基纤维素((C6+2yH7+x+2yO2+x+3yNay)n)、柠檬酸(C6H8O7,99.5%)、葡萄糖(C6H12O6,96%)和葡聚糖(DEAE-Dextran,70 kDa)购自上海阿拉丁生化科技股份有限公司。过硫酸铵(H8N2O8S2,98.5%)购自上海麦克林生化科技有限公司。

    采用X-射线衍射仪(Smartlab9kw,Rigaku)对样品的物相和晶体结构进行表征。通过X射线光电子能谱(ESCALAB 250Xi,赛默飞)对样品的元素和表面信息进行分析。采用扫描电子显微镜扫描电镜(SEM,SU8100,日立)和透射电子显微镜(TEM,JEM2100,JEOL)对样品进行形貌表征。通过电化学工作站(CH650E,上海辰华仪器有限公司)评估修饰电极对葡萄糖的电化学传感性能。本研究配制了不同浓度葡萄糖(0.1~0.5 mmol/L)的0.1 mol/L氢氧化钠溶液。

    Co-ZIF-67纳米材料在室温条件下制备而成。合成过程中,12 mmol/L的Co(NO3)2·6H2O完全溶解于100 mL甲醇中,记为溶液 A;48 mmol/L的2-甲基咪唑溶解于1000 mL甲醇中,记为溶液 B。溶液B迅速地加入到溶液A中,形成混合液C。该混合液C磁力搅拌10 min后,在室温环境下静置24 h,形成沉淀物。采用甲醇清洗沉淀物,并在60℃干燥过夜,得到紫色Co-ZIF-67粉末。

    把20 mg Co-ZIF-67在1 mL的超纯水中超声30 min,得到溶液D。0.55 g MOPs 钠盐,0.075 g的羟乙基纤维素,1.75 g丙烯酰胺和0.05 g过硫酸铵分别溶解于25 mL的超纯水中,磁力搅拌2 h后形成混合浆料。将1 mL溶液D与9 mL浆料磁性搅拌1 h后,形成 Co-ZIF-67丝网印刷油墨。

    将Co-ZIF-67油墨均匀的丝网印刷在商业银-碳电极的工作区域,经烘干(45℃,15 min)、贴亲水膜、裁剪,制备了便携式一次性条形葡萄糖检测电极。该电极包括一个工作电极,一个对电极。工作电极的表面积为3.78 mm×0.252 mm=0.9526 mm2。每个电极所分析的溶液量为10 μL。亲水膜的作用是形成流道,吸附检测样品。Co-MOF修饰电极的制备过程见图1

    图  1  Co-ZIF-67修饰电极的制备过程
    Figure  1.  Preparation of Co-ZIF-67 modified electrodes
    MOFs—Metal-origanic frameworks

    采用XRD技术研究了Co-ZIF-67的晶体结构。从图2(a)可以看出,在2θ=10.4°、12.7°、14.7°、16.4°、18.0°、22.1°、24.4°、26.5°、29.8°、30.5°和32.5°时,分别对应于ZIF-67的(002)、(112)、(022)、(013)、(222)、(114)、(233)、(134)、(044)、(244)、(235)晶面,这与已报道的ZIF-67样品的XRD结果一致[20-22]。采用X射线光电子能谱(XPS)对Co-ZIF-67的表面信息进行了分析。从图2(b)可以看出,样品包含Co2p、O1s、N1s、C1s、Co3s和Co3p核能级区域。Co2p和 C1s的XPS精细谱分别如图2(c)图2(d)所示。Co2p精细谱含有两个主峰,其中780.1 eV峰来自Co2p3/2;795.3 eV峰来自Co2p1/2。激振峰分别位于785.5和801.7 eV。除了主峰,C1s精细谱还有两个拟合峰。结合能位于286.2和288.1 eV,分别归属于C—N和C—O。上述结果表明,Co-ZIF-67已经被成功制备。采用SEM和TEM研究了样品的形貌。如图3(a)~3(f)所示,Co-ZIF-67呈现多面形,且尺寸分布相对较窄。

    图  2  Co-ZIF-67的XRD图谱(a)、XPS全谱(b)、Co2p (c)和C1s (d)精细谱
    Figure  2.  XRD pattern (a), XPS spectra (b), Co2p (c) and C1s regions (d) of Co-ZIF-67
    图  3  Co-ZIF-67在不同放大倍数的SEM和TEM图像
    Figure  3.  SEM and TEM images of Co-ZIF-67 at different magnifications

    采用循环伏安(CV)技术评估了Co-ZIF-67修饰电极的电化学性能。图4(a)是Co-ZIF-67修饰电极在50 mV/s扫速时对0.3 mmol/L葡萄糖在不同pH值溶液中的响应信号。很明显,当pH=13时,Co-ZIF-67表现出对葡萄糖较大的催化活性。当葡萄糖浓度增加时,Co-ZIF-67修饰电极电流信号也随之增强(图4(b))。然而,信号的区分度不大。图4(c)是Co-ZIF-67修饰电极在不同扫速(10、30、50、70、90、110和130 mV/s)下对葡萄糖信号的变化。随着扫速增大,电流信号明显得到加强。将0.5 V电流强度与扫描速度的算术平方根进行拟合,其线性关系为:I (μA/cm2)=0.14v1/2–0.12 (R2=0.988,R2为决定系数)。这说明Co-ZIF-67修饰电极对应的电化学反应是受扩散控制的[23]

    图  4  Co-ZIF-67修饰电极在不同pH值(a)、葡萄糖浓度(b)、扫速(c)对葡萄糖的CV测试曲线;(d)扫描速率(v)的算数平方根与电流(I) (0.5 V)之间的线性关系
    Figure  4.  CV curves of Co-ZIF-67 modified electrodes with different pH (a), glucose concentrations (b), and scan rates (c); (d) Corresponding linear relationship between the arithmetic square root of the scanning rate (v) and current (I, 0.5 V)
    R2—The coefficient of determination, which determinates the linear relationship of the fit curve

    采用差分脉冲伏安法(Differential pulse voltammetry,DPV)进一步评估了Co-ZIF-67修饰电极的电化学性能。如图5(a)所示,在0~0.5 mmol/L 葡萄糖溶液中观测了Co-ZIF-67修饰电极表面的氧化和还原反应,其对葡萄糖可能的催化机制为:Co-ZIF-67修饰电极对葡萄糖表现出较CV更强的DPV响应信号,这也表明,Co-ZIF-67对葡萄糖确实存在电催化效果[24-27]。此外,溶液中没有葡萄糖时,Co-ZIF-67修饰电极在0.4~0.6 V有一个不明显的氧化还原峰。随着葡萄糖浓度的增加,该修饰电极的响应信号也随之增强,氧化还原峰变得更加明显,这主要是由于高电位下碱性溶液中Co-ZIF-67中Co2+被氧化为Co3+。此时,Co3+因从葡萄糖得电子(变为Co2+)并不断将葡萄糖氧化为葡萄糖酸从而产生电流信号[28-29]。因此,Co-ZIF-67修饰电极具有较好的电催化性能。如图5(b)所示,Co-ZIF-67修饰电极的电流平均值(0.55 V)与葡萄糖浓度呈线性关系,其线性方程为:I (μA/cm2)=−3.730×C(mmol/L) − 5.720 (R2=0.9639)。

    图  5  (a) Co-ZIF-67修饰电极在不同葡萄糖浓度中的差分脉冲伏安法(DPV)测试曲线;(b)每5支Co-ZIF-67修饰电极在0.55 V电位对不同浓度葡萄糖的平均电流响应信号;(c) Co-ZIF-67修饰电极对不同葡萄糖浓度的安培响应;(d)每5支电极对不同葡萄糖浓度的平均响应电流(取第15 s数值)
    Figure  5.  (a) Differential pulse voltammetry (DPV) curves of Co-ZIF-67 modified electrodes in the presence of glucose; (b) Linear relationship between average DPV current density response and different glucose concentrations of every five electrodes at 0.55 V; (c) Amperometric response of Co-ZIF-67 modified SPEs to different glucose concentration; (d) Corresponding linear curve of average current density of five electrodes in the 15th s to glucose concentrations

    采用安培响应技术在Co-ZIF-67修饰电极上对葡萄糖的传感性能做了进一步的评估。图5(c)显示随着电解质溶液中葡萄糖浓度的增加,响应电流随之增强。安培响应电流与葡萄糖浓度之间呈线性关系(图5(d)),其方程为:I (μA/cm2)=−1.390×C(mmol/L)−2.630 (R2=0.9504)。经过处理,Co-ZIF-67修饰电极对葡萄糖的检测灵敏度为1390 nA·L/(mmol·cm2),检测限为0.58 μmol/L (S/N=3),线性范围为0.1~0.5 mmol/L。值得一提的是,与已报道的电极相比,Co-ZIF-67修饰电极的灵敏度具有较大的优势,如表1所示[27, 29-34]

    表  1  Co-ZIF-67修饰电极及其他电极的葡萄糖传感性能
    Table  1.  Glucose sensing performance of Co-ZIF-67-modified electrodes and other previously reported electrodes
    Type of electrode Sensitivity/(μA·L·mmol−1·cm−2) Detection limit/(μmol·L−1) Linear range/(mmol·L−1) Ref.
    Ag NPs/MOF-74(Ni) 1290 4.7 0.01-4 [27]
    NF/NiCo2O4 NWs@Co3O4 NPs 8163.2 0.001-1.7 [29]
    CuCo-MOF 6861 0.12 [30]
    Ni2Co1-BDC/GCE 3925.3 0.29 0.0005-2.8995 [31]
    Ni/Co(HHTP)MOF/CC 3250 0.1 0.0003-2.312 [32]
    MIL-88A@NiFe-PB 1963.2 0.12 0.005-1 [33]
    Ni3(HHTP)2/CNT 4774 4.1 0.004-3.9 [34]
    Co-MOFs/SPEs 1.393 0.58 0.1-0.5 This work
    Notes: CC—Carbon cloth; BDC—1, 4-benzenedicarboxylic acid; GCE—Glassy carbon electrode; HHTP—2, 3, 6, 7, 10, 11-hexahydroxytriphenylene; MIL—Materials from Institute Lavoisier; PB—Prussian blue; CNT—Carbon nanotubes; NF—Nickel foam; NWs—Nanowires; NPs—Nanoparticles; SPEs—Screen-printing electrodes.
    下载: 导出CSV 
    | 显示表格

    图6(a)描述了Co-ZIF-67修饰电极抗干扰性能。从图上可以看出,干扰物质抗坏血酸(AA,3 mmol/L)、艾考糊精(INN,0.164 mol/L)、半乳糖(GAL,8 mmol/L)、谷胱甘肽(GSH,30 mmol/L)、麦芽糖(MAL,0.584 mol/L)引起的响应电流变化分别为−3.9%、−14.3%、−19.3%、−14.6%和−8.4%。与干扰物质相比,滴加0.1 mmol/L葡萄糖溶液时电流响应的显著变化表明。因此,Co-ZIF-67修饰电极具有较强的抗干扰能力。随后,通过长时间空气存放观察Co-ZIF-67修饰电极对0.1 mmol/L 葡萄糖的电流响应来评估的其稳定性。如图6(b)所示,Co-ZIF-67修饰电极表现出良好的稳定性。16天后,该电极仍然具有96%的初始响应。重现性是对电极的一个重要衡量标准。如图6(c)所示,Co-ZIF-67修饰电极的相对标准方差(Relative standard deviation,RSD)仅为10%,这说明该电极具有较好的重现性。

    图  6  (a)干扰检查:5支Co-ZIF-67修饰电极 对0.1 mmol/L 葡萄糖(GLU)、0.164 mol/L 艾考糊精(INN)、9 mmol/L 半乳糖(GAL)、30 mmol/L谷胱甘肽(GSH)和0.584 mol/L 麦芽糖(MAL) 的平均安培响应;(b)稳定性:每5支Co-ZIF-67修饰电极在第1 d、4 d、7 d、10 d、13 d和16 d内对0.1 mmol/L 葡萄糖的安培响应信号;(c)重现性:10支Co-ZIP-67修饰电极对0.1 mmol/L 葡萄糖的响应
    Figure  6.  (a) Interference examination: Average amperometric responses of five CuO nanomaterials modified SPEs to 0.1 mmol/L glucose (GLU), 0.164 mol/L alcodextrin (INN), 9 mmol/L galactose (GAL), 30 mmol/L glutathione (GSH) and 0.584 mol/L maltose (MAL); (b) Stability of every 5 Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose on the 1st, 4th, 7th, 10th, 13th and 16th days; (c) Reproducibility of Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose

    为了研究Co-ZIF-67修饰电极在实际样品中检测葡萄糖的性能,我们进行了加标回收实验(拜安进血糖仪(拜安进血糖试纸(葡萄糖脱氢酶),拜耳公司))。将血清稀释在NaOH溶液中,血清浓度为0.12 mmol/L。如表2所示,葡萄糖的回收率在93.97%~101.5%,RSD小于6.2%。这也表明Co-ZIF-67修饰电极具有潜在应用。

    表  2  Co-ZIF-67修饰的Ag-C电极检测血清样品的葡萄糖含量(n=3)
    Table  2.  Glucose detection in human serum samples using Co-ZIF-67 modified Ag-C electrodes (n=3)
    Sample Serum glucose/(mmol·L−1) Added glucose/(mmol·L−1) Detected glucose/(mmol·L−1) RSD/% Recovery rate/%
    Human
    serum
    0.12 0.18 0.29 6.20 93.97
    0.28 0.39 4.37 101.5
    0.36 0.47 3.90 98.97
    Note: RSD—Relative standard deviation.
    下载: 导出CSV 
    | 显示表格

    (1)基于室温合成的Co-ZIF-67,采用丝网印刷技术批量构建了Co-ZIF-67修饰的商业银-碳电极。

    (2) Co-ZIF-67修饰电极表现出优异的葡萄糖电催化性能:0.58 μmol/L的检测极限,1.393 μA·L/(mmol·cm2)的灵敏度,高的抗干扰性,96%的空气稳定性。

    (3)研究表明,Co-ZIF-67的低能耗合成及其Co-ZIF-67修饰电极的批量化制备为葡萄糖传感器的发展提供一个可参考的方向。

  • 图  1   Co-ZIF-67修饰电极的制备过程

    Figure  1.   Preparation of Co-ZIF-67 modified electrodes

    MOFs—Metal-origanic frameworks

    图  2   Co-ZIF-67的XRD图谱(a)、XPS全谱(b)、Co2p (c)和C1s (d)精细谱

    Figure  2.   XRD pattern (a), XPS spectra (b), Co2p (c) and C1s regions (d) of Co-ZIF-67

    图  3   Co-ZIF-67在不同放大倍数的SEM和TEM图像

    Figure  3.   SEM and TEM images of Co-ZIF-67 at different magnifications

    图  4   Co-ZIF-67修饰电极在不同pH值(a)、葡萄糖浓度(b)、扫速(c)对葡萄糖的CV测试曲线;(d)扫描速率(v)的算数平方根与电流(I) (0.5 V)之间的线性关系

    Figure  4.   CV curves of Co-ZIF-67 modified electrodes with different pH (a), glucose concentrations (b), and scan rates (c); (d) Corresponding linear relationship between the arithmetic square root of the scanning rate (v) and current (I, 0.5 V)

    R2—The coefficient of determination, which determinates the linear relationship of the fit curve

    图  5   (a) Co-ZIF-67修饰电极在不同葡萄糖浓度中的差分脉冲伏安法(DPV)测试曲线;(b)每5支Co-ZIF-67修饰电极在0.55 V电位对不同浓度葡萄糖的平均电流响应信号;(c) Co-ZIF-67修饰电极对不同葡萄糖浓度的安培响应;(d)每5支电极对不同葡萄糖浓度的平均响应电流(取第15 s数值)

    Figure  5.   (a) Differential pulse voltammetry (DPV) curves of Co-ZIF-67 modified electrodes in the presence of glucose; (b) Linear relationship between average DPV current density response and different glucose concentrations of every five electrodes at 0.55 V; (c) Amperometric response of Co-ZIF-67 modified SPEs to different glucose concentration; (d) Corresponding linear curve of average current density of five electrodes in the 15th s to glucose concentrations

    图  6   (a)干扰检查:5支Co-ZIF-67修饰电极 对0.1 mmol/L 葡萄糖(GLU)、0.164 mol/L 艾考糊精(INN)、9 mmol/L 半乳糖(GAL)、30 mmol/L谷胱甘肽(GSH)和0.584 mol/L 麦芽糖(MAL) 的平均安培响应;(b)稳定性:每5支Co-ZIF-67修饰电极在第1 d、4 d、7 d、10 d、13 d和16 d内对0.1 mmol/L 葡萄糖的安培响应信号;(c)重现性:10支Co-ZIP-67修饰电极对0.1 mmol/L 葡萄糖的响应

    Figure  6.   (a) Interference examination: Average amperometric responses of five CuO nanomaterials modified SPEs to 0.1 mmol/L glucose (GLU), 0.164 mol/L alcodextrin (INN), 9 mmol/L galactose (GAL), 30 mmol/L glutathione (GSH) and 0.584 mol/L maltose (MAL); (b) Stability of every 5 Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose on the 1st, 4th, 7th, 10th, 13th and 16th days; (c) Reproducibility of Co-ZIF-67 modified electrodes to 0.1 mmol/L glucose

    表  1   Co-ZIF-67修饰电极及其他电极的葡萄糖传感性能

    Table  1   Glucose sensing performance of Co-ZIF-67-modified electrodes and other previously reported electrodes

    Type of electrode Sensitivity/(μA·L·mmol−1·cm−2) Detection limit/(μmol·L−1) Linear range/(mmol·L−1) Ref.
    Ag NPs/MOF-74(Ni) 1290 4.7 0.01-4 [27]
    NF/NiCo2O4 NWs@Co3O4 NPs 8163.2 0.001-1.7 [29]
    CuCo-MOF 6861 0.12 [30]
    Ni2Co1-BDC/GCE 3925.3 0.29 0.0005-2.8995 [31]
    Ni/Co(HHTP)MOF/CC 3250 0.1 0.0003-2.312 [32]
    MIL-88A@NiFe-PB 1963.2 0.12 0.005-1 [33]
    Ni3(HHTP)2/CNT 4774 4.1 0.004-3.9 [34]
    Co-MOFs/SPEs 1.393 0.58 0.1-0.5 This work
    Notes: CC—Carbon cloth; BDC—1, 4-benzenedicarboxylic acid; GCE—Glassy carbon electrode; HHTP—2, 3, 6, 7, 10, 11-hexahydroxytriphenylene; MIL—Materials from Institute Lavoisier; PB—Prussian blue; CNT—Carbon nanotubes; NF—Nickel foam; NWs—Nanowires; NPs—Nanoparticles; SPEs—Screen-printing electrodes.
    下载: 导出CSV

    表  2   Co-ZIF-67修饰的Ag-C电极检测血清样品的葡萄糖含量(n=3)

    Table  2   Glucose detection in human serum samples using Co-ZIF-67 modified Ag-C electrodes (n=3)

    Sample Serum glucose/(mmol·L−1) Added glucose/(mmol·L−1) Detected glucose/(mmol·L−1) RSD/% Recovery rate/%
    Human
    serum
    0.12 0.18 0.29 6.20 93.97
    0.28 0.39 4.37 101.5
    0.36 0.47 3.90 98.97
    Note: RSD—Relative standard deviation.
    下载: 导出CSV
  • [1]

    JARNDA K V, WANG D, AIN Q, et al. Recent advances in electrochemical non-enzymatic glucose sensor for the detection of glucose in tears and saliva: A Review[J]. Sensors and Actuators A: Physical, 2023, 363: 114778. DOI: 10.1016/j.sna.2023.114778

    [2]

    DO H H, KIM S Y, LE Q V, Development of non-precious metal oxide-based electrodes for enzyme-free glucose detection: A review[J]. Microchemical Journal, 2023, 193: 109202.

    [3]

    HE C, ASIF M, LIU Q, et al. Noble metal construction for electrochemical nonenzymatic glucose detection[J]. Advanced Materials Technologies, 2023, 8: 2200272. DOI: 10.1002/admt.202200272

    [4]

    TANG X, YUAN X, JIN Y, et al. A novel hollow CuMn-PBA@NiCo-LDH nanobox for efficient detection of glucose in food[J]. Food Chemistry, 2024, 438: 137969. DOI: 10.1016/j.foodchem.2023.137969

    [5]

    DODEVSKA T, LAZAROVA Y, SHTEREV I. Amperometric biosensors for glucose and lactate with applications in food analysis: A brief review[J]. Acta Chimica Slovenica, 2019, 66: 762-776.

    [6]

    JIE X, YAN Z, LIU Q. Smartphone-based electrochemical systems for glucose monitoring in biofluids: A review[J]. Sensors, 2022, 22: 5670.

    [7]

    OLAYA A, COSTA E, ABEDUL M. Paper-based enzymatic electrochemical sensors for glucose determination[J]. Sensors, 2022, 22(16): 6232. DOI: 10.3390/s22166232

    [8]

    ALI M H, HARATBAR S M, ZARE Y, et al. A review on non-enzymatic electrochemical biosensors of glucose using carbon nanofiber nanocomposites[J]. Biosensors, 2022, 12(11): 1004. DOI: 10.3390/bios12111004

    [9]

    PERALES E R, HERNANDEZ P, ROMERO G A, et al. Trends on the development of non-enzymatic electrochemical sensors modified with metal-organic frameworks for the quantification of glucose[J]. Journal of the electrochemical Society, 2023, 170: 087507. DOI: 10.1149/1945-7111/aced6f

    [10]

    LI P, PENG Y, CAI J, et al. Recent advances in metal-organic frameworks (MOFs) and their composites for non-enzymatic electrochemical glucose sensors[J]. Bioengineering, 2023, 10(6): 733. DOI: 10.3390/bioengineering10060733

    [11]

    MUHAMMAD A, KANWAL A, RAHMAN M, et al. Glucose detection devices and methods based on metal-organic frameworks and related materials[J]. Advanced Functional Materials, 2021, 31: 2106023. DOI: 10.1002/adfm.202106023

    [12]

    HESSAMADDIN S, MALEKI F, KHAAKI P, et al. Electrochemical-based sensing platforms for detection of glucose and H2O2 by porous metal-organic frameworks: A review of status and prospects[J]. Biosensors, 2023, 13(3): 347. DOI: 10.3390/bios13030347

    [13]

    LI Y, XIE M, ZHANG X, et al. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection[J]. Sensors and Actuators B: Chemical, 2019, 278: 126-132. DOI: 10.1016/j.snb.2018.09.076

    [14]

    KHAN I A, BADSHAH A, NADEEM M A, et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors, glucose sensing applications[J]. International Journal of Hydrogen Energy, 2014, 39: 19609-19620. DOI: 10.1016/j.ijhydene.2014.09.106

    [15]

    XIAO X, ZHENG S S, LI X R, et al. Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum[J]. Journal of Materials Chemistry B, 2017, 5: 5234-5239. DOI: 10.1039/C7TB00180K

    [16]

    ZHA X, YANG W, SHI L, et al. Morphology control strategy of bimetallic MOF nanosheets for upgrading the sensitivity of noninvasive glucose detection[J]. ACS Applied Materials & Interfaces, 2022, 14: 37843-37852.

    [17]

    SURESH R R, LAKSHMANAKUMAR M, AROCKIA J, et al. Fabrication of screen-printed electrodes: Opportunities and challenges[J]. Journal of Materials Science, 2021, 56: 8951-9006. DOI: 10.1007/s10853-020-05499-1

    [18]

    LI X, ZHANG M, HU Y, et al. Developing a versatile electrochemical platform with optimized electrode configuration through screen-printing technology toward glucose detection[J]. Biomed Microdevices, 2020, 22: 74. DOI: 10.1007/s10544-020-00527-y

    [19]

    JI D, LIU L, LI S, et al. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection[J]. Biosensors and Bioelectronics, 2017, 98: 449-456. DOI: 10.1016/j.bios.2017.07.027

    [20]

    FENG X, CARREON M A. Kinetics of transformation on ZIF-67 crystals[J]. Journal of Crystal Growth, 2015, 418: 158-162.

    [21]

    GROSS A F, SHERMAN E, VAJO J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks[J]. Dalton Transactions, 2012, 41: 5458-5460.

    [22]

    JAFARINASAB M, AKBARI A, OMIDKHAH M, et al. An efficient Co-based metal-organic framework nanocrystal (Co-ZIF-67) for adsorptive desulfurization of dibenzothiophene: Impact of the preparation approach on structure tuning[J]. Energy & Fuels, 2020, 34: 12779-12791.

    [23]

    TIAN Y, DENG P, WU Y, et al. A simple and efficient molecularly imprinted electrochemical sensor for the selective determination of tryptophan[J]. Biomolecules, 2019, 9(7): 294. DOI: 10.3390/biom9070294

    [24]

    WU Y, DENG P, TIAN Y, et al. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode[J]. Bioelectrochemistry, 2020, 131: 107393. DOI: 10.1016/j.bioelechem.2019.107393

    [25]

    WU Y, LI G, TIAN Y, et al. Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth[J]. Journal of Electroanalytical Chemistry, 2021, 895: 115494. DOI: 10.1016/j.jelechem.2021.115494

    [26]

    WEI Y, WU Y, FENG J, et al. An ultrasensitive ponceau 4R detection sensor based on molecularly imprinted electrode using pod-like cerium molybdate and multi-walled carbon nanotubes hybrids[J]. Journal of Food Composition and Analysis, 2022, 114: 104849. DOI: 10.1016/j.jfca.2022.104849

    [27]

    PENG X, WAN Y, WANG Y, et al. Flower-like Ni(II)-based metal-organic framework-decorated Ag nanoparticles: Fabrication, characterization and electrochemical detection of glucose[J]. Electroanalysis, 2019, 31: 2179. DOI: 10.1002/elan.201900259

    [28]

    LI S, XIA H, LIU Y, et al. Room-temperature and gram-scale constructed Cu@CuO with promoted kinetics for glucose electrooxidation in the Faraday process[J]. Science China Materials, 2023, 66(11): 4396-4402. DOI: 10.1007/s40843-023-2588-4

    [29]

    LU J, CHENG C, CAO Y, et al. MOFs-derived core-shell structured NiCo2O4NWs@Co3O4NPs for non-enzymatic glucose detection[J]. Ceramics International, 2023, 49: 23958-23966. DOI: 10.1016/j.ceramint.2023.04.245

    [30]

    LIU Q, CHEN J, YU F, et al. Multifunctional book-like CuCo-MOF for highly sensitive glucose detection and electrocatalytic oxygen evolution[J]. New Journal of Chemistry, 2021, 45: 16714-16721. DOI: 10.1039/D1NJ02931B

    [31]

    QI W, JIA Q, HU P, et al. Tunable non-enzymatic glucose electrochemical sensing based on the Ni/Co bimetallic MOFs[J]. Molecules, 2023, 289(15): 5649.

    [32]

    XU Z, WANG Q, HUI Z, et al. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage[J]. Food Chemistry, 2021, 349: 129202. DOI: 10.1016/j.foodchem.2021.129202

    [33]

    QIN W, HE L, ZHANG Y, et al. Synchronous wrapping and inward-etching strategy on constructing yolk-shell MIL-88A@NiFe-PB heterostructures for electrochemical non-enzymatic glucose detection[J]. Microchemical Journal, 2024, 196: 109641. DOI: 10.1016/j.microc.2023.109641

    [34]

    LUO Y, SHUPLETSOV L, RITA M, et al. Integration of triphenylene-based conductive metal-organic frameworks into carbon nanotube electrodes for boosting nonenzymatic glucose sensing[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51435-51443.

  • 其他相关附件

  • 目的 

    第三代葡萄糖传感器中氧化酶存在容易受温度、湿度、酸碱度等影响的缺点。因此,开发低成本、高灵敏度的葡萄糖催化剂具有广阔的应用前景。本文在室温条件合成Co基MOFs(Co-ZIF-67);采用丝网印刷技术,批量制备Co-ZIF-67修饰的商业银-碳电极,研究其在碱性溶液中对葡萄糖的传感性能;采用人体血清样品验证Co-ZIF-67修饰银-碳电极潜在应用。

    方法 

    采用可拓展室温合成法制备了Co-ZIF-67;分别采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术对Co-ZIF-67进行了表征。采用丝网印刷技术批量制备银-碳商业电极。采用配套技术配制Co-ZIF-67油墨,并将其丝网印刷到银-碳电极上,得到Co-ZIF-67修饰的银-碳电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)和循环响应技术(I-T)对该电极的电化学性能进行测试、评估。测试Co-ZIF-67修饰电极在血清样品中的回收率。

    结果 

    XRD和XPS结果表明Co-ZIF-67已经被成功制备。在SEM和TEM图中,Co-ZIF-67呈现多面形,且尺寸分布相对较窄。采用CV技术评估了Co-ZIF-67修饰电极的电催化性能。结果表明,Co-ZIF-67修饰电极对葡萄糖表现出较好的催化活性;PH>13时,该电极对葡萄糖的催化活性更高。不同扫速CV结果表明该电化学反应是受扩散控制的。与CV相比较,DPV技术的响应信号更强;Co-ZIF-67修饰电极在0.4-0.6 V处有一个较弱的氧化还原峰;电极的响应信号随着葡萄糖浓度的增加而增强。Co-ZIF-67修饰电极的催化机理为:碱性溶液中Co-ZIF-67中Co被氧化为Co;Co因从葡萄糖得电子(变为Co)并不断将葡萄糖氧化为葡萄糖酸从而产生电流信号。采用安培响应技术在Co-ZIF-67修饰电极上对葡糖的传感性能做了进一步的评估。结果表明,随着电解质溶液中葡萄糖浓度的增加,响应电流随之增强,且安培响应电流与葡萄糖浓度之间呈线性关系。值得一提的是,与已报道的电极相比,Co-ZIF-67修饰电极的灵敏度具有较大的优势。Co-ZIF-67修饰电极对抗坏血酸(3 mmol/ L)、艾考糊精(0.164 mol/L)、谷胱甘肽(30 mmol/L)、半乳糖(8 mmol/L)和麦芽糖(0.584 M)等均表现出较好的抗干扰性。Co-ZIF-67修饰电极在16天后仍然具有96%的初始响应。10个电极的相对标准方差(RSD)仅为10%,这说明Co-ZIF-67修饰电极具有较好的重现性。人体血清样品的回收率可以控制在93.97-101.5%,表明Co-ZIF-67修饰电极具有潜在应用。

    结论 

    (1)基于室温合成的Co-ZIF-67,采用丝网印刷技术批量构建了Co-ZIF-67修饰的商业银-碳电极。(2)Co-ZIF-67修饰电极表现出优异的葡萄糖电催化性能:0.58 μmol/L的检测极限,1.393 μA·L/(mmol·cm)的灵敏度,高的抗干扰性,96%的空气稳定性。(3)研究表明,Co-ZIF-67的低能耗合成及其Co-ZIF-67修饰电极的批量化制备为葡萄糖传感器的发展提供一个可参考的方向。

  • 糖尿病是一种严重威胁人类健康的慢性病。糖尿病患者人数从1980年的1.08亿增加到2023年的5.37亿。葡萄糖传感器在糖尿病的诊断和治疗中起着重要作用。金属-有机框架(Metal-Origanic Frameworks, MOFs)是一类新兴的多孔材料,具有金属活性位点丰富、表面积大、结构多样、孔径可调和功能可调等优点而受到广泛的关注。

    本文采用一种简单、经济的方法室温下成功地合成Co-MOFs;采用丝网印刷技术将Co-MOFs涂敷在商业化条形银-碳电极上。作为生物传感器的催化剂,Co-MOFs纳米材料对葡萄糖表现出较高的电催化活性。测试结果表明,Co-MOFs基条形电极对葡萄糖检测的灵敏度为1393 nA·L/(mmol·cm2),检测极限为0.58 μmol/L(S/N = 3),线性范围为0.1-0.5 mmol/L。该工作对葡萄糖传感器中多功能电极的设计具有一定的指导意义。

    批量Co-MOFs修饰电极制备及其对葡萄糖电催化性能图

图(6)  /  表(2)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  190
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-02-06
  • 录用日期:  2024-02-21
  • 网络出版日期:  2024-03-08
  • 发布日期:  2024-03-08
  • 刊出日期:  2024-12-14

目录

/

返回文章
返回